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Abstract. The minimum all-suffizes directed acyclic word graph (MAS-
DAWG) of a string w has |w| + 1 initial nodes, where the dag induced
by all reachable nodes from the k-th initial node conforms with the
DAWG of the k-th suffix of w. A new space-economical algorithm for
the construction of MASDAWG (w) is presented. The algorithm reads a
given string w from right to left, and constructs MASDAWG (w) without
suffix links. It performs in time linear in the output size. Furthermore,
we introduce the minimum all-suffizes compact DAWG (MASCDAWG).
CDAWGSs are known to be more space-economical than DAWGs, and
thus MASCDAWG(w) requires smaller space than MASDAWG (w). We
present an on-line (right-to-left) algorithm to build MASCDAWG(w)
without suffix links, whose running time is also linear in its size.

1 Introduction

Pattern matching on strings is one of the most fundamental and important
problems in Theoretical Computer Science. When a pattern is flexible and a
text is fixed, the problem can be solved in time proportional to the length of the
pattern by using a suitable index structure.

An example of widely explored patterns is the variable-length-don’t-care pat-
tern (VLDC-pattern) which includes a symbol x, a wildcard matching any string.
Formally, when X' is an alphabet, a VLDC-pattern is an element of set (XU{x})*.
For example, axabx is a VLDC-pattern, where a,b € Y. VLDC-patterns are
sometimes called regular patterns as in [11]. The language of a VLDC-pattern
(or a regular pattern) is the set of strings obtained by replacing *’s in the pat-
tern by arbitrary strings. This language corresponds to a class of the pattern
languages proposed in [1].

The smallest automaton to recognize all VLDC-patterns matching a given
text string was introduced in [8]. It is essentially the same structure as the
minimum dag representing all substrings of every suffix of a string, which is
called the minimum all-suffizes directed acyclic word graph (MASDAWG). The
MASDAWG for a string w is the minimization of the DAWGs for all suffixes of



w. It has |w| + 1 initial nodes, in which the dag induced by all reachable nodes
from the k-th initial node conforms with the DAWG of the k-th suffix of w. Some
applications of MASDAWGs were presented in [8].

The size of the DAWG for a string w is O(|w|) [2]. This implies that the
total size of the DAWGs of all suffixes of w is O(|w|?). Hence, the MASDAWG
for w can be constructed in O(|w|?) time by minimizing the DAWGs [10]. On
the other hand, it has been proven that the size of the MASDAWG of w is
O(Jw|?) [8]. The direct construction of MASDAWGS that avoids the creation
of redundant nodes and edges is therefore important, considering the reduction
of space requirements. The first algorithm to directly build the MASDAWG of
a string was given in [8]. It performs in on-line manner, that is, it processes
a given string from left to right, a character by a character, and converts the
MASDAWG of w to the MASDAWG of wa.

The algorithm of [8] can efficiently construct MASDAWGs by means of suffiz
links, kinds of failure transitions, like most linear-time algorithms constructing
index structures (e.g., see [13,9,12,2,3,5,7,4,6]). On the other hand, it is also
the fact that the memory space required by suffix links is non-ignorable. More-
over, for each node, the algorithm additionally requires to keep the length of the
longest string that reaches to the node, in the construction phase. These values
are unnecessary in order to examine whether a given pattern occurs or not in
the specified suffix. In this paper, we present a new algorithm to construct MAS-
DAWGSs without suffix links nor length information, which thus permits us to
save memory space. The algorithm is best understood as one constructing MAS-
DAWGsS in ‘right-to-left” on-line manner. Namely, it builds the MASDAWG of
aw by adding some nodes and edges to the MASDAWG of w.

Furthermore, we aim to reduce the space requirement by compacting the
structure itself. We focus on the compact DAWG (CDAWG) whose space require-
ment is strictly smaller than that of the DAWG, both theoretically and prac-
tically [3,5]. Its all-suffixes version, named the minimum all-suffizes CDAWG
(MASCDAWG), is introduced in this paper. We also present an on-line (right-
to-left) algorithm to construct the MASCDAWG in linear time with respect to
its size, without using suffix links nor length information.

2 Minimum All-Suffixes Directed Acyclic Word Graphs

Strings x, y, and z are said to be a prefiz, factor, and suffiz of string w = zyz,
respectively. The sets of prefixes, factors, and suffixes of a string w are denoted by
Prefix(w), Factor(w), and Suffiz(w), respectively. The empty string is denoted
by €, that is, || = 0. Let Xt = X* — {e}. The factor of a string w that begins
at position ¢ and ends at position j is denoted by wli:j] for 1< i< j< |w|. For
convenience, let w[i:j] = ¢ for j < i. Let wi :] = wi : |w|] for 1 < i < |w| + 1.
Assume S is a subset of X*. For any string u € ¥*, v~ 1S = {z | uz € S}.
Let w € X*. We define an equivalence relation =,, on X* by

r =y y e v Suffiz(w) =y Suffiz(w).



Let [z],, denote the equivalence class of a string « € X* under =,,. The longest
element in the equivalence class [z],, for z € Factor(w) is called its representative.

Definition 1. DAWG(w) is the dag (V, E) such that
V = {[z]. | * € Factor(w)},
E = {([z]w,a, [za].) | z,za € Factor(w),a € X}.

Definition 2. ASDAWG(w) is a kind of dag with |w|+ 1 initial nodes, desig-
nated by 0,1,... ,|w|, in which the subgraph consisting of the nodes reachable
from the k-th initial node and their out-going edges is DAWG(w[k + 1 :]).

The simple collection of DAWG(w(1 :]), DAWG(w[2 :]),..., DAWG(w[n]),
DAWG(wn + 1 :]) (n = |w]) is an example of ASDAWG(w), referred to as
the naive ASDAWG(w). The number of nodes of the naive ASDAWG(w) is
O(Jw|?). By minimizing the naive ASDAWG(w), we can obtain the minimum
ASDAWG (w), which is denoted by MASDAWG(w). The naive ASDAWG (abba)
and MASDAWG (abba) are shown in Fig. 1. The minimization is performed
based on the equivalence relation defined as follows. Each node of the naive
ASDAWG(w) is represented by a pair (u, [z],) with v € Suffiz(w) and z €
Factor(u). The equivalence relation, denoted by ~,, is defined by

(u, [z].) ~w (v, [yl.) & o7 Suffiz(u) = y~" Suffiz(v).

A node of MASDAWG(w) corresponds to an equivalence class under ~,,. We
write (u, [z],) simply as (u, [z]) in case no confusion occurs.

Theorem 1 ([8]). When |X| > 2, the number of nodes of MASDAWG(w) for
a string w is O(|w|?). It is O(|w|) for a unary alphabet.

Proposition 1 ([8]). Let u € Suffix(w). Let x be a nonempty factor of u. We
factorize u as u = hat and assume h is the shortest such string. Then, {(hxt, [x])
is equivalent to (sxt,|x]) for every suffix s of h. (NOTE: The string x is not
necessarily the representative of [x],.)

Let hg, h1, ..., h, be the suffixes of the string h arranged in the decreasing
order of their length. The above proposition implies the existence of the chain
of equivalent nodes (hozt, [z]), (hiat, [z]),. .., (hrat, [2]).

Lemma 1 ([8]). Let h € Xt and u, hu € Suffiz(w). If a node of DAWG (u) is
equivalent to some node of DAWG(hu), then it is also equivalent to some node
of DAWG (au) where a is the right-most character of the string h.

The above lemma guarantees that the DAWGs sharing a node of MASDAWG(w)
are ‘consecutive’. We can therefore concentrate on the relation between two
consecutive DAWGs.

From now on, we consider what happens when constructing MASDAWG (au)
from MASDAWG(u). Due to Lemma 1, we only investigate the relationship
between DAWG (au) and DAWG (u).
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Fig. 1. The naive ASDAWG (w) is shown on the left, where w = abba. MASDAWG (w)
is displayed on the right.

Lemma 2. Let a € X and uw € X*. For any string x € Factor(u) — Prefiz(au),
it holds that {au, [x]) ~au (u, [2]).

Proof. 71 Suffiz(au) = 2~ ({au} U Suffix(v)) = z~Hau} U 2~ Suffiz(u) =
o~ Suffiz(u), because = {au} = 0 for ¢ Prefiz(au). O

The above lemma implies that we have only to care about the prefixes of au in
order to construct MASDAWG (au) from MASDAWG (u). We need not modify
nor change the structure of MASDAWG (u): it is kept static.

Lemma 3. Let a € X and w € X*. For any x € Prefixr(u) and y € X*, if
(au, [ax]) ~au (u, [y]) then [z]. = [y]..

Proof. Since x € Prefiz(u), there exists s € X* such that u = zs. By the
assumption, (ax)~tSuffiz(au) = y~Suffir(u). Since s is included in the left set,
s is also included in the right set, i.e. s € y~!Suffiz(u), which implies ys €
Suffiz(xs), thus y € Suffiz(x). We have two cases according to = € Prefiz(au).

(Case 1) When x € Prefiz(au). Since x € Prefir(axs), x = a* and y = a’
for some integers j < 4. Suppose j < ¢, and let kK = ¢ — j > 0. Then
a*s € y~1 Suffiz(u) while a*s & (ax)~! Suffiz(au), that contradicts with the
assumption that (az)~'Suffiz(au) =y~ Suffiz(u). Thus j = i, which yields
y=x=a’.

(Case 2) When x ¢ Prefiz(au).

y~ 1 Suffiz(u) = (ax)~ ! Suffir(au) by the assumption
C o~ Suffiz(au) since = € Suffiz(ax)
= o~ Suffiz(u) since x & Prefiz(au)
C y~ 1 Suffiz(u) since y € Suffiz(x)

Thus we have ™! Suffiz(u) =y~ Suffiz(u), that is, [z], = [y].. O



The path in MASDAWG(u) spelling out u is called its ‘backbone’. The above

lemma shows that if a node (au, [az]) on the ‘backbone’ of MASDAWG (au) is

equivalent to a node of MASDAWG(u), the node {(au, [ax]) is also on the ‘back-

bone’ of MASDAWG (u). This fact is crucial in order that our algorithm, which

will be given in the sequel, performs in time linear in the size of MASDAWG (u).
For the prefixes of string au, we have the following lemma.

Lemma 4. Let a € X and v € X*. Let ax € Prefix(au) be the shortest string
which satisfies (au, [ax]) ~qu (u, [2]). Then for any longer prefix axzv € Prefix(au),
it holds that (au, [azv]) ~gqy (U, [20V]).

Proof. Since {(au, [ax]) ~gu (u,[z]), (az)"tSuffiz(au) = z~1Suffir(u). Thus,
(axv) =L Suffiz(au) = v ((azx) "t Suffiz(au)) = vz~ Suffir(u)) =
(2v) "L Suffiz(u). O

Remark that the node (u, [zv]) already exists in MASDAWG (u), since zv €
Prefiz(u). Thus the above lemma guarantees that all nodes we have to newly
create in MASDAWG (au) are (au, [t]) for strings ¢t € Prefiz(z), where z is the
longest prefix of au which does not satisty (au, [az]) ~qu (u,[z]). Now the next
question is how to efficiently check whether (au, [az]) ~4. (u, [2]) or not for each
x € Prefiz(u). Our idea is to count the cardinality of the set =1 Suffiz(u).

u
u

Lemma 5. Let a € X and u € X*. For any © € Factor(u), {(au, [az]) ~qu
(u, [z]) if and only if |(ax) ™t Suffiz(au)| = |z~ Suffiz(u)|.

Proof. We first show that (ax)~!Suffiz(au) C = Suffir(u). Let us choose s €
(ax)~tSuffiz(au) arbitrarily. Then axs € Suffiz(au) = {au} U Suffiz(u). If
ars = au, then zs = u. Otherwise, axs € Suffix(u). Since xs is a suffix of
axs, we know that s is also a suffix of u. In both cases, we have xs € Suffiz(u),
which implies that s € 27! Suffiz(u). Thus (az)~!Suffiz(au) C =1 Suffiz(u). It
yields that (ax)~!Suffiz(au) = = Suffir(u) if and only if |(az) ! Suffiz(au)| =
|z~ Suffiz(u)|. By the definition of ~g,, we have proved the lemma. O

We associate each node (u, [z]) with the cardinality of the set, |2~ Suffiz (u)],
denoted by #(u, [z]). Note that #(u, [u]) = 1 since u~! Suffiz(u) = {e}, and that
#(u, [g]) = |u| + 1 since e~ Suffiz(u) = Suffiz(u).

Lemma 6. Let a € X and u € X*. For any © € Prefiz(u), #(au, [ax]) =
#(u, [az]) + 1.

Proof. Since x € Prefiz(u), #(au, [az]) = |(az)~ ! Suffiz(av)| = |(az) " ({au} U
Suffir(u))] = |(ax) " Hau} U (ax) "t Suffiz(u))| = #(u, [az]) + 1. O

The whole algorithm is shown in Fig. 2. Since the algorithm manipulates
an input string w from right to left, we number the characters in w as w =
WpWp—1...w1. When we read w from right to left, a factor w;...w; of w is
represented by wj;.;. Note that i > j in this case. An edge is represented by a
triple (r,w;, s), where s,r are nodes and wj is the character for the label of the
edge.



Algorithm Construction of MASDAWG (w = wpWn—1 ... wW1).
1 create new nodes so;
2 #(so):=1; #(nil):=0;
3 nitNode|0] := so; node := so;
for i :=1 to n do
s := FIND(node, w; );
target := NEWTARGETNODE(s, ¢ — 1, node);
newNode := create a new node with copying all out-going edges of node;
add or overwrite edge (newNode, w;, target);
#(newNode) := i;
initNode[i] = newNode;
node = newNode;

~ = O 0NN G

~ o

function NEWTARGETNODE(Node s, int j, Node backbone) : Node
nextNumSuf := #(s) + 1;

if nextNumSuf = #(backbone) then return backbone;  /* redirection */
nextBackbone := FIND(backbone, w;);

newNode := create a new node with copying all out-going edges of s;

s := FIND(s, wj);

target := NEWTARGETNODE(s, j — 1, nextBackbone);

add or overwrite edge (newNode, w;, target);

#(newNode) := nextNumSuf,

return newNode;

© N D G W~

function FIND(Node s, char c¢) : Node
1 if s has the c-edge then

2 let (s,c,r) be the c-edge from s;
3 return r;

4 else return nil;

Fig. 2. The algorithm to construct MASDAWG (w).

Theorem 2. For any string w € X*, our algorithm constructs MASDAWG(w)
in time linear in its size.

Proof. In the i-th phase of the main routine, MASCDAWG(wy;,)) is incrementally
constructed based on MASCDAWG(wj;—1;). Remark that in any call of the
function NEWTARGETNODE, the following pre-conditions are satisfied.

backbone = (wy—_1., [wi—1.5]),
(w1, [wiig]) if wiiy) € Factor (wii—1y),

s = . .
nil otherwise.

Namely, the variable backbone expresses the j-th node on the backbone of
MASCDAWG(wj;—1;) from the initial node. In line 3 in NEWTARGETNODE,
the function FIND never returns nil because backbone has wj;-edge. On the
other hand, the variable s represents the node, called the referenced node, in
MASCDAWG(wj;—1) which corresponds to the prefix wy;.; of the string wy;,).



The basic role of NEWTARGETINODE is to create a new node newNode, that is
a copy of the referenced node s except the only one edge along the prefix wy;. ;).
Lemma 2 guarantees that other edges are unchanged. However, if a new node
becomes equivalent to an existing node in MASCDAWG(wy;—1,)), we have to
redirect the edge instead of creating it. Thanks to Lemma 3, we do not have to
examine all nodes in MASCDAWG(wy;—1,)). Candidates are always on the back-
bone of MASCDAWG(wj;—1), and in fact the only possible candidate is pointed
by the variable backbone. By Lemma 5, checking the equivalence is performed
by merely comparing the cardinality of the sets, stored by #(-) in the pseudo-
code. Moreover, the cardinality of a new node is simply computed by #(s) + 1
due to Lemma 6. Once an equivalent node is found among the existing nodes of
MASCDAWG(wj;—1.), we can immediately terminate the recursive calls, since
Lemma 4 guarantees that the rest of the new backbone will be equivalent to the
current one. Since #(nil) = 0 and #(sg) = 1, the recursive call never falls into
infinite loop.

At each call of NEWTARGETNODE except the last one, a new node is created.
Thus the running time of the algorithm is linear with respect to the output size.
O

The on-line (right-to-left) construction of MASDAWG(w) where w = abaa$
is displayed in Fig. 3.

Fig. 3. Construction of MASDAWG (abaa$). Each node is marked by #(u, [z]) where
u = abaa$ and x € Factor(u).



3 Minimum All-Suffixes Compact Directed Acyclic Word
Graphs

To achieve a more space-economical index structure for all suffixes of a string,
we turn our attention to a compact directed acyclic word graph (CDAWG) and
consider its all-suffixes version.

Assume S is a subset of ¥*. For any string u € ¥*, Su™! = {z | 2u € S}.
Let w € X*. We define an equivalence relation =/ on X* by

x =), y < Prefi(w)z™! = Prefiz(w)y .

Let [z]!, denote the equivalence class of a string x € X* under =/,. The longest

element in the equivalence class [z]/, for x € Factor(w) is also called its repre-

sentative, and is denoted by T. For any string z € Factor(w), there uniquely

v

exists string a € X* such that 7" = za.

Proposition 2. Let x € Factor(w). Assume T ¢ Suffiz(w). Then, x occurs in
w at least twice.

Proof. For a contradiction, assume x occurs in w only once. Then, we have
| Prefiz(w)z~1| = 1. Let w = hxy. Since z occurs in w only once, | Prefiz(w)z | =

w

| Prefiz (w)(zy)~|. Thus z =/, zy and @ = zy. However, zy € Suffir(w), a con-
tradiction. Consequently, z appears in w at least twice. a

Definition 3. CDAWG(w) is the dag (V, E) such that
v ={Tl.
E = {([%’]w,aﬂ, [g%i]w) | z,za € Factor(w), a € X, § € X*, Td = zaf, 7 # ;%}

x € Factor(w)},

The following corollary derives from Lemma 2.

Corollary 1. Assume that w terminates with a unique symbol $. Then, for any

string x € Factor(w) — Suffiz(w), node [%’]w is of out-degree more than one.

Namely, CDAWG(w) is the compaction of DAWG (w) where any nodes of out-
degree one are removed and their edges are modified accordingly.

Definition 4. ASCDAWG(w) is a kind of dag with |w| + 1 initial nodes, des-
ignated by 0,1,. .. |wl|, in which the subgraph consisting of the nodes reachable
from the k-th initial node and their out-going edges is CDAWG(w[k + 1 :]).

We now introduce the minimized version of ASCDAWG(w), which is well de-
fined similarly to MASDAWGs. Each node of ASCDAWG(w) can be represented

by a pair (u,[Z],) with u € Suffiz(w) and © € Factor(u). We write (u, [T].)
simply as (u, [Z’]) when no confusion occurs. If (u, [Z],) ~w (v, [7],), we merge
these nodes and the resulting structure is the minimum ASCDAWG(w), denoted

by MASCDAWG(w).



Theorem 3. When |X| > 2, the number of nodes in MASCDAWG(w) for a
string w is O(|w|?). It is O(|w|) for a unary alphabet.

Here, we have only to consider a string z € Factor(w) such that @ = z.
Since Proposition 1 and Lemma 1 hold for an arbitrary string in Factor(w), it
is guaranteed that the CDAWGs sharing a node in MASCDAWG(w) are also
‘consecutive’. Therefore, we only consider the relationship between CDAWG (au)
and CDAWG (u), two consecutive CDAWGs.

Lemma 7. Let a € X and u € X*. For any string x € Factor(u) — Prefiz(au),

u
T =7.

au

Proof. Since © ¢ Prefiz(au), there is no new occurrence of z in au. It implies
that a(Prefiz(u)z~') = Prefizr(au)z~"'. Thus we have [z]/, = [z]’,. Consequently,
T =T. o
The above lemma ensures that any implicit node of CDAWG(u) does not become
explicit in CDAWG (au) if it is not associated with a prefix of au. It follows from
this lemma and Lemma 2 that we do not need to modify nor change the structure

of MASCDAWG(u) when constructing MASCDAWG(au).

Lemma 8. Let a € ¥ and u € X*. For any x,z € Factor(u), zfcz? = az then

Z = z.

u

Proof. Suppose contrarily that Z” # z. That means there exists y € X* such
that Prefiz(u)y™! = Prefiz(u)z=! and |y| > |z|. Then Prefiz(au)(ay)™! =
(Prefir(au)yYa=! = (a(Prefix(u)y=1))a™! = (a(Prefiv(u)z=1))a=t =

Prefiz(au)(az)~! = Prefiz(au)(ax)~t. Thus ay =/, ax and |ay| > |az|. It con-

tradicts the assumption az = az. O
Lemma 9. Leta € ¥ andu € X*. For any x € Prefiz(u) and y € X* satisfying
(au, (@] o) ~au (U, [T].), there exists z € Prefiz(u) such that [Z], = [V].-

Proof. Let z be the string with a% = az. Then we have %’ = z by Lemma 8.
Moreover, z € Prefiz(u) since x € Prefiz(u). Since {au, [az],.) = (au, [0]a.) ~au

u

(u, [7’].), we have [z], = [¥]. by Lemma 3. Thus [Z’], = [T ].. O

Lemma 9 shows that if node (au, [c%]m) on the ‘backbone’ of MASCDAWG(au)
is equivalent to a node of MASCDAWG(u), the node (au, [aZ],,) is also on the
‘backbone’ of MASCDAWG(u). It corresponds to Lemma 3.

We have the following lemma which corresponds to Lemma 4.

Lemma 10. Leta € ¥ andu € X*. Let ax € Prefiz(au). Let @ be the shortest
string for which there exists z € Prefix(u) such that (au, [@%]..) ~au (U, [Z].)-
Let a& = ay. Then for any longer prefix ayv € Prefiz(au), there exists s €
Prefiz(u) such that (au, [a70]an) ~au (U, [§]u)-



Proof. Let c%’} = as. By Lemma 8, 5 = 5. Since yv € Prefix(u), s € Prefiz(u).

Let %’ = t. By the assumption (au, [aZ]..) ~au (4, [Z].), we have (au, [ay]) ~qu

(u, [t]). Since y € Prefix(u), (au, [ay]) ~qu (u, [y]) by Lemma 3. Note that y €
Prefiz(s). Hence we have (au, [as]) ~q. (u,[s]) by Lemma 4. Because as = ayv

and s = 8, it holds that {(au, [@y?]..) ~au (W, [5].)- O

We remark that the equivalence (au, [aZ],.) ~au (u,[Z].) can also be ex-
amined by checking the cardinalities of the corresponding sets, as is the case of
MASDAWGs. Hereby we have shown that MASCDAWG(w) can be constructed
in a similar way to MASDAWG (w). The only thing not clarified yet is whether
or not MASCDAWG(w) can be built in time linear in its size. We establish the
following lemmas to support the linearity.

Lemma 11. Leta € X and w € X*. For any x,z € Factor(w), ifc% = az then

w
Z = z.

Proof. For a contradiction, assume 2 # z. Then there exists y € X* such
that Prefiz(w)y~! = Prefiz(w)z~! and |y| > |z|. Then Prefiz(w)(ay)~t =
(Prefir(w)y=Y)a=! = (Prefir(w)z=Y)at = Prefixr(w)(az)~!. Thus ay =, az

and |ay| > |az|. It contradicts the assumption az = az. O

Note that the statement of the above lemma slightly differs from that of Lemma 8.

w

Lemma 12. Let a,b € X and w € X*. Let x,y € Factor(w) such that zb =

xby # w. If axb € Factor(w), then axby € Factor(w), and axby’ = axby for any
y' € Prefiz(y).

Proof. Since axb € Factor(w) and zby # w, there always exists z € X* such

that azb = axbz € Factor(w). By Lemma 11, zbs = xbz. Since zb = xby, y €
Prefiz(z). Because azbz € Factor(w), azby € Factor(w). For any y' € Prefiz(y),

azxbz =l axby’ since arb = axbz. Therefore abxy’ = abxz = abxy. O

Suppose T = z. If we in advance know node [Z’],, has an out-going edge labeled
with by, we can avoid to scan the whole string xby in traversing the path axby
from the initial node of CDAWG(w). Moreover, it is guaranteed that the path by
from the (explicit or implicit) node for ax consists of one edge: no explicit node
is contained in the path. This is a key to achieve an algorithm that constructs
MASCDAWG(w) in linear time with respect to its size.

The whole algorithm is shown in Fig. 4. Here we also read an input string
w from right to left, and thus w is written as w = wpw,_1...w1. The label
w;w;—1 ... w; of each edge can be represented by a pair of the beginning position
i and the ending position j — 1. (¢ > j — 1) If the string corresponding to the
label appears in w more than once, we represent it by the leftmost occurrence.

10



This way we can assign endpos(s) to a node s, where endpos(s) indicates the
ending position of every in-coming edge of s. Thereby, we represent each edge
by a triple (7,1, s), where r, s are explicit nodes. An implicit node corresponding
to some factor x of w can be represented by a triple (r, k,p), where r is an
explicit parent node of the implicit node. Assuming the representative of the
equivalence class associated with r is y, * = yu where v = wpwg_1...wp. The
quartet (r,k,p,s) is called the reference quartet, where s is the closest explicit
child node of r reachable via the wg-edge from r. When |[p — k| is minimum, the
quartet (r,k,p, s) is called the canonical reference quartet.

Theorem 4. For any stringw € X*, our algorithm constructs MASCDAWG(w)
in time linear in its size.

Proof. Firstly, remark that in any call of NEWTARGETNODE, the following pre-
conditions are satisfied.

backbone = (wy_1., [Whi—15]),

S = w[z71]5[7]>’

v = Wk:p),

7‘ _ { w[i—l:]a [TD if v = w[iij]’
nil otherwise,

where z is the longest string in Prefiz(wy;.;)) N Factor(w—1.)), y is the longest
Wli—1:

prefix of x satisfying [7 ] =y, and v is the string such that yv = wj_1.5. It

is important to notice that the reference quartet (s,k,p,r) is a generalization

of the reference node s in a MASDAWG. It can treat implicit nodes as well as

explicit nodes. The reference quartet (s, k, p, ) represents an explicit node if and

only if k = p.

The basic structure of the algorithm is similar to that for MASDAWGs. A big
difference is that the referenced node may be implicit, while backbone is always
explicit and backbone always has the w;-edge. Lemmas 7, 9, and 10 fill the gap
in showing the correctness.

A subtle point is that in function FASTFIND, we compare only the first charac-
ter even when traversing a string of length > 2. Lemma 12 guarantees its correct-
ness. The lemma also gives the validity of line 13 in function NEWTARGETNODE,
where we skip m characters whenever the first characters w, and w; are the same.

We now verify the running time. Note that FASTFIND takes constant time
regardless the length, because it only compare the first character. In the i-
th phase of the algorithm, backbone traverses the first portion of the back-
bone in MASCDAW G(wj;—1;)). In each call of NEWTARGETNODE, the value
of backbone is changed to the next node on the backbone. Unfortunately, how-
ever, it is not enough to guarantee the linearity of the algorithm. A very delicate
point is that in lines 13 and 14 of NEWTARGETNODE, backbone proceeds with-
out creating a new node! To overcome this difficulty, let us remark that in the
next phase, the new backbone consists of the sequence of the nodes created in
the last phase, followed by the rest portion of the last backbone. This means

11



Algorithm Construction of MASCDAWG(w = wpwn—1 ... w1).
create new nodes so,51,52;
#(s0) == 1; #(s1) == 1; #(s2) :=2; #(nil) :=0;
endpos(so) := 0; endpos(s1) := 1; endpos(s2) := 2; endpos(nil) := 0;
add edges (s1,1,50), (s2,1,50), (s2,2,50);
initNode[0] := so; initNode[l] := s1; initNode[2] := s2; node := sg;
for i := 3 ton do
(s, k,p,7) := CANONIZE(FASTFIND(node, i, 1));
target := NEWTARGETNODE((s, k, p, r),7 — 1, node);
newNode := create a new node with copying all out-going edges of node;
10 add or overwrite edge (newNode, 1, target);
11 #(newNode) :=1;  endpos(newNode) := i;
12 initNode[t] = newNode;
13 node = newNode;

© 0y D B oS

function NEWTARGETNODE(refQuartet (s, k, p, ), int j, Node backbone) : Node
nextNumSuf := #(r) + 1;
if nextNumSuf = #(backbone) then return backbone;  /* redirection */
let (backbone, £, nextBackbone) be the wj-edge from backbone;
m := £ — endpos(nextBackbone);  /* length of this edge */
if k =p then /* explicit node */
newNode := create a new node with copying all out-going edges of s;
(s, k,p,7) := CANONIZE(FASTFIND(s, j,m));
target := NEWTARGETNODE((s, k, p, ), j — m, nextBackbone);
add or overwrite edge (newNode, j, target);
10 #(newNode) := nextNumSuf,  endpos(newNode) := j;
11 return newNode;
12 else if w, = w; then /* implicit and next characters are the same */

© 0 Y D B oS

13 (s, k,p,7) := CANONIZE(S, k,p — m,r); /* skip m characters */
14 return NEWTARGETNODE((s, k, p,r),j — m, nextBackbone);

15 else /*implicit and next characters are different */

16 newNode := create a new node; /* edge split */

17 add new edges (newNode, p,r) and (newNode, j, so);

18 #(newNode) := nextNumSuf,  endpos(newNode) := j;
19 return newNode;

function FASTFIND(Node s, int ¢,int length) : refQuartet

/* compute the position from s along the string wiw;—1 ... Wi—iength+1 */
/* remark that the first character w; is only compared */

1 if s has the w;-edge then

2 let (s,4,7) be the w;-edge from s;

3 return (s, /¢, { — length,r);

4 else return (s,i,7 — length, nil);

function CANONIZE(refQuartet (s,k,p,7)) : refQuartet

/* when the referenced position is an explicit node, canonize the expression */
1 if k> pand p= endpos(r) then return (r,p,p,r);

2 else return (s, k,p,7);

Fig. 4. The algorithm to construct MASCDAWG(w).
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that every node (except the unique sink node) in MASCDAWG will be touched
in NEWTARGETNODE at most once. Thus the total running time is linear with
respect to the size, the number of nodes in the resulting MASCDAWG. a

The on-line (right-to-left) construction of MASCDAWG(w) where w = abaa$
is displayed in Fig. 5.

Fig. 5. Construction of MASCDAWG(abaa$).

4 Concluding Remarks

We proposed a new space-economical algorithm to construct MASDAWGs with-
out suffix links, running in time linear in the output size. As shown in [8], there
are several important applications for MASDAWGs. Therefore, reducing mem-
ory space needed in the construction of MASDAWGs is considerably significant.
We have also accomplished further reduction of the space requirement, by intro-
ducing the MASCDAWG and its construction algorithm, which runs in linear
time with respect to the size of the structure.

It is easy to construct the minimum all-suffizes suffiz triein time proportional
to its size, by a slightly modified algorithm for the MASDAWG. We only need to
care not to merge subtrees of the same suffix trie, so that the resulting structure
does not become a dag. Similarly, the minimum all-suffizes suffix tree can also be
built in time linear to its size, by modifying the algorithm for the MASCDAWG.

13
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