
Inferring Strings from Graphs and Arrays

Hideo Bannai1, Shunsuke Inenaga2,
Ayumi Shinohara2,3, and Masayuki Takeda2,3

1 Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

bannai@ims.u-tokyo.ac.jp
2 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

3 PRESTO, Japan Science and Technology Corporation (JST)
{s-ine, ayumi, takeda}@i.kyushu-u.ac.jp

Abstract. This paper introduces a new problem of inferring strings
from graphs, and inferring strings from arrays. Given a graph G or an
array A, we infer a string that suits the graph, or the array, under some
condition. Firstly, we solve the problem of finding a string w such that the
directed acyclic subsequence graph (DASG) of w is isomorphic to a given
graph G. Secondly, we consider directed acyclic word graphs (DAWGs)
in terms of string inference. Finally, we consider the problem of finding
a string w of a minimal size alphabet, such that the suffix array (SA) of
w is identical to a given permutation p = p1, . . . , pn of integers 1, . . . , n.
Each of our three algorithms solving the above problems runs in linear
time with respect to the input size.

1 Introduction

To process strings efficiently, several kinds of data structures are often used. A
typical form of such a structure is a graph, which is specialized for a certain
purpose such as pattern matching [1]. For instance, directed acyclic subsequence
graphs (DASGs) [2] are used for subsequence pattern matching, and directed
acyclic word graphs (DAWGs) [3] are used for substring pattern matching. It
is quite important to construct these graphs as fast as possible, processing the
input strings. In fact, for any string, its DASG and DAWG can be built in linear
time in the length of a given string. Thus, the input in this context is a string,
and the output is a graph.

In this paper, we introduce a challenging problem that is a ‘reversal’ of the
above, namely, a problem of inferring strings from graphs. That is, given a di-
rected graph G, we infer a string that suits G under some condition. Firstly, we
consider the problem of finding a string w such that the DASG of w is isomor-
phic to a given unlabeled graph G. We show a characterization theorem that
gives if-and-only-if conditions so that a directed acyclic graph is isomorphic to
a DASG. Our algorithm inferring a string w from G as a DASG is based on this
theorem, and it will be shown to run in linear time in the size of G. Secondly, we

bb aa
b

aa

0 1 2 3 4 a b a
b c

a b c
d

d
d

b c
c

a

(a) (b)

Fig. 1. (a) DASG(w) with w = abba (b) DAWG(w) with w = ababcabcd

consider DAWGs in terms of the string inference problem. We also give a linear-
time algorithm that finds a string w such that the DAWG of w is isomorphic to
a given unlabeled graph G.

Another form of a data structure for string processing is an array of integers.
A problem of inferring strings from arrays was first considered by Franěk et
al. [4]. They proposed a method to check if an integer array is a border array
for some string w. Border arrays are better known as failure functions [5]. They
showed an on-line linear-time algorithm to verify if a given integer array is a
border array for some string w on an unbounded size alphabet. Duval et al. [6]
gave an on-line linear-time algorithm for a bounded size alphabet, to solve this
problem.

On the other hand, in this paper we consider suffix arrays (SAs) [7] in the
context of string inference. Namely, given a permutation p = p1, . . . , pn of inte-
gers 1, . . . , n, we infer a string w of a minimal size alphabet, such that the SA
of w is identical to p. We present a linear time algorithm to infer string w from
a given p.

1.1 Notations on Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively. The
sets of prefixes, substrings, and suffixes of a string w are denoted by Prefix (w),
Substr(w), and Suffix (w), respectively. String u is said to be a subsequence of
string w if u can be obtained by removing zero or more characters from w. The
set of subsequences of a string w is denoted by Subseq(w).

The length of a string w is denoted by |w|. The empty string is denoted by ε,
that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string w is denoted
by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins at position i
and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i : j] = ε for j < i.

For strings w, u ∈ Σ∗, we denote w ≡ u if w is obtained from u by one-to-one
character replacements. For a string w let Σw denote the set of the characters
appearing in w.

1.2 Graphs

Let V be a finite set of nodes. An edge is defined to be an ordered pair of nodes.
Let E be a finite set of edges. A directed graph G is defined to be a pair (V, E).

For an edge (u, v) of a directed graph G, u is called a parent of v, and v is
called a child of u. Let Children(u) = {v ∈ V | (u, v) ∈ E}, and Parents(v) =
{u ∈ V | (u, v) ∈ E}. Node u (v, respectively) is called the head (tail, respec-
tively) of edge (u, v). An edge (u, v) is said to be an out-going edge of node u
and an in-coming edge of node v. A node without any in-coming edges is said to
be a source node of G. A node without any out-going edges is said to be a sink
node of G.

In a directed graph G, the sequence of edges (v0, v1), (v1, v2), . . . , (vn−1, vn)
is called a path, and denoted by path(v0, vn). The length of the path is defined
to be the number of edges in the path, namely, n. If v0 = vn, the path is called
a cycle. If G has no cycles, it is called a directed acyclic graph (DAG).

An edge of a labeled graph G is an ordered triple (u, a, v), where u, v ∈ V and
a ∈ Σ. A path (v0, a1, v1), (v1, a2, v2), . . . (vn−1, an, vn) is said to spell out string
a1a2 · · · an. For a labeled graph G, let s(G) be the graph obtained by removing
all edge-labels from G. For two labeled graphs G and H , we write as G ∼= H if
s(G) is isomorphic to s(H).

Recall the following basic facts on Graph Theory, which will be used in the
sequel.

Lemma 1 (e.g. [8] pp.6-10). Checking if a given directed graph is acyclic can
be done in linear time.

Lemma 2 (e.g. [8] pp.6-8). Connected components of a given undirected graph
can be computed in linear time.

Without loss of generality, we consider in this paper, DAGs G = (V, E) with
exactly one source node and sink node, denoted source and sink , respectively.
We also assume that for all nodes v ∈ V (excluding source and sink), there
exists both path(source, v) and path(v, sink). For nodes u, v ∈ V , let us define
pathLengths(u, v) as the multi-set of lengths of all paths from u to v, and let
depths(v) = pathLengths(source, v).

2 Inferring String from Graph as DASG

This section considers the problem of inferring a string from a given graph as an
unlabeled DASG.

For a subsequence x of string w ∈ Σ∗, we consider the end-position of the
leftmost occurrence of x in w and denote it by LM w(x), where 0 ≤ |x| ≤
LM w(x) ≤ |w|. We define an equivalence relation ∼seq

w on Σ∗ by

x ∼seq

w y ⇔ LM w(x) = LM w(y).

Let [x]seq
w

denote the equivalence class of a string x ∈ Σ∗ under ∼seq
w . The directed

acyclic subsequence graph (DASG) of string w ∈ Σ∗, denoted by DASG(w), is
defined as follows:

Definition 1. DASG(w) is the DAG (V, E) such that

V = {[x]seq

w
| x ∈ Subseq(w)},

E = {([x]seq
w , a, [xa]seq

w) | x, xa ∈ Subseq(w) and a ∈ Σ}.

According to the above definition, each node of DASG(w) can be associated
with a position of w uniquely. When we indicate the position i of a node v of
DASG(w), we write as vi.

Theorem 1 (Baeza-Yates [2]). For any string w ∈ Σ∗, DASG(w) is the
smallest (partial) DFA that recognizes all subsequences of w.

DASG(w) with w = abba is shown in Fig. 1 (a). Using DASG(w), we can
examine whether or not a given pattern p ∈ Σ∗ is a subsequence of w in O(|p|)
time [2]. Details of construction and applications of DASGs can be found in the
literature [2].

Theorem 2. A labeled DAG G = (V, E) is DASG(w) for some string w of
length n, if and only if the following properties hold.

1. Path property There is a unique path of length n from source to sink.
2. Node number property |V | = n + 1.
3. Out-going edge labels property The labels of the out-going edges of each

node v are mutually distinct.
4. In-coming edge labels property The labels of all in-coming edges of each

node v are equal. Moreover, the integers assigned to the tails of these edges
are consecutive.

5. Character positions property For any node vk ∈ V , assume Parents(vk)
�= ∅. Assume vi ∈ Parents(vk) and vi−1 /∈ Parents(vk) for some 1 ≤ i < k. If
the in-coming edges of vk are labeled by some character a, then edge (vi−1, vi)
is also labeled by a.

The path of Property 1 is the unique longest path of G, which spells out w.
We call this path the backbone of G. The backbone of DASG(w) can be expressed
by sequence (v0, w[1], v1), . . . , (vn−1, w[n], vn).

Lemma 3. For any two strings u, w ∈ Σ∗, u ≡ w if and only if DASG(u) ∼=
DASG(w).

The above lemma means that, if an unlabeled DAG is isomorphic to the
DASG of some string, the string is uniquely determined except for apparent
one-to-one character replacements.

Theorem 3. Given an unlabeled graph G = (V, E), the string inference problem
for DASGs can be solved in linear time.

Proof. We describe a linear time algorithm which, when given unlabeled graph
G = (V, E), infers a string w where s(DASG(w)) is isomorphic to G. First, recall
that the acyclicity test for given graph G is possible in linear time (Lemma 1). If

it contains a cycle, we reject it and halt. While traversing G to test the acyclicity
of G, we can also compute the length of the longest path from source to sink
of G, and let n be the length. We at the same time count the number of nodes
in G. If |V | �= n + 1, we reject it and halt. Then, we assign an integer i to each
node v of G such that the length of the longest path from source to v is i. This
corresponds to a topological sort of nodes in G, and it is known to be feasible in
O(|V | + |E|) time (e.g. [8] pp.6-8).

After the above procedures, the algorithm starts from sink of G. Let w be
a string of length n initialized with nil at each position. The variable unlabeled
indicates the rightmost position of w where the character is not determined yet,
and thus it is initially set to n = |w|. At step i, the node at position unlabeled is
given a new character ci. We then determine all the positions of the character ci

in w, by backward traversal of in-coming edges from sink towards source. To do
so, we preprocess G after ordering the nodes topologically. At node vi of G, for
each vj ∈ Children(vi) we insert vi to the list maintained in vj , corresponding to
a reversed edge (vj , vi). Since there exists exactly n + 1 nodes in G, the integers
assigned to nodes in the backbone are sorted from 0 to n. Therefore, if we start
from source, the list of reversed edges of every node is sorted in increasing order.
Thus, given a node node, we can examine if the numbers assigned to nodes in
Parents(node) are consecutive, in time linear in the number of elements in the
list of the reversed edges of node. If they are consecutive, the next position where
ci appears in w corresponds to the smallest value in the set (the first element
in the list), and the process is repeated for this node until we reach source.
If, at any point, the elements in the set are not consecutive, we reject G and
halt. This part is based on Properties 4 and 5 of Theorem 2. If, in this process,
we encounter a position of w in which a character is already determined, we
reject G and halt since if G is a DASG, for any position its character has to
be uniquely determined. After we finish determining the positions of ci in w, we
decrement unlabeled until w[unlabeled] is undetermined, or if we reach source.
If unlabeled �= 0 (if not source), then the process is repeated for a new character
ci+1. Otherwise, all the characters have been determined, and we output w. Since
each edge is traversed (backwards) only once, and unlabeled is decremented at
most n times, we can conclude that the whole algorithm runs in linear time with
respect to the size of G. �	

3 Inferring String from Graph as DAWG

This section considers the problem of inferring a string from a given graph as an
unlabeled DAWG.

Definition 2 (Crochemore [9]). The directed acyclic word graph (DAWG)
of w ∈ Σ∗ is the smallest (partial) DFA that recognizes all suffixes of w.

The DAWG of w ∈ Σ∗ is denoted by DAWG(w). DAWG(w) with w =
ababcabcd is shown in Fig. 1 (b). Using DAWG(w), we can examine whether
or not a given pattern p ∈ Σ∗ is a substring of w in O(|p|) time. Details of
construction and applications of DAWGs can be found in the literature [3].

Lemma 4. For any two strings u, w ∈ Σ∗, u ≡ w if and only if DAWG(u) ∼=
DAWG(w).

The above lemma means that, if an unlabeled DAG is isomorphic to the
DAWG of some string, the string is uniquely determined except for apparent
one-to-one character replacements.

We assume that any string w terminates with a special delimiter symbol $
which does not appear in prefixes. Then the suffixes of w are all recognized at
sink of DAWG(w), spelled out from source. Note that, on such an assumption,
DAWG(w) is the smallest DFA recognizing all substrings of w. It is not difficult
to see that a DAWG will have the following properties.

Theorem 4. If a labeled DAG G is DAWG(w) for some string w of length n,
then the following properties hold.

1. Length property For each length i = 1, . . . , n, there is a unique path from
source to sink of length i, where n is the length of the longest path.

2. In-coming edge labels property The labels of all in-coming edges of each
node v are equal.

3. Suffix property Let ui = ui[1]ui[2] . . . ui[i] be the labels of a path of length
i from source to sink. Then ui[i − j] = w[n − j] for each j = 0, . . . , i − 1.

The above theorem gives necessary properties for a DAG to be a DAWG.
Therefore, if a DAG G does not satisfy a property of the above theorem, then
we can immediately decide that G is not isomorphic to any DAWG.

A näive way to check the length property would take O(n2) time since the
total lengths of all the paths is Σn

i=1i, but we here introduce how to confirm the
length property in linear time. The length property claims that depths(sink) =
{1, 2, . . . , n} holds, where n is the length of the longest path in G from source to
sink . The next lemma is a stronger version of the length property, which holds
for any node.

Lemma 5. Let w be an arbitrary string of length n. For any node v in DAWG(w),
the multi-set depths(v) consists of distinct consecutive integers, that is, depths(v)
= {i, i + 1, . . . , j} for some 1 ≤ i ≤ j ≤ n.

Lemma 6. Length property can be verified in linear time with respect to the
total number of edges in the graph.

Proof. If a given G forms DAWG(w) for some string w, by Lemma 5, at each
node v, the multi-set depths(v) consists of distinct consecutive integers. Thus
depths(v) = {i, i+1, . . . , j} can be represented by the pair 〈i, j〉 of the minimum
i and the maximum j. Starting from source, we traverse all nodes in a depth-
first manner, where all in-coming edges of a node must have been traversed to
go deeper. If a node v has only one parent node u, then depths(v) is simply
〈i + 1, j + 1〉 where depths(u) = 〈i, j〉. If a node v has k > 1 parent nodes u1,
. . . , uk, we do as follows. Let 〈i1, j1〉 = depths(u1), . . . , 〈ik, jk〉 = depths(uk).
By Lemma 5, depths(v) = 〈i1 + 1, j1 + 1〉∪ · · · ∪ 〈ik + 1, jk + 1〉 must be equal to

〈imin + 1, jmax + 1〉, where imin = min{i1, . . . , ik} and jmax = max{j1, . . . , jk}.
(Remark that the union operation is taken over multi-sets.) This can be verified
by sorting the pairs 〈i1, j1〉, . . . , 〈ik, jk〉 with respect to the first component in
increasing order into 〈i′1, j′1〉, . . . , 〈i′k, j′k〉, (i′1 < · · · < i′k) and checking that
j′1 + 1 = i′2, . . . , j′k−1 + 1 = i′k. The sorting and verification can be done in
O(k) time at each node with a radix sort and skip count trick, provided that we
prepare an array of size n before the traversal, and reuse it.

If depths(sink) = 〈1, n〉 finally, the length property holds. The running time
is linear with respect to the number of edges, since each edge is only processed
once as out-going, and once as in-coming. �	

Theorem 5. Given an unlabeled graph G = (V, E), the string inference problem
for DAWGs can be solved in linear time.

Proof (sketch). We describe a linear time algorithm which, when given unlabeled
graph G = (V, E), infers a string w where s(DAWG(w)) is isomorphic to G. The
algorithm is correct, provided that there exists such a string for G. Invalid inputs
can be rejected with linear time sanity checks, after the inference.

Initially, we check the acyclicity of the graph in linear time (Lemma 1), and
find source and sink . Using the algorithm of Lemma 6, we verify the length
property in linear time. At the same time, we can mark at each node, its deepest
parent, that is, the parent on the longest path from source. Notice that Prop-
erty 2 of Theorem 4 allows us to label the nodes instead of the edges. From
Definition 2, it is easy to see that the labels of out-going edges from source are
distinct and should comprise the alphabet Σw, and therefore we assign distinct
labels to nodes in Children(source) (the label for sink can be set to ‘$’).

The algorithm then resembles a simple breadth-first traversal from sink , go-
ing up to source. For any set N of nodes, let Parents(N) =

⋃
u∈N Parents(u).

Starting with N0 = {sink}, at step i, we will consider labeling a set Ni+1 ⊆
Parents(Ni) of nodes whose construction is defined below. Nodes may have mul-
tiple paths of different lengths to the sink, and it is marked visited when it is
first considered in the set. Ni+1 is constructed by including all unvisited nodes,
as well as a single deepest visited node (if any), in Parents(Ni) (sink is also
disregarded since it cannot have a label). With this construction, we will later
see that at least one node in Ni+1 will have already been labeled, and therefore
from Property 3 of Theorem 4, all other nodes in Ni+1 can be given the same
label. When there are no more unvisited nodes, we infer the resulting string w,
which is spelled out by longest path from source to sink . The linear run time
of the algorithm is straightforward, since it is essentially a linear time breadth-
first traversal of the DAG with one extra width at most (notice that redundant
traversals from visited nodes can be avoided by using only the deepest parent
node marked at each node), and the depth of the traversal is at most the length
of the longest path from source to sink .

The claim that Ni+1 will contain at least one labeled node for all i is justified
as follows. If Ni+1 contains a node marked visited, we can use this node since
the label of nodes are always inferred when they are marked visited. If Ni+1

does not contain a visited node, it is not difficult to see from its construction
that this implies that Ni+1 represents the set of all nodes which have a path of
length i+1 to the sink . Then, from the length property, we can see that at least
one of these nodes is labeled in the initial distinct labeling of Children(source).

If G was not a valid structure for a DAWG, s(DAWG(w)) may not be iso-
morphic to G. However, G is labeled at the end of the inference algorithm, and
we can check if the labeled G and DAWG(w) are congruent or not in linear time.
This is done by first creating DAWG(w) from w in linear time [3], checking the
number of nodes and edges, and then doing a simultaneous linear-time traversal
on DAWG(w) and labeled G. For each pair of nodes which have the same path
from source in both graphs, the labels of the out-going edges are compared. �	

The inclusion of a single deepest visited node (if any) when constructing Ni+1

from Parents(Ni) is the key to the linear time algorithm, because including all
visited nodes in Parents(Ni) would result in quadratic running time, while not
including any visited nodes would result in failure of inferring the string for some
inputs.

4 Inferring String from Suffix Array

A suffix array SA of a string w of length n is a permutation p = p1, . . . , pn of
the integers 1, . . . , n, which represents the lexicographic ordering of the suffixes
w[pi : n]. Details of construction and applications of suffix arrays can be found
in the literature [7].

Opposed to the string inference problem for DASGs and DAWGs, the inferred
string cannot be determined uniquely (with respect to ≡). For example, for a
given suffix array p = p1, . . . , pn, we can easily create a string w = w[1] . . . w[n]
with an alphabet of size n, where w[i] is set to the character with the pith lexico-
graphic order in the alphabet. Therefore, we define the string inference problem
for suffix arrays as: given a permutation p = p1 . . . pn of integers 1, . . . , n, con-
struct a string w with a minimal alphabet size, whose suffix array SA(w) = p.

The only condition that a permutation p = p1 . . . pn must satisfy for it to rep-
resent a suffix array of string w is, for all i ∈ 1, . . . n−1, w[pi :n] ≤lex w[pi+1 :n],
where ≤lex represents the lexicographic relation over strings. From the suffix
array, we are provided with the lexicographic ordering of each of the characters
in the string, that is, w[p1] ≤lex · · · ≤lex w[pn]. Let I denote the set of integers
where i ∈ I indicates w[pi] <lex w[pi+1], that is, w[pi] is lexicographically strictly
less than w[pi+1]. A strict inequality w[pi] <lex w[pi+1] implies that the charac-
ters of w[pi] and w[pi+1] are different, and therefore increases the alphabet size.
If w[p1] <lex · · · <lex w[pn], that is, if I = {1, . . . , n − 1}, then this is the same
as in the previous example where we obtain the trivial string of alphabet size n.
If I = φ, this indicates a single character alphabet where the only possible suffix
array p = p1, . . . , pn = n, . . . , 1. Our problem is to find the smallest I where p
still holds as a suffix array for some string w with alphabet size |I| + 1.

Theorem 6. Given a permutation p = p1, . . . , pn of integers 1, . . . , n, the string
inference problem for SAs can be solved in linear time.

Proof. We give a linear time algorithm to find the smallest I defined as above.
The algorithm itself is very simple: for all i = 1, . . . , n − 1, if w[pi + 1] �≤lex

w[pi+1 +1] then i ∈ I (w[n+1] is defined to be first in the lexicographic ordering
of the alphabet). The validity of the algorithm is shown below.

Define a mapping from a position j in the string, to its lexicographic order
k, that is r1, . . . , rn so that rj = k such that pk = j. For i ∈ 1, . . . n−1, consider
the two suffixes w[pi : n] ≤lex w[pi+1 : n]. Notice that, if there exists j s.t.
w[pi + j] �≤lex w[pi+1 + j], then there must ∃k < j s.t. w[pi +k] <lex w[pi+1 +k].

Suppose for some i, w[pi + j] �≤lex w[pi+1 + j] with some j ≥ 1, and w[pi +
k] ≤lex w[pi+1 + k] with all 0 ≤ k < j. If j = 1, this indicates that w[pi] <lex

w[pi+1] must hold in order for the lexicographic order of the suffixes w[pi :n] ≤lex

w[pi+1 : n] to hold, and i must be included in I. If j ≥ 2, we show that such
conditions are covered by the conditions satisfied with j = 1 for a different i.

Suppose for some i, w[pi + j] �≤lex w[pi+1 + j] with some j ≥ 2, and w[pi +
k] ≤lex w[pi+1 + k] with all 0 ≤ k < j. Since w[pi + j − 1] ≤lex w[pi+1 + j − 1],
we have their lexicographic order rpi+j−1 < rpi+1+j−1. For convenience, denote
these as r′ and r′′ respectively, that is, r′ < r′′. Since we have w[pi + j] �≤lex

w[pi+1+j], it follows that w[pr′ +1] �≤lex w[pr′′ +1]. Therefore, there must exist i′

(r′ ≤ i′ < r′′) such that w[pi′+1] �≤lex w[pi′+1+1] (and thus w[pi′] <lex w[pi′+1]),
and it should belong to I. However, this condition will be found by the algorithm
which only considers the case for j = 1. �	

For a given permutation p = p1, . . . , pn, let k(p) represent the size of the minimal
alphabet that w can consist of, for which SA(w) = p. Interestingly, the number
of permutations p of length n where k(p) = k, is given by the Eulerian number〈

n
k

〉
[10]. This is because Eulerian numbers can be interpreted as the number of

permutations of length n which have k ascents (descents), in the permutation.
This is exactly the condition we check for in Theorem 6.

5 Conclusions and Open Problems

In this paper we introduced a new challenging problem named string inference,
where we infer strings from given graphs or arrays. We gave linear-time algo-
rithms to solve the problem for DASGs and DAWGs. We also extended this
scheme to arrays, and gave an algorithm that infers a string from a given suffix
array in linear time.

One interesting open problem is whether inferring a string from a given factor
oracle [11] can be done in linear time. The factor oracle of a string w is a DFA
that ‘at least’ accepts Substr(w), but possibly accepts some subsequences of w as
well. Factor oracles therefore can be regarded as an ‘intermediate’ data structure
between DAWGs and DASGs. To infer a string from a given unlabeled DAG as
a factor oracle, we shall need to know what the language accepted by the factor

oracle of w is, but it is still unknown. Therefore, the formal definition of factor
oracles is awaited, and it would be a part of our future work as well.

We are also interested in string inference from suffix trees [12]. The suffix tree
of string w is a tree structure that represents Substr(w). The point is that its edge
labels are strings (multiple characters). Also, the compact DAWG (CDAWG) [13]
of w is a DAG recognizing Substr(w) with string edge labels. Therefore, to infer
a string from a suffix tree or CDAWG, we need to infer edge labels as strings
but their lengths are not given beforehand. We expect that some kinds of word
equations will be involved in this problem, and thus this class of the string
inference problem should be far more complex than those we have solved in this
paper.

References

1. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
2. Baeza-Yates, R.A.: Searching subsequences (note). Theoretical Computer Science

78 (1991) 363–376
3. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:

The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40 (1985) 31–55

4. Franěk, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying
a border array in linear time. J. Comb. Math. Comb. Comput. (2002) 223–236

5. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer
algorithms. Addison-Wesley (1974)

6. Duval, J.P., Lecroq, T., Lefevre, A.: Border array on bounded alphabet. In:
Proc. The Prague Stringology Conference ’02 (PSC’02), Czech Technical University
(2002) 28–35

7. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Compt. 22 (1993) 935–948

8. Atallah, M.J., ed.: Algorithms and Theory of Computation Handbook. CRC Press
(1998) ISBN:0-8493-2649-4.

9. Crochemore, M.: Transducers and repetitions. Theoretical Computer Science 45
(1986) 63–86

10. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics (2nd edition). Ad-
dison Wesley (1994)

11. Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: A new structure for
pattern matching. In: Proc. 26th Annual Conference on Current Trends in Theory
and Practice of Informatics (SOFSEM’99). Volume 1725 of LNCS., Springer-Verlag
(1999) 291–306

12. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Annual Symposium
on Switching and Automata Theory. (1973) 1–11

13. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM 34 (1987)
578–595

