Efficient Computation of Substring Equivalence
Classes with Suffix Arrays

Kazuyuki Narisawa!, Shunsuke Inenaga?, Hideo Bannai', and
Masayuki Takeda!3

! Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
2 Department of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 819-0395, Japan
3 SORST, Japan Science and Technology Agency (JST)
{k-nari, bannai, takeda}@i.kyushu-u.ac.jp
inenaga@c.csce.kyushu-u.ac. jp

Abstract. This paper considers enumeration of substring equivalence
classes introduced by Blumer et al. [1]. They used the equivalence classes
to define an index structure called compact directed acyclic word graphs
(CDAWGS). In text analysis, considering these equivalence classes is
useful since they group together redundant substrings with essentially
identical occurrences. In this paper, we present how to enumerate those
equivalence classes using suffix arrays. Our algorithm uses rank and lcp
arrays for traversing the corresponding suffix trees, but does not need
any other additional data structure. The algorithm runs in linear time in
the length of the input string. We show experimental results comparing
the running times and space consumptions of our algorithm, suffix tree
and CDAWG based approaches.

1 Introduction

Finding distinct features from text data is an important approach for text anal-
ysis, with various applications in literary studies, genome studies, and spam de-
tection [2]. In biological sequences and non-western languages such as Japanese
and Chinese, word boundaries do not exist, and thus all substrings of the text
are subject to analysis. However, a given text contains too many substrings to
browse or analyze. A reasonable approach is to partition the set of substrings
into equivalence classes under the equivalence relation of [1] so that an expert
can examine the classes one by one [3]. This equivalence relation groups together
substrings that correspond to essentially identical occurrences in the text. Such
a partitioning is very beneficial for various text mining approaches whose min-
ing criterion is based on occurrence frequencies, since each element in a given
equivalence class will have the same occurrence frequency.

In this paper, we develop an efficient algorithm for enumerating the equiva-
lence classes of a given string, as well as useful statistics such as frequency and
size for each class. Although the number of equivalence classes in a string w of
length n is at most n+ 1, the total number of elements in the equivalence classes

is O(n?), that is, the number of substrings in w. However, each equivalence class
can be expressed by a unique maximal (longest) element and multiple minimal
elements. Further, these elements can be expressed by a pair of integers repre-
senting the beginning and end positions in the string. Thus, we consider these
succinet expressions of the equivalence classes, which require only O(n) space.
The succinct expressions can easily be computed using the CDAWG data struc-
ture proposed by [1], which is an acyclic graph structure whose nodes correspond
to the equivalence classes. Although CDAWGS can be constructed in O(n) time
and space [4], we present a more efficient algorithm based on suffix arrays.

In Section 3, we first describe an algorithm using suffix trees with suffix links
(Algorithm 1), for computing the succinct expressions. Although suffix trees can
also be constructed and represented in O(n) time and space [5, 6], it has been
shown that many algorithms on suffix trees can be efficiently simulated on suffix
arrays [7] with the help of auxiliary arrays such as Icp and rank arrays [8,9].
However, previous methods require extra time and space for maintaining suffix
link information. In Section 4, we give an algorithm to simulate Algorithm 1 using
the suffix, lcp and rank arrays (Algorithm 2). A key feature of this algorithm is
that it does not require any extra data structure other than these arrays, making
it quite space economical. Section 5 gives results of computational experiments
of Algorithm 1, 2, and an algorithm using CDAWGs.

2 Preliminaries

2.1 Notations

Let X be a finite set of symbols, called an alphabet. An element of X* is called
a string. Strings x, y and z are said to be a prefiz, substring, and suffix of
the string w = xyz, respectively, and the string w is said to be a superstring
of substring y. The sets of prefixes, substrings and suffixes of a string w are
denoted by Prefiz(w), Substr(w) and Suffiz(w), respectively. The length of a
string w is denoted by |w|. The empty string is denoted by ¢, that is, [e| = 0. Let
X+ = 3* —{e}. The i-th symbol of a string w is denoted by wl[i] for 1 < i < |w|,
and the substring of w that begins at position ¢ and ends at position j is denoted
by wli : j] for 1 < i < j < |w|. Also, let wi ;] = w[i : |w|] for 1 < ¢ < |w|. For
any string w € X* and x € Substr(w), a reference pair of x w.r.t. w is a pair
(i,7) such that w[i : j] = z. For any strings x,y € X*, the longest string in
Prefiz(x) N Prefix(y) is called the longest common prefix (LCP) of x and y.

2.2 Equivalence Relations on Strings

In this subsection, we recall the equivalence relations introduced by Blumer et
al. [10,1], and then state their properties. Throughout this paper, we consider
the equivalence classes of the input string w that ends with a distinct symbol $
that does not appear anywhere else in w.

For any string x € Substr(w), let,

BegPos(z) ={i |1 <i<|w|,z =wl[i:i+ |z| — 1]}, and
EndPos(z) ={i|1<i<|w|,z =w[i —|z|+1:1]}.

For any string y ¢ Substr(w), let BegPos(y) = Endpos(y) = 0.
Now we define two equivalence relations and classes based on BegPos and
EndPos.

Definition 1. The equivalence relations =1, and =g on X* are defined by:

x =, y < BegPos(x) = BegPos(y), and
x =g y < EndPos(x) = EndPos(y),

where x,y are any strings in X*. The equivalence class of a string x € X* with
respect to =1, and =g is denoted by [x]=, and [x]=,, respectively.

Notice that any strings not in Substr(w) form one equivalence class under
=y, called the degenerate class. Similar arguments hold for =g. The above
equivalence classes [z]=, and [z]=, correspond to the nodes of suffiz trees [5]
and directed acyclic word graphs (DAWGSs) [10], respectively. For any string
x € Substr(w), let ¥ and 7 denote the unique longest member of [r]=, and
[t]=,, respectively. For any string z € Substr(w), let ‘@ = azf such that
a, 3 € X* are the strings satisfying = = axz and 7 = z0.

Intuitively, " = ax(means that:

— Every time x occurs in w, it is preceded by « and followed by .
— Strings « and 3 are longest possible.

Py —
Note that (o) = (z) = "2".
Now we define another equivalence relation, whose equivalence classes corre-
spond to the nodes of compact directed acyclic word graphs (CDAWGSs) [1].

Definition 2. For any string x,y € X*, we denote x =y, if and only if
1. x ¢ Substr(w) and y ¢ Substr(w), or

2. x,y € Substr(w) and T ="y .
The equivalence class of a string x with respect to = is denoted by [x]=. For any
x € Substr(w), the unique longest member T of [x]= is called the representative

of the equivalence class.

Now we consider a succinct representation of each non-degenerate equivalence
class under =. For any = € Substr(w), let Minimal([z]=) denote the set of
minimal elements of [z]=, that is,

Minimal([z]z) = {y € [z]=z | 2z € Substr(y) and z € [z]= implies z = y}.

Namely, Minimal([x]=) is the set of strings y in [z]= such that there is no string
z € Substr(y) — {y} with z = z.

The following lemma shows that the strings in every non-degenerate equiv-
alence class [r]= can be represented by a pair of its representative @ and
Minimal([z]=).

Lemma 1 ([3]). For any x in Substr(w), let yi,...,yx be the elements of
Minimal([z]z). Then,

[x]= = Pincer(y1, @) U--- U Pincer(yx, T),

where Pincer(y;, @) is the set of strings z such that z € Substr(z’) and y; €
Substr(z).

Now, a succinct representation of a non-degenerate equivalence class [x]= is
a pair of ‘@ and Minimal([z]=), where Z" and all strings in Minimal([x]=) are
represented by their reference pairs w.r.t. w. We have the following lemma about
the total space requirement for the succinct representations of all the equivalence
classes under =.

Lemma 2. A list of succinct representations of all non-degenerate equivalence
classes under = requires only O(|w]) space.

Let the size of non-degenerate equivalence class [z]= be the number of sub-
strings that belong to [r]=, that is, |[z]=|. Let Freq(z) denote the occurrence
frequency of z in w. If x = y, then Freq(z) = Freq(y). Therefore, we consider
the frequency of an equivalence class [z]= and denote this by Freq([z]=).

2.3 Data Structures

We use the following data structures in our algorithms.

Definition 3 (Suffix Trees and Suffix Link Trees). For any string w, the
suffiz tree of w, denoted ST (w), is an edge-labeled tree structure (V, E) such that

V={x|z=7,r € Substr(w)}, and
E={(z,8,20) | z,xB € V,f € 2T, a=pl], zd =z},

where the second component B of each edge (x,5,x0) in E is its label, and the
suffiz link tree of w, denoted SLT(w), is a tree structure (V, Ey) such that

E;={(azx,z) | x,ax € V,a € X'}.

It is well known that ST (w) with SLT(w) can be computed in linear time
and space [11, 6].

The root node of ST (w) and SLT(w) is associated with e = 2. Since the
end-marker $ is unique in w, every nonempty suffix of strings in w corresponds
to a leaf of ST (w), and only such a leaf exists in ST (w). Therefore, each leaf
can be identified by the beginning position of the corresponding suffix of w. The
values Freq(z) for all nodes « € V of ST(w) can be computed in linear time and
space by a post-order traversal on ST (w).

For any node zf with incoming edge (x, 8, 203) of ST (w), let Paths(xf8) =
{xp' | B € Prefiz(B) — {e}}. Note that Paths(z3) = [283]=,, and therefore Zz' =
xf for any z € Paths(z3). It is easy to see that |Paths(zf3)| = |z0| — |z| = |0].

For any node z of ST (w) such that « # ¢, let Parent(z) denote the parent
of .

Definition 4 (Suffix Arrays). The suffix array [7] SA of any string w is an
array of length |w| such that SA[i] = j, where w[j :| is the i-th lexicographically
smallest suffix of w.

The suffix array of string w can be computed in linear time from ST (w), by
arranging the out-going edges of any node of ST(w) in the lexicographically
increasing order of the first symbols of the edge labels. This way all the leaves of
ST (w) are sorted in the lexicographically increasing order, and they correspond
to SA of w. Linear-time direct construction of SA has also been extensively
studied [12-14].

Definition 5 (Rank and LCP Arrays). The rank and lcp arrays of any
string w are arrays of length |w| such that rank[SA[i]] = i, and lcp[i] is the length
of the longest common prefix of w[SA[i — 1] ;] and w[SA[i] :] for 2 <i < |w|, and
lep[l] = —1.

Given SA of string w, the rank and lcp arrays of w can be computed in linear
time and space [8].

3 Computing Equivalence Classes under = Using Suffix
Trees

In this section we present a suffix tree based algorithm to compute a succinct
representation of each non-degenerate equivalence class, together with its size
and frequency. This algorithm will be the basis of our algorithm of Section 4,
which uses suffix arrays instead of trees.

The following lemma states how to check the equivalence relation = between
two substrings using ST (w).

Lemma 3. For any x,y € Substr(w), x =y if and only if Freq(¥) = Freq(y)
and T € Suffir(Y) or vise versa.

Proof. The case that © = ¥ is trivial. We consider the case that = # .
Assume w.l.o.g. that | 7| < |7/

— —
Assume z = y. Then we have (7') = @ = % = (%), which implies that
EndPos(@) = EndPos(7). Thus we have Freq(7') = Freq(y). Since | 7’| < |/,

- —

¥ € Suffix(y).

Now assume Freq(@) = Freq(y') and 7' € Suffiz(y). Since @ € Suffir(y),

we have EndPos(T') 2 EndPos(%). Moreover, since Freq(7) =
—

get EndPos(Z') = EndPos(). Hence @ = (7) = () =7 . O

Lemma 4. For any node x € V of ST(w) such that T = z, let £ = max{i |
Freq(z[i :]) = Freq(z)}. Then, [z]= = Uye[m];R[y]EL = Ule Paths(z[i :]).

Proof. By Lemmad. ad

For each node x of ST(w), |Paths(x)| = |Parent(z)| — |z| and it can be
precomputed by a post-order traversal on ST (w). Thus, by the above lemma,
the size of each non-degenerate equivalence class can be computed by a post-
order traversal on SLT(w).

In what follows, we show how to check whether or not a given node z in the
suffix link tree traversal is the representative of the equivalence class under =,
namely, whether or not z = 7.

Lemma 5. For any node x € V of ST(w), x = T if and only if Freq(az) <
Freq(z) for any a € X such that ax € V.

Proof. By Lemma 3. ad
The following two lemmas follow from Lemma 5.

Lemma 6. For any leaf node x € V of SLT(w), z = 7T .

Proof. Since x is also a node of ST (w), * = @'. We show that for any symbol

a € X, Freq(ax) < Freq(z), and therefore, z = 7. Since x is a leaf of SLT(w),
we have ax € V for any a € X, for which there are the two following cases:

1. ax & Substr(w). Then, Freg(az) = 0 while Freq(z) > 0.
2. ax € Substr(w). Consider 3 € ¥T such that az = axf € V. Then, we have
that Freq(az) = Freq(azp) < Freq(zf3) < Freq(z).

In both cases we have Freq(az) < Freq(z), and hence x = 7" from Lemma 5. O

Lemma 7. For any internal node x € V of SLT(w) and for any a € X with
ar €V, x =2 if and only if Freq(az) # Freq(z).

Proof. (=) Since * = T, we have Freq(bz) # Freq(z) for any b € X. (<)
Since Freq(z) > ;s Freq(bx) and Freq(z) > Freq(az) > 0, we have Freq(x) >
Freq(bz) for any b € X. O

We have the following lemma concerning the minimal members of the non-
degenerate equivalence classes.

Lemma 8. For any nodes x,ax € V of ST(w) with a € X, and let yb be
the shortest member in Paths(ax) where y € X* and b € X. Then, yb €
Minimal([ax])=) if and only if (1) |Paths(ax)| > |Paths(x)| or (2) Freq(az) <
Freq(z).

Proof. Tt is clear when y = €. We consider the case where y # ¢. Let y = ay’ for
y e X",
(=) Assume ay’'b € Minimal([ax]=), which implies ay’ ¢ [az]= and y'b ¢
[az]=. First, consider the case where ¢ [ax|=. Then clearly (2) holds. For the
—
case where x € [ax]=, y'b # x since ¥'b ¢ [ax]= = [x]=, and there exists a node
—

corresponding to y’b on the path from y’ to x. Therefore (1) holds.
(<) Since ay’b is the shortest member in Paths(az), ay’ € [az]=. It remains
to show ¢'b & [ax]=. If we assume (2), Freq(az) < Freq(z) < Freq(y'b) since y'b

Algorithm 1: Algorithm for computing a succinct representation, the size
and frequency of each non-degenerate equivalence class using suffix trees
Input: ST(w),SLT(w) : suffix tree and suffix link tree of w
Output: a succinct representation, the size and frequency of each
non-degenerate equivalence class

1 foreach node v € V in post-order of ST(w) do
2 | calculate and store the values Freq(v) and |Paths(v)|;
3 size := 0; freq := 0;
4 foreach node v € V in post-order of SLT(w) do
5 if v is a leaf of SLT(w) or freq # Freq(v) then
6 if size # 0 then
7 report size as the size of [rep_v]=;
8 minimal := minimal U {(¢, j) } s.t. w[i : j] is the shortest string in
Paths(old_v);
9 report ((i,j), minimal) as a succinct representation of [rep_v]=,
where w[i : j] = rep-v;
10 minimal := (;
11 freq := Freq(v); report freq as the frequency of [rep_v]=;
12 size := |Paths(v)|; len := | Paths(v)|; old_v := v; rep_v := v;
13 else
14 if len > |Paths(v)| then
15 minimal := minimal U {(i, j) } s.t. w[i : j] is the shortest string in
Paths(old_v);
16 size := size + | Paths(v)|; len := |Paths(v)|; old_v := v;
17 end
18 end

is a prefix of x. Therefore, we have y'b & [ax|= because Freq(y'b) # Freq(az).
Next, assume (1) when (2) does not hold, that is, Freq(y'b) = Freq(az). Then,
AN

y'b # x or else, |Paths(az)| = |Paths(x)|. Therefore, y'b & [z]= = [ax]=. O

A pseudo-code of the algorithm to compute a succinct representation of each
non-degenerate equivalence class together with its size and frequency is shown
as Algorithm 1. The above arguments lead to the following theorem.

Theorem 1. Given ST(w) and SLT (w), Algorithm 1 computes succinct repre-
sentations of all non-degenerate equivalence classes under =, together with their
sizes and frequencies in linear time.

4 Computing Equivalence Classes under = Using Suffix
Array

In this section, we develop an algorithm that simulates Algorithm 1 using suf-
fix arrays. Our algorithm is based on the algorithm by Kasai et al. [8] which
simulates a post-order traversal on suffix trees with SA, rank and lcp arrays. A

key feature of our algorithm is that it does not require any extra data structure
other than the suffix, rank and lcp arrays, making it quite space economical.
For any string « € Substr(w), let

Lbeg(z) = SA[min{rank[i] | i € BegPos(z)}] and
Rbeg(z) = SA[max{rank[i] | i € BegPos(x)}].

Recall that Algorithm 1 traverses SLT (w). Our suffix array based algorithm
simulates traversal on ST (w), and when reaching any node z such that x = @,
it simulates suffix link tree traversal until reaching node y € Suffiz(z) such that
y # .

The next lemma states that for any node x of ST(w), Freg(z) is constant
time computable using rank array.

Lemma 9. For any node x € V of ST (w),
Freq(z) = rank|[Rbeg(x)] — rank[Lbeg(x)] + 1.

When reaching any node z such that = @ in the post-order traversal on
ST (w), we compute a succinct representation of [z]= due to Lemma 3. Examina-
tion of whether z = =" can be done in constant time according to the following
lemma.

Lemma 10. For any node x € V of ST(w), let | = Lbeg(z) and r = Rbeg(x).
We have x = T if and only if at least one of the following holds: (1)1—1 =0 or
r—1=0, (2) w[l—1] # w[r—1], or (8) rank[r|—rank[l] # rank|r—1]—rank[l—1].

Proof. (=) First, let us assume z = 7. If (1) and (2) do not hold, that is,
1-1#0,7—1%#0and wll — 1] = w[r — 1] = a, then Freq(z) > Freg(az) due to
Lemma 3. This implies rank[r] — rank[l] > rank[Rbeg(ax)] — rank|[Lbeg(az)] >
rank[r — 1] — rank[l — 1] from Lemma 9, showing (3).

(<) To show the reverse, we have only to show 7 since z is a node of
ST(w), and therefore * = 7. First, we show (1) =z = "7". If | = 1, then
|z| € EndPos(x) while |z| ¢ EndPos(az) for any a € X, implying * = & . The
same applies for r = 1.

Next, we show (2) = z = 7" when (1) does not hold, that is, [— 1 # 0 and
r — 1% 0. Since w[l — 1] # w[r — 1], we have that | — 1 + |z| € EndPos(x) while
l—14|z| & EndPos(wlr — 1]z) and r — 1 + |x| € EndPos(w[r — 1]z). Therefore,
Freq(z) > Freq(w[r — 1]z) > 0, and since Freq(z) > 3, 5 Freq(az), we have
Freq(az) < Freq(z) for all a € X, thus implying z = 7.

Finally, we show (3) = = @ when (1) and (2) do not hold, that is, [—1 # 0,
r—1% 0 and w[l — 1] = w[r — 1] = a. (3) implies that ranklr] — rank[l] >
rank|[Rbeg(ax)] — rank[Lbeg(ax)] > rank[r — 1] — rank[l — 1], and from Lemma 9
we have that Freq(z) > Freg(az) > 0. Therefore #Z ax from Lemma 3, implying

—
r="T.

Therefore, we have * = 7 if we assume at least one of (1)—(3). O

Now we consider to check whether or not ax = z for any nodes ax,x of
ST (w), where a € X and z € X*. By definition, it is clear that Lbeg(ax) + 1 €
BegPos(x) and Rbeg(ax) + 1 € BegPos(x). However, note that Lbeg(ax) + 1 =
Lbeg(z) does not always hold (same for Rbeg).

To check if ax = x, we need to know whether or not Lbeg(ax)+ 1 = Lbeg(x),
and it can be done by the following lemma:

Lemma 11. For any nodes ax,x € V of ST (w) such that a € ¥ and © € X*,
let I = Lbeg(ax). Then, lep[rank[l 4+ 1]] < |az| — 1 if and only if Lbeg(x) =1+ 1.

Proof. If Lbeg(x) =1+ 1, then clearly lep[rank[l 4+ 1]] < |z| = |az| — 1.

Now, assume on the contrary that Lbeg(xz) # I + 1. Then, rank|[Lbeg(z)] <
rank[l + 1], and since w[Lbeg(z) :] and w[l + 1 :] share x as a prefix, we have
lep[rank[l 4+ 1]] > |z| = |ax| — 1 which is a contradiction. O

The following lemma can be shown in a similar way to the above lemma:

Lemma 12. For any nodes ax,z € V of ST(w) such that a € X and x € X*,
let r = Rbeg(ax). Then, lep[rank[r + 1] 4+ 1] < |ax| — 1, if and only if Rbeg(x) =
r+ 1.

Now we have the following lemma on which our examination of equivalence
relation is based.

Lemma 13. For any nodes ax,x € V of ST(w) such that a € ¥ and x € X*,
we have ax = x if and only if

(1) lax| — 1 > leprank[l + 1]],
(2) lax| — 1 > lep[rank[r + 1] + 1], and
(8) rank[r] — rank[l] = rank[r + 1] — rank[l + 1],

where | = Lbeg(ax) and r = Rbeg(azx).

Proof. (=) Assume ax = z. Then, Freg(axr) = Freq(z) and thus we have
rank[Rbeg(ax)]—rank[Lbeg(ax)] = rank[Rbeg(x)]— rank[Lbeg(x)] from Lemma 9.
From Freq(ax) = Freq(z), we have Rbeg(x) = Rbeg(ax) +1 = r + 1 and
Lbeg(x) = Lbeg(ax) +1 =1+ 1. By Lemma 11 and Lemma 12 we get |az| — 1 >
leplrank[l 4+ 1]] and |az| — 1 > lep[rank[r + 1] + 1].

(<) From Lemma 11, if |ax|—1 > Ilep[rank[l + 1]], then Lbeg(x) = I+1. From
Lemma 12, if |ax| — 1 > lep[rank[r + 1] + 1], then Rbeg(xz) = r + 1. Therefore,
if rank[r] — rank[l] = ranklr + 1] — rank[l + 1], then Freq(az) = Freq(z) by
Lemma 9. Consequently, we get ax = = from Lemma 3. ad

Next, we consider how to compute |Paths(z)| = |z| — |Parent(z)|. When
r =2, we know |z| and | Parent(z)| which are computed in post-order traversal
on ST(w) simulated by the algorithm of [8]. When z # 7", namely, when z has
been reached in suffix link traversal simulation, we have that |z| = |az|—1 where
ax is the node reached immediately before z in the suffix link tree traversal
simulation. We have the following lemma for computation of | Parent(x)|.

10

Algorithm 2: Algorithm for computing a succinct representation, the size
and frequency of each non-degenerate equivalence class using suffix, lcp and
rank arrays

Input: SA[1 : |w|], lep[1 : |wl|], rank[1 : |w]] : suffix, lcp and rank arrays of string w
Output: a succinct representation, the size and frequency of each
non-degenerate equivalence class

1 Stack initialization (Left, Height) := (-1, —1);
2 fori=1,...,ndo
3 Lnew := 4 — 1; Hnew := lcp[i]; Left := Stack.Left; Height := Stack.Height;
4 while Height > Hnew do
5 Pop Stack;
6 if Stack.Height > Hnew then parent := Stack.Height;
7 else parent = Hnew;
8 L := Left; R:=1¢ — 1; freq := R — L + 1; rlen := Height;
9 if (SA[L] # 1)&(SA[R] # 1) then
10 | BL := rank[SA[L] — 1]; BR := rank[SA[R] — 1];
11 if (BR—BL+1#freq) or (w[BL] #w[BR]) or (SA[L]=1) or (SA[R]=1) then
12 Let x = w[SA[L] : SA[L] + rlen — 1];
13 report freq as the frequency of [X]=;
14 size := rlen — parent; mlen := rlen — parent; len := rlen; minimal := ();
15 FL := rank[SA[L] + 1]; FR := rank[SA[R] + 1]; BL := L; BR := R;
16 while (len—1> lep[FL])&(len—1 > lcp[FR+1])& (FR—FL+1=freq) do
17 if lep[FL] > lcp[FR 4 1] then parent := lcp[FL];
18 else parent := lcp[FR + 1];
19 len := len — 1; size := size + len — parent;
20 if mlen > len — parent then
21 | minimal := minimal U {(SA[BL], SA[BL] + parent)};
22 BL := FL; BR := FR;
23 if (SA[FL]+1 > |w]|) or (SA[FR] + 1 > |w|) then break;
24 FL:=rank[SA[FL]+1]; FR:=rank[SA[FR]+1]; mlen:=len—parent;
25 report size as the size of [X]=;
26 minimal := minimal U {(SA[BL], SA[BL] + parent) };
27 report((SA[L], SA[L] + rlen — 1), minimal) as a succinct
representation of [x]=;
28 Lnew := Left; Left := Stack.Left; Height := Stack.Height;
29 if Height < Hnew then Push(Lnew, Hnew) to Stack;
30 Push(i, |w| — SA[¢]) to Stack;

31 end

Lemma 14. For any node x € V of ST (w), let | = Lbeg(x) and r = Rbeg(x).
Then, |Parent(x)| = max{lep[rank[l]], lep[rank[r] + 1]}.

Proof. For all 1 < i < rank[l], the length of the longest common prefix of
w[SA[7] :] and z is at most lep[rank[l]]. Similarly for rank[r] < j < |w|, the length
of the longest common prefix of w[SA[j] :] and z is at most lep[rank[r] + 1]. Also,
for all rank[l] < k < rank[r], the longest common prefix of w[SA[k] :] and z is
|z|, and therefore lep[k] > |z| for all rank[l] < k < rank[r]. This implies that

11

| Parent(x)| is equal to either lep[rank[l]] or lep[rank[r] + 1] and hence the lemma
follows. =

A pseudo-code of the algorithm is shown in Algorithm 2. The for and while
loops on line 2 and line 4 simulate a post-order traversal on ST (w) using SA4,
rank and lcp arrays, and it takes linear time due to [8]. Checking whether or not
x = T for any node x reached in the post-order traversal on ST (w), is done in
line 11 due to Lemma 10. Thus, we go into the while loop on line 16 only when
x = ‘2’ and this while loop continues until reaching y € Suffiz(x) such that
y % = due to Lemma 13. It is clear that all calculations in the while loop can
be done in constant time.

Theorem 2. Given SA, rank and lcp arrays of string w, Algorithm 2 computes
succinct representations of all non-degenerate equivalence classes under =, to-
gether with their sizes and frequencies in linear time.

5 Experimental Results

We performed preliminary experiments on corpora [15, 16], to compare practical
time and space requirements of suffix tree, CDAWG, and suffix array based ap-
proaches to compute a succinct representation of for each non-degenerate equiv-
alence class under =, together with its size and frequency.

We constructed suffix trees using Ukkonen’s algorithm [6], and ran Algo-
rithm 1. CDAWGSs were constructed using the CDAWG construction algorithm
of [4]. We computed suffix arrays using the gsufsort program by [17]. All the
experiments were conducted on a RedHat Linux desktop computer with a 2.8
GHz Pentium 4 processor and 1 GB of memory.

Table 1 shows the running time and memory usage of the algorithms for
each data structure. The enumeration column shows the time efficiency of the
algorithms computing succinct representations of all equivalence classes together
with their sizes and frequencies. For all the corpora the suffix array approach
was the fastest. In addition, the suffix array algorithm uses the least memory
space for all the corpora.

References

1. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3) (1987) 578-595

2. Narisawa, K., Bannai, H., Hatano, K., Takeda, M.: Unsupervised spam detection
based on string alienness measures. Technical report, Department of Informatics,
Kyushu University (2007)

3. Takeda, M., Matsumoto, T., Fukuda, T., Nanri, I.: Discovering characteristic ex-
pressions in literary works. Theoretical Computer Science 292(2) (2003) 525-546

4. Inenaga, S., Hoshinoa, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G.,
Pavesi, G.: On-line construction of compact directed acyclic word graphs. Discrete
Applied Mathematics 146(2) (2005) 156-179

12

Table 1. The comparison of the computation time and memory space for suffix trees,
CDAWGS and suffix arrays.

corpora data |data size data Time (seconds) memory
name (Mbytes)| structure construction|enumeration| total | (Mbytes)
Suffix Tree 0.95 0.21 1.16 | 21.446
cantrby/plrabnl2| 0.47 CDAWG 0.97 0.18 1.15| 9.278
Suffix Array 0.43 0.14 0.57| 5.392
Suffix Tree 12.08 1.43 13.51| 121.877
ProteinCorpus/sc| 2.8 CDAWG 12.76 1.12 13.88| 69.648
Suffix Array 3.08 0.63 3.71| 33.192
Suffix Tree 7.33 2.23 9.56 | 191.869
large/bible.txt 3.9 CDAWG 6.68 1.62 8.30 | 56.255
Suffix Array 4.71 1.50 6.21| 46.319
Suffix Tree 8.17 2.91 11.08| 232.467
large/E.coli 4.5 CDAWG 8.58 2.31 10.89| 139.802
Suffix Array 5.95 1.46 7.41| 53.086

10.

11.

12.

13.

14.

15.

16.

17.

Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Annual
Symp. on Switching and Automata Theory. (1973) 1-11

Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3) (1995) 249-
260

Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5) (1993) 935-948

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Proc. of
CPM’01. Volume 2089 of LNCS., Springer-Verlag (2001) 181-192

Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1) (2004) 53-86

Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40 (1985) 31-55

McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23(2) (1976) 262272

Karkkéinen, J., Sanders, P.: Simple linear work suffix array construction. In: Proc.
ICALP’03. Volume 2719 of LNCS., Springer-Verlag (2003) 943-955

Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays.
In: Proc. CPM’03. Volume 2676 of LNCS. (2003) 186-199

Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Proc.
CPM’03. Volume 2676 of LNCS. (2003) 200-210

Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms.
In: Proc. DCC ’97. (1997) 201-210 http://corpus.canterbury.ac.nz/.
Nevill-Manning, C., Witten, I.: Protein is incompressible. In: Proc. DCC ’99.
(1999) 257266 http://www.data-compression.info/Corpora/ProteinCorpus/
index.htm.

Larsson, N.J., Sadakane, K.: Faster suffix sorting. Technical Report LU-CS-TR:99-
214, LUNDFD6/(NFCS-3140)/1-20/(1999), Department of Computer Science,
Lund University, Sweden (1999) http://www.larsson.dogma.net/qsufsort.c.

