International Journal of Foundations of Computer Science

© World Scientific Publishing Company

A FULLY COMPRESSED PATTERN MATCHING ALGORITHM
FOR SIMPLE COLLAGE SYSTEMS

SHUNSUKE INENAGA* t

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
shunsuke.inenaga@i.kyushu-u.ac. jp

AYUMI SHINOHARA*

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
ayumi@ecei.tohoku.ac. jp

and

MASAYUKI TAKEDA
Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
SORST, Japan Science and Technology Agency (JST)
takeda@i.kyushu-u.ac. jp

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We study the fully compressed pattern matching problem (FCPM problem): Given T
and P which are descriptions of text T' and pattern P respectively, find the occurrences of
P in T without decompressing 7 or P. This problem is rather challenging since patterns
are also given in a compressed form. In this paper we present an FCPM algorithm for
simple collage systems. Collage systems are a general framework representing various
kinds of dictionary-based compressions in a uniform way, and simple collage systems
are a subclass that includes LZW and LZ78 compressions. Collage systems are of the
form (D,S), where D is a dictionary and & is a sequence of variables from D. Our
FCPM algorithm performs in O(||D||? + mnlog|S|) time, where n = |T| = ||D|| + |S|
and m = |P|. This is faster than the previous best result of O(m2?n2) time.

Keywords: string processing, text compression, fully compressed pattern matching, col-
lage systems, algorithm

1. Introduction

* Main part of this research was done when the author was visiting the Department of Computer
Science, the University of Helsinki, Finland.

t Supported by JSPS Research Fellowships for Young Scientists

{ Main part of this research was done when the author was working for the Department of
Informatics, Kyushu University, Japan, and PRESTO, Japan Science and Technology Agency
(JST).

The compressed pattern matching problem (CPM problem) [1] is a challenging
problem in Stringology such that, given compressed text 7 and uncompressed pat-
tern P, find the pattern occurrences without decompressing 7. This problem has
been intensively studied for a variety of text compression schemes, e.g. [2, 4, 3, 17].

An ultimate extension of the CPM problem is the fully compressed pattern
matching problem (FCPM problem) [10] where both text T and pattern P are given
in compressed forms 7 and P respectively, and the objective is to find all occur-
rences of P in T without decompressing T or P. Miyazaki et al. [18] presented an
algorithm to solve the FCPM problem for straight line programs, in O(m?*n?) time
using O(mn) space, where m = |P| and n = |T|. For LZW compressed text T
and pattern P, Gasieniec and Rytter [7] addressed a pattern matching algorithm
running in O((m+n) log(m+n)) time but this one ezplicitly decompresses part of T
or P when the decompressed size does not exceed n. Hence their algorithm does not
really solve the FCPM problem where pattern matching without any decompressing
is strictly required. Therefore, the best known result for the FCPM problem on
LZW is O(m?n?) time and O(mn) space by Miyazaki et al. [18].

In this paper, we consider the FCPM problem on simple collage systems which
are a subclass of collage systems [11]. Collage systems are a general framework that
represents various compression schemes such as LZ family [22, 20, 23, 21], run-length
encoding, BPE [5], RE-PAIR [15], SEQUITUR [19], grammar transform [12, 14, 13],
and straight line programs. A collage system is a pair (D, S) where D is a dictionary
and S is a sequence of variables from D. Simple collage systems [16] are a subclass
of collage systems including LZ78 [23] and LZW [21]. Simple collage systems are
very attractive in terms of accelerating CPM [16] despite of their generally weaker
compression ratio.

In this paper, we present an efficient FCPM algorithm for simple collage sys-
tems, which runs in O(||D||? + mnlog|8]) time with O(||D||* + mn) space, where
||D|| denotes the size of the dictionary D, and |S| the length of the sequence S. A
preliminary version of this work has appeared in [8]. Although our algorithm re-
quires more space than the algorithm by Miyazaki et al. [18], it consumes less time.
In addition, since simple collage systems are a general framework, for our algorithm
a text and a pattern may be compressed by different compression schemes. Namely,
our algorithm is so flexible that it can deal with an LZ78-compressed text and an
LZW-compressed pattern, and vice versa. Since it is natural to assume that a text
and a pattern can be chosen from difference sources, this feature can be a practical
advantage of our algorithm.

2. Preliminary

Let A be the set of natural numbers, and At be the set of positive integers.
Let X be a finite alphabet. An element of ¥* is called a string. The length of a
string 7' is denoted by |T'|. The i-th character of a string T is denoted by T'i] for
1 < i < |T|, and the substring of a string T' that begins at position i and ends at
position j is denoted by T[i : j] for 1 < ¢ < j < |T|. A period of a string T is an
integer p (1 < p < |T|) such that T[i] = T[i + p] for any i = 1,2,...,|T| — p.

Collage systems [11] are a general framework that enables us to capture the
structure of different types of dictionary-based compressions. Regular collage sys-
tems, which are a subclass of collage systems, are pair (D,S) such that D is a
sequence of assignments

X1 =expry, Xo = expra, ..., Xy = expry,
where X}, are variables and expry are expressions of either of the form

a where a € (X U¢), (primitive assignment)
X;X; wherei, j <k, (concatenation)

and & 1s a sequence of variables X;,, X;,, ..., X;, obtained from D. The size of D
is h and is denoted by ||D||, and the size of S is s and is denoted by |S|. The total
size of the collage system (D, S) is n = ||D||+|S| =h + s.

A regular collage system is said to be simple if, for any variable X = X, X,,
either | X¢| = 1 or | X,| = 1 [16]. LZW [21] and LZ78 [23] are simple collage systems
formalized as follows.

LZW. §$=X;,,Xi,,...,X;, and D is the following:
Xi=ay; Xo=uas; ...; Xy =agy
Kogr1 = Xiy Xo(in); Xgo = Xy Xo(ia)s -5 Xgws—1 = Xio s Xo(in)s

where the alphabet is ¥ = {a1,as,...,a4}, 1 < i1 < g, and o(j) denotes the integer
k (1 < k < g) such that ai is the first symbol of X;.

LZ78. S = X1,X5,..., X, and D is the following:
Xo=¢; X1 = Xi,b1; Xo=Xi,bo5 .05 Xy = X by

where b; is a symbol in X.

In this paper, we study the fully compressed pattern matching problem for simple
collage systems: Given two simple collage systems that are the descriptions of text
T and pattern P, find all occurrences of P in T'. Namely, we compute the following
set:

Oce(T,P)y={i| T[i:i+|P| - 1] = P}.

We emphasize that our goal is to solve this problem without decompressing either
of the two simple collage systems. Our result is the following:

Theorem 1 Given two simple collage systems (D, S) and (D', S') that are the
description of T and P respectively, Occ(T,P) can be computed in O(||D]|* +
mnlog |S|) time using O(||D||* + mn) space, where n = ||D|| + |S| and m =
D) +157).

3. Overview of algorithm

3.1. Translation to straight line programs

Consider a regular collage system (D, S). Note that S = X
be translated in linear time to a sequence of assignments of size s. For instance,
S = X1, X9, X3, X4 can be rewritten to X5 = X1 X9; X = X5X3; X7 = XXy, and
S = X7. Therefore, a regular collage system, which represents string 7' € X% can

i1 i2,~~~,Xis can

be seen as a context free grammar of the Chomsky normal form that generates only
T, and thus correspond to straight line programs (SLPs). In the sequel, for string
T € ¥*, let T denote the SLP representing 7. The size of T is denoted by || T,
and ||T]| = ||DP|| +|S|=h+ s =n.

Now we introduce simple straight line programs (SSLP) that correspond to
simple collage systems.
Definition 1 An SSLP T is a sequence of assignments such that

X1 =expry; Xo =expry; ... X, = expry,
where X; are variables and expr; are expressions of any of the form

a where a € 2 (primitive),
X, X' where £ <iand X' =a (right simple),
X'X, wherer <iand X' =a (left simple),
XX, wherel,r <1 (complex),

and T = X,,. Moreover, each type of variable satisfies the following properties:
- For any right simple variable X; = X, X', X, is either simple or primitive.
- For any left simple variable X; = X'X,, X, is either simple or primitive.
- For any complex variable X; = X, X, X, is either simple or primitive.
An example of an SSLP 7T for string 7" = abaabababb is as follows:

Xi=a, Xo=b,X35=X1X9, Xy = X1 X3, X5 = X3X1, X = XoXy,
X7 = X3Xy, Xg = X7X5, Xg = XX,

and 7 = Xg. See also Fig. 1 that illustrates the derivation tree of 7.

X1 and X5 are primitive variables, X3, X4, X5 and Xg are simple variables, and
X7, Xg and Xg are complex variables.

For any simple collage system (D,S), let T be its corresponding SSLP. Let
|[D|| = h and |S| = s. Then the total number of primitive and simple variables in
T 1s h, and the number of complex variables in 7 is s.

In the sequel, we consider computing Occ(T, P) for given SSLPs 7 and P.
We use X and X; for variables of 7, and Y and Y; for variables of P. When
not confusing, X; (Y;, respectively) also denotes the string derived from X; (Y
respectively). Let ||T]| = n and |[P]| = m.

Proposition 1 For any simple variable X, |X| = ||X]||, where ||X|| denotes the
number of vartables in X.

3.2. Basic idea of algorithm

X /Xs\x Xz/xe\Xz
Xs/ \)(4 Xs/ \Xl

a b
Fig. 1. Derivation tree of SSLP for string abaabababb.

In this section, we show a basis of our algorithm that outputs a compact repre-
sentation of Oce(T, P) for given SSLPs 7, P.

For strings X, Y € ¥* and integer k € A, we define the set of all occurrences of
Y that cover or touch the position k in X by

Occ™ (X, Y, k) ={i € Oce(X,Y) | k—|V|< i<k}

In the following, [7, j] denotes the set {i;i + 1,...,j} of consecutive integers.
For a set U of integers and an integer k, we denote U @ k = {i+ k| i € U} and
Uok={i—k|ieU}.

Observation 1 For any strings X,Y € ¥* and integer k € N,

Occ™ (X, Y k) = Oce(X,Y) N[k — | Y], k].

Lemma 1 For any strings X,Y € ¥* and integer k € N, Occt(X, Y, k) forms a
single arithmetic progression.

For positive integers p,d € Nt and non-negative integer ¢ € N, we define
(p,d,t) = {p+ ({1 —1)d | i € [1,t]}. Note that ¢ denotes the cardinality of the
set (p,d,t). By Lemma 1, Occt(X, Y, k) can be represented as the triple (p,d,t)
with the minimum element p, the common difference d, and the length ¢ of the
progression. By ‘computing Occt(X, Y, k), we mean to calculate the triple (p, d, t)
such that (p,d,t) = Occ®(X, Y k).

Observation 2 Assume each of sets A1 and Ao of integers forms a single arith-
metic progression, and is represented by a triple (p,d,t). Then, the union A; U As
can be computed in constant time.

Lemma 2 ([9]) Let (p,d,t) = Occ’(X, Y k) for strings X,Y € ¥* and integer
ke N. Ift > 1, then d is the shortest period of X[p : ¢ + |Y| — 1] where ¢ =
p+(t—1)d.

Lemma 3 For any strings X,Y,,Ys € X* and integers ki, ky € N, the inlersection
Occ™(X, Yy, ki) N (Occ™ (X, Yo, ko) |Y,]) can be computed in O(1) time, provided
that Occ™ (X, Yy, k) and Occ® (X, Yo, ks) are already computed.

Xi Xr
I§1 lfz I§3
Y Y Y

Fig. 2. k1,ka, ks € Oce(X, V), where ky € Oce(X¢, V), ka € Oce®(X, V) and
ks € Oce(X,,Y).

For variables X = X, X, and Y, we denote Occ®(X,Y) = Occ™(X, Y, |X|+1).
The following observation is explained in Fig. 2.
Observation 3 ([18]) For any variables X = XX, and Y,

Oce(X,Y) = Oce(Xy, Y)U Oce™ (X, Y)U (Oce(X,, Y) @ | Xe]).
Observation 3 implies that Occ(X,, Y) can be represented by a combination of
{OccA(XZ', Y)tie, = OccA(X1, Y), OccA(Xg, Y), ..., OccA(Xn, Y).

Thus, the desired output Oce(T, P) = Occ(X,, Yi) can be expressed as a combina-
tion of { Occ®(X;, V) }™, that requires O(n) space. Hereby, computing Oce(T, P)
is reduced to computing Occ® (X;, Y,,) for every i = 1,2,..., n. In computing each
Occ®(X;, Y;) recursively, the same set Occ® (X;1, Y;/) might repeatedly be referred
to, for i/ < i and j' < j. Therefore we take the dynamic programming strategy. We
use an m X n table App where each entry App[i,j] at row i and column j stores
the triple for Occ®(X;, Y;). We compute each Appl[i, 5] in a bottom-up manner, for
t=1,...,nand j = 1,...,m. In the following sections, we will show that the whole
table App can be computed in O(h?+mnlogs) time using O(h?+mn) space, where
h is the number of simple variables in 7 and s is the number of complex variables
in 7. This leads to the result of Theorem 1.

4. Details of algorithm

In this section, we show how to compute each Occ®(X;, Y;) efficiently. Our
result is as follows:
Lemma 4 For any variables X; of T and Y; of P, Occ® (X, Y;) can be computed
in O(log s) time, with extra O(h* +mn) work time and space.

The key to prove this lemmais, given integer k, to pre-compute Occ®(X;, Y, k)
for any 1 < i < iand 1 <j < j. In case that X is simple, we have the following
lemma:

Xy

Xty Xr(l)
Y — Y
k k
Fig. 3. In the left case, all the occurrences are covered by OccT(Xr(zl), Y, k)&
|Xg([1) |. In the right case, the first and second occurrences are covered by
OccA(Xgl , Y) and the third and fourth occurrences by OccT(Xr(zl), Y., k)&
[Xee |-

Lemma 5 Let X be any simple variable of T and Y be any variable of P. Given
integer k € N, Occ’ (X, Y, k) can be computed in O(1) time, with extra O(h?+mh)
work time and space.

As a counterpart to Lemma 5, we have the following lemma for X to be complex:

Lemma 6 Let X be any complex variable of T and Y be any variable of P. Given
integer k € N', Occ™(X, Y, k) can be computed in O(logs) time with extra O(ms)
work time and space.

For any complex variable X = X, X, let range(X) denote the range [r1, 73] such
that T[ry, re] = X,. It is clear that for each complex variable its range is uniquely
determined, since each complex variable appears in T exactly once. In proving
Lemma 6 above, Lemma 7 and Lemma 8 below are used.

Lemma 7 Let X = X, X, be any complex variable of T and let Y be any variable
of P. Assume Occ’(Xy, Y, |Xo| — | Y|+ 1) and Occ®(X,Y) are already computed.
Then Occ™(X, Y, |X|— |Y]|+ 1) can be computed in O(1) time, with extra O(ms)
work space.
Lemma 8 Given integer k € N, we can retrieve in O(logs) time the complex
variable X such that range(X) = [r;, 2] and vy < k < rq, after a preprocessing
taking O(s) time and space.

Now the proof of Lemma 6 follows.

Proof. Let A = Occ’(X, Y k). Let X;, be the complex variable such that
k € range(X;,), and let X¢ = X0,y Xp(e,). Let Xy, be the complex variable
satisfying k — |Y| € range(Xy,), and let Xy, = X)Xy (s,). There are the three
following cases:

(1) when k — [Y| > | Xy + 1T and &+ [Y| =1 < | Xy, | (Fig. 3, left).
In this case, we have A = OccT(XT(ZI), Y k) © | Xegel-

(2) when k — Y| < | Xyl +1and k+ |Y| =1 <|X,| (Fig. 3, right).

Xi(lz)

Y
k
Fig. 4. In this case, the first and second occurrences are covered by
OccT(Xz(ZZ), Y, |Xegeyy] = [Y]+ 1) and the third and fourth occurrences are

covered by OccA(ng, Y).

In this case, we have

A=(0cc™(Xe,, V)OO [k = |V, Xegeyy + 1) U (Occ (X pieyy, Y k) © | Xege|)-

(3) when k+ Y| — 1> |X,,]| (Fig. 4).

In this case, we have

A = (Occ (X, Y| X = 1Y [+ 1) O [k = Y] [Xyl = Y]+ 1])
U (OCCA(XZM Y) 0 [|XZ(Z2)| - |Y| + Iak])

Due to Lemma 8, X, and X,, can be found in O(logs) time. Since X, is
simple, OccT(XT(ZI), Y, k) of cases (1) and (2) can be computed in O(1) time by
Lemma 5. According to Lemma 7, Occt(Xy(r,), Y, [Xo(e,y| = | Y]+ 1) of case (3) can
be computed in O(1) time. By Observation 2, the union operations can be done
in O(1) time. Thus, in any case A = Occ’(X, Y k) can be computed in O(log s)
time. By Lemma 7 and Lemma 8, the extra work time and space are O(ms). This
completes the proof. a

Now we have got Lemma 5 and Lemma 6 proved. Using these lemmas, we can
prove Lemma 4 as follows:

Proof. Let X; = X, X, and Y; = Y;Y,. Then, as seen in Fig. 5, we have

Occ™(Xi, Y;) = (Occ®(X;, Yo) N (Oce(X,, V) @ Xe| © | Ye]))
U (Oce(Xy, Yo) 0 (Oce™ (Xi, Yi) © | Vo)),

Let A = Occ®(X;, Ye) N (Oce(Xy, V) @ | Xe| ©|Y2]) and B = Oce(Xy, Yy) N
(Occ®(X;, Y.) ©|Ye]). Since Occ®(X;, Y;) forms a single arithmetic progression
by Lemma 1, the union operation of AU B can be done in constant time. Therefore,
the key is how to compute A and B efficiently.

Now we show how to compute set A. Let z = |X;| — | Ye|. Let {p1,d1,t1) =
Occ®(X;, Y;) and q; = py + (t; — 1)d;. Depending on the value of ¢;, we have the
following cases:

Xi Xi

Xr Xr

(1)

(2)

o Yr vi i Yr
Y Yi
Fig. 5. k € Occ®(X, Y) if and only if either k € Occ®(X, Yy) and k + |Y¢| €
Oce(X, Yy) (left case), or k € Oce(X, Yy) and k + |Yy| € Oce®(X, Yy) (right

case).

when t; = 0.
In this case we have A = §.

when t; = 1.
In this case, Occ®(X;, Yy) = {p;}. It stands that

A {p1} N (Oce(Xy, Yr) @ 2)

({p1 — 2} N Oce(Xy, ¥y)) @ 2)

{pr =230 lpr — 2 =[], pr — 2] N Oce(X, Yy)) & 2)

({p1 — 2} 0 OccN(X,, Yy, ps — 2)) @ 2) (By Observation 1)

{ {p} ifpr—2€ OccM(X,, Yy, ps — 2),

] otherwise.

Since X, is simple, Occt(X,, Y,, p; — z) can be computed in constant time
by Lemma 5. Checking whether p; — z € Occ?(X,, Y, p; — 2) or not can
be done in constant time since Occt(X,, Y,, p; — z) forms a single arithmetic
progression by Lemma 1.

when t; > 1.

There are two sub-cases depending on the length of Y, with respect to ¢ —p; =
(t1 — 1)dy > dy, as follows.

- when || > ¢1 — p1 (see the left of Fig. 6). By this assumption, we have
q1 — |Y,| < p1, which implies [p1, 1] C [¢1 — |Y+|, ¢1]. Thus

A = (p1,di,t1) N (Oce(X,, Y,) @ 2)
(p1,dy, t1) N [p1, q1]) N (Oce(Xy, Yr) @ 2)
(p1,di,)y 0 g — Y], ¢1]) 0 (Oce(X,, Yy) @ 2)

p1,dit) N ([gr = Y],] 0 (Oce(X, Yy @ 2))

o~~~

b X+ aitY| b1+ Y| a1 b X+l aitY| b1+ Y|

—_Yr

- Yo Vi—

Fig. 6. Long case (left) and short case (right).

= (p,di,)N (([q1 = Y| — 2,00 — 2] 0 Oce(X,, 7)) @ 2)
= <p1ad1at1>m(OCCT(X7‘aYraql —Z)@Z),

where the last equality is due to Observation 1. Since X, is simple, due
to Lemma 5, Occ’(X,, Y,, q; — z) can be computed in O(1) time. By
Lemma 3, (py,dy,t1) N (Occt (X, Yy, g1 — 2) ©]Y¢|) can be computed in
constant time.

when |Y,.| < ¢1 — p1 (see the right of Fig. 6). The basic idea is the same
as the previous case, but computing Occ® (X, Y, ¢; — z) is not enough,
since |V, | is ‘too short’. However, we can fill up the gap as follows.

A = (p1,d1,t1) N (Oce(Xy, Yy) @ 2)

(p1,di, 1) N[p1, q1]) N (Oce(Xy, Vi) @ 2)

(pr,di, t) N ([pr, o — Vel = 1] U [= V2, a])) N (Oce(Xy, Yi) @ 2)
p1,di, 1) N (SUOcc™ (X, Yy qr — 2)) @ 2),

where S =[p1 — 2,91 — 2z — | Y| — 1] N Oce(Xy, Yr).

I
P e e

By Lemma 2, d; is the shortest period of X;[p; : q1 + |Yz| — 1]. For this
string, we have

Xilp1 g1 + [Yel = 1]
= Xelpr # [X] X0 [1:qn 4 Ve = 1 = | Xc]

Xelpr | X] Xe[L i qn — 2 — 1]

Xelpr 1 Xe | Xo[Lipr — 2 — 1) X [pr — 2 1 g1 — 2 — 1]
= Xilpr:om+ Y- 10X [pr—2:q0 —2— 1]

Therefore, X.[p1 —z : q; — 2z — 1] = u'* where u is the suffix of Y, of
length dy. Thus,

g = {(pl—z,d1,t’> if pp — 2z € Oce(Xy, Y,),

-) otherwise,

where ¢’ is the maximum integer satisfying p1 — z + (¢ — 1)d; < ¢q; —
z—|Yy| = 1. According to Observation 2, the union operation of S U

10

Occ® (X7, Yy, q; — z) can be done in constant time in both cases. By
Observation 1, checking whether p; — 2z € Oece(X,, V) or not can be
reduced to checking if py — 2 € Occ?(X,., Y, p; — z). Since X, is simple,
it can be done in O(1) time by Lemma 1 and Lemma 5. Finally, the
intersection operation can be done in constant time by Lemma 3.

Therefore, in any case we can compute A in constant time.

Now we consider computing B = Occ(Xy, Yy) N (Occ®(X;, V) © | Ye]). Let
(p2,d2,t3) = Occ®(X;, Y;). We have to consider how to compute Occ®(Xy, Yy, ps —
| Yy|) efficiently. When X is simple, we can use the same strategy as computing A.
In case where X is complex, Occt(X;, Yy, p2 — | Ys|) can be computed in O(log s)
time by Lemma 6.

Due to Lemma 5 and Lemma 6, the total extra work time and space are O(h? +
mh) + O(ms) = O(h? + m(h + s)) = O(h? + mn). This completes the proof. a

We have proven that each Occ® (X, Y) can be computed in O(log s) time with
extra O(h? +mn) work time and space. Thus, the whole time complexity is O(h? +
mn) + O(mnlog s) = O(h? + mnlogs), and the whole space complexity is O(h? +
mn). This leads to the result of Theorem 1.

5. Conclusions

Miyazaki et al. [18] presented an algorithm to solve the FCPM problem for
straight line programs in O(m?n?) time and with O(mn) space. Since simple collage
systems can be translated to straight line programs, their algorithm gives us an
O(m?n?) time solution to the FCPM problem for simple collage systems. In this
paper we developed an FCPM algorithm for simple collage systems which runs in
O(||D)|? + mnlog|8]|) time using O(||P||? + mn) space. Since n = ||D]| + |8], the
proposed algorithm is faster than the algorithm by Miyazaki et al. [18§].

An interesting extension of this research is to consider the FCPM problem for
composition systems [22]. Composition systems can be seen as collage systems with-
out repetitions. Since it is known that LZ77 compression can be translated into a
composition system of size O(nlogn), an efficient FCPM algorithm for composition
systems would lead to a better solution for the FCPM problem with LZ77 compres-
sion. We remark that the only known FCPM algorithm for LZ77 compression takes
O((n+m)®) time [6], which is still very far from desired optimal time complexity.

References

1. A. Amir and G. Benson. “Efficient two-dimensional compressed matching,” In Proc.
DCC’92, page 279. IEEE Computer Society, 1992.

2. A. Amir, G. Benson, and M. Farach. “Let sleeping files lie: Pattern matching in
Z-compressed files,” J. Computer and System Sciences, 52(6):299-307, 1996.

3. T. Eilam-Tzoreff and U. Vishkin. “Matching patterns in strings subject to multi-
linear transformations,” Theoretical Computer Science, 60:231-254, 1988.

4. M. Farach and M. Thorup. “String matching in Lempel-Ziv compressed strings,”
Algorithmica, 20(4):388-404, 1998.

11

5. P. Gage. “A new algorithm for data compression,” The C Users Journal, 12(2),
1994.

6. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. “Efficient algorithms
for Lempel-Ziv encoding (extended abstract),” In Proc. SWAT’96, volume 1097 of
LNCS, pages 392-403. Springer-Verlag, 1996.

7. L. Gasieniec and W. Rytter. “Almost optimal fully LZW-compressed pattern match-
ing,” In Proc. DCC’99, pages 316-325. IEEE Computer Society, 1999.

8. S. Inenaga, A. Shinohara, and M. Takeda. “A fully compressed pattern match-
ing algorithm for simple collage systems,” In Proc. PSC’04, pages 98-113. Czech
Technical University, 2004.

9. S. Inenaga, A. Shinohara, and M. Takeda. “An efficient pattern matching algorithm
on a subclass of context free grammars,” In Proc. DLT°04, volume 3340 of LNCS,
pages 225-236. Springer-Verlag, 2004.

10. M. Karpinski, W. Rytter, and A. Shinohara. “An efficient pattern-matching algo-
rithm for strings with short descriptions,” Nord. J. Comput., 4(2):172-186, 1997.
11. T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
“Collage system: a unifying framework for compressed pattern matching,” Theoret-

tcal Computer Science, 298:253-272, 2003.

12. J. Kieffer and E. Yang. “Grammar-based codes: a new class of universal lossless
source codes,” IEEE Trans. Inform. Theory, 46(3):737-754, 2000.

13. J. Kieffer and E. Yang. “Grammar-based codes for universal lossless data compres-
sion,” Communications in Information and Systems, 2(2):29-52, 2002.

14. J. Kieffer, E. Yang, G. Nelson, and P. Cosman. “Universal lossless compression via
multilevel pattern matching,” IEEE Trans. Inform. Theory, 46(4):1227-1245, 2000.

15. J. Larsson and A. Moffat. “Offline dictionary-based compression,” In Proc.
DCC 99, pages 296-305. [EEE Computer Society, 1999.

16. T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. “Bit-parallel
approach to approximate string matching in compressed texts,” In Proc. SPIRFE’00,
pages 221-228. [EEE Computer Society, 2000.

17. S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and S. Arikawa.
“Compressed pattern matching for SEQUITUR,” In Proc. DCC’01, pages 469-480.
IEEE Computer Society, 2001.

18. M. Miyazaki, A. Shinohara, and M. Takeda. “An improved pattern matching
algorithm for strings in terms of straight line programs,” J. Discrete Algorithms,
1(1):187-204, 2000.

19. C. Nevill-Manning and [. Witten. “Identifying hierarchical structure in sequences:
a linear-time algorithm,” J. Artificial Intelligence Research, 7:67-82, 1997.

20. J. A. Storer and T. G. Szymanski. “Data compression via textual substitution,”
J. ACM, 29(4):928-951, 1982.

21. T. Welch. “A technique for high performance data compression,” IEEE Comput.
Magazine, 17(6):8-19, 1984.

22. J. Ziv and A. Lempel. “A universal algorithm for sequential data compression,”
IFEFE Trans. Inform. Theory, 23:337-343, 1977.

23. J. Ziv and A. Lempel. “Compression of individual sequences via variable length
coding,” IEFE Trans. Inform. Theory, 24:530-536, 1978.

12

