
Nordic Journal of Computing

BIDIRECTIONAL CONSTRUCTION OF
SUFFIX TREES

Shunsuke Inenaga
Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

s-ine@i.kyushu-u.ac.jp

Abstract. String matching is critical in information retrieval since in many cases
information is stored and manipulated as strings. Constructing and utilizing a
suitable data structure for a text string, we can solve the string matching problem
efficiently. Such a structure is called an index structure. Suffix trees are certainly the
most widely-known and extensively-studied structure of this kind. In this paper,
we present a linear-time algorithm for bidirectional construction of suffix trees.
The algorithm proposed is also applicable to bidirectional construction of directed
acyclic word graphs (DAWGs).

CR Classification: E.1 [Data Structures]; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

Key words: strings, pattern matching, data structures, suffix trees, DAWGs,
linear-time algorithm

1. Introduction

String processing is of central importance to computer science, since most
data available in/via computers are stored and manipulated as strings.
Therefore efficient algorithms for string processing are significant and nec-
essary. Pattern matching is the most fundamental and important problem
in string processing, and it is described as follows: given a pattern string
p and a text string w, examine whether or not p is a substring of w. This
problem is solvable in O(|p|) time by using a suitable data structure that
supports indices of text w.

The most basic index structure seems to be suffix tries. All substrings of
a given string w are recognized at nodes of the suffix trie of w. Probably
the structure is the easiest to understand, but its only, however biggest,
drawback is that its space requirement is O(|w|2).

This fact led the introduction of more space-economical (O(|w|)-spaced)
structures such as suffix trees (see Weiner [1973], McCreight [1976], Ukkonen
[1995], Gusfield [1997]), directed acyclic word graphs (DAWGs) (see Blumer
et al. [1985], Crochemore [1986], Baĺık [1998]), compact directed acyclic
word graphs (CDAWGs) (see Blumer et al. [1987], Crochemore and Vérin
[1997], Inenaga et al. [2001b]), suffix arrays (see Manber and Myers [1993]),

Received April 2, 2003.

2 SHUNSUKE INENAGA

and some other variants. Among those, suffix trees are for sure most widely-
known and extensively-studied (see Crochemore and Rytter [1994], Gusfield
[1997]), perhaps because there are a ‘myriad’ of applications for them as
shown by Apostolico [1985].

Construction of suffix trees has been studied in various contexts: Weiner
[1973] invented the first algorithm that constructs suffix trees in linear time;
McCreight [1976] proposed a more space-economical algorithm; Chen and
Seiferas [1985] showed an efficient modification of Weiner’s; Ukkonen [1995]
introduced an on-line algorithm to construct suffix trees, which Giegerich
and Kurtz [1997] regarded as “the most elegant”; Farach [1997] considered
optimal construction of suffix trees with large alphabets; Breslauer [1998]
gave a linear-time algorithm for building the suffix tree of a given trie that
stores a set of strings; Inenaga et al. [2001a] presented an on-line algorithm
that simultaneously constructs both the suffix tree of a string and the DAWG
of the reversed string.

In this paper we explore bidirectional construction of suffix trees. Namely,
the algorithm we propose allows us to update the suffix tree of a string w to
the suffix tree of a string xwy, where x, y are any strings. We also show that
our algorithm runs in linear time and space with respect to the length of a
given string. A preliminary version of this work appears in Inenaga [2002].

Bidirectional construction of suffix trees was first considered by Stoye
[1995]. His strategy was to modify the definition and structure of suffix
trees so that they become more “adequate” in terms of bidirectional con-
struction, and the resulting modified structure was named affix trees. His
original algorithm to construct affix trees does not perform in linear time,
unfortunately, but Maaß [2000] later on improved the algorithm so as to run
in linear time. Another good feature of affix trees is that the affix tree of
any string w also supports the indices of wrev, the reversal of w. On the
other hand, it is a well-known and beautiful property that the suffix tree of
any string w and the DAWG of wrev can share the same nodes, as well. We
will show that the combination of this work and our previous work in In-
enaga et al. [2001a] enables us to construct and update both structures in a
bidirectional manner.

The size of affix trees is, of course, linear. However, for any string w the
number of nodes in the suffix tree for w is less than or equal to that of the
affix tree. Namely, this work contributes to reducing space requirements
necessary for bidirectional construction of a data structure that supports
dual indices of a given string.

2. Suffix Trees

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x,
y, and z are said to be a prefix, substring, and suffix of string w = xyz,
respectively. The sets of prefixes, substrings, and suffixes of a string w are
denoted by Prefix(w), Substr(w), and Suffix(w), respectively. The length of

BIDIRECT. CONST. SUFFIX TREES 3

a string w is denoted by |w|. The empty string is denoted by ε, that is,
|ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string w is denoted by
w[i] for 1≤ i≤ |w|. The cardinality of set S ⊆ Σ∗ is denoted by |S|. For
any string u ∈ Σ∗, Su−1 = {x | xu ∈ S}.

Let w ∈ Σ∗. We define an equivalence relation ≡L
w on Σ∗ by

x ≡L
w y ⇔ Prefix(w)x−1 = Prefix(w)y−1.

The equivalence class of a string x ∈ Σ∗ with respect to ≡L
w is denoted by

[x]Lw. Note that all strings not belonging to Substr(w) form one equivalence
class under ≡L

w. This equivalence class is called the degenerate class. All
other classes are said to be non-degenerate.

Example 1. Let w = abcbc. For example, b ≡L
w bc since Prefix(w)b−1 =

Prefix(w)(bc)−1 = {abc, a}.
All non-degenerate equivalence classes under ≡L

w are [ε]Lw = {ε}, [a]Lw =
{abcbc, abcb, abc, ab, a}, [b]Lw = {bc, b}, [bcb]Lw = {bcbc, bcb}, [c]Lw = {c},
and [cb]Lw = {cbc, cb}.

Proposition 1. (Inenaga et al. [2001a]) Let w ∈ Σ∗ and x, y ∈ Substr(w).
If x ≡L

w y, then either x is a prefix of y, or vice versa.

Proof. By the definition of ≡L
w, we have Prefix(w)x−1 = Prefix(w)y−1.

There are three cases to consider:
(1) When |x| = |y|. Obviously, x = y in this case. Thus x ∈ Prefix(y) and

y ∈ Prefix(x).

(2) When |x| > |y|. Let u be an arbitrary string in Prefix(w). Assume
u = sx with s ∈ Σ∗. Then s ∈ Prefix(w)x−1, which results in s ∈
Prefix(w)y−1. Hence, there must exist a string v ∈ Prefix(w) such that
v = sy. By the assumption that |x| > |y|, we have |u| > |v|. From the
fact that both u and v are in Prefix(w), it is derived that v ∈ Prefix(u).
Consequently, y ∈ Prefix(x).

(3) When |x| < |y|. By a similar argument to Case (2), we have x ∈
Prefix(y).

�

For any string x ∈ Substr(w), the longest member in [x]Lw is denoted by
w−→x . What

w−→x means intuitively is that
w−→x is the string obtained by extending

x in [x]Lw as long as possible. The following proposition states that each
equivalence class in ≡L

w other than the degenerate class has a unique longest
member.

Proposition 2. (Inenaga et al. [2001a]) Let w ∈ Σ∗. For any string x ∈
Substr(w), there uniquely exists a string α ∈ Σ∗ such that

w−→x = xα.

4 SHUNSUKE INENAGA

Proof. Let
w−→x = xα with α ∈ Σ∗. For the contrary, assume there exists

a string β ∈ Σ∗ such that
w−→x = xβ and β �= α. By Proposition 1, either

xα ∈ Prefix(xβ) or xβ ∈ Prefix(xα) must stand, since xα ≡L
w xβ. However,

neither of them actually holds since |α| = |β| and α �= β, which yields a

contradiction. Hence, α is the only string satisfying
w−→x = xα. �

Proposition 3. Let w ∈ Σ∗ and x ∈ Substr(w). Assume
w−→x = x. Then, for

any y ∈ Suffix(x),
w−→y = y.

Proof. Assume contrarily that there uniquely exists a string α ∈ Σ+ such
that

w−→y = yα. Since y ∈ Suffix(x), x is always followed by α in w. It implies
that Prefix(w)x−1 = Prefix(w)(xα)−1, and therefore we have x ≡L

w xα.

Since |α| > 0,
w−→x is not the longest in [x]Lw, which is a contradiction. Hence,

w−→y = y. �

Proposition 4. Let w ∈ Σ∗. For any string x ∈ Suffix(w),
w−→x = x.

Proof. By Proposition 2 there uniquely exists a string α ∈ Σ∗ such
that

w−→x = xα. Since x ∈ Suffix(w), α = ε. �

Note that, for a string w ∈ Σ∗, |Substr(w)| = O(|w|2). For example, con-

sider string anbn. However, considering set S = {x | x ∈ Substr(w) and x =
w−→x

}, we have |S| = O(|w|). The following lemma gives a tighter upper-bound.

Lemma 1. (Blumer et al. [1985, 1987]) Assume that |w| > 1. The num-
ber of the non-degenerate equivalence classes in ≡L

w is at most 2|w| − 1.

A definition of the suffix tree of a string w ∈ Σ∗, denoted by STree(w), on
the basis of the above-mentioned equivalence classes, is following. We define
it as an edge-labeled tree (V,E) with E ⊆ V × Σ+ × V where the second
component of each edge represents its label. We also give a definition of the
suffix links, kinds of failure functions, frequently utilized for time-efficient
construction of suffix trees (see McCreight [1976], Ukkonen [1995]).

Definition 1. STree(w) is the tree (V,E) such that

V = {
w−→x | x ∈ Substr(w)},

E = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa= xaβ,

w−→x �=
w−→xa},

and its suffix links are the set

F = {(
w−→ax,

w−→x) | x, xa ∈ Substr(w), a ∈ Σ,
w−→ax= a·

w−→x }.

BIDIRECT. CONST. SUFFIX TREES 5

o
c

o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Fig. 2.1: STree(coco) on the left, and STree(cocoa) on the right. Solid arrows represent
the edges, and dotted arrows denote suffix links.

The node
w−→ε = ε is called the root node of STree(w). When a node

w−→x is of

out-degree zero (i.e. there is no character a such that
w−→x ·a = Substr(w)),

then it is said to be a leaf node. Each leaf node corresponds to a string in
Suffix(w). If x ∈ Substr(w) satisfies x =

w−→x , x is said to be represented on an

explicit node
w−→x . If x �=

w−→x , x is said to be on an implicit node. STree(coco)
and STree(cocoa) are displayed in Fig. 2.1.

It derives from Lemma 1 that:

Theorem 2.1. (McCreight [1976]) Let w ∈ Σ∗. Let STree(w) = (V,E).
Assume |w| > 1. Then |V | ≤ 2|w| − 1 and |E| ≤ 2|w| − 2.

Both algorithms by Weiner [1973] and by McCreight [1976] construct the
suffix tree defined above, STree(w). On the other hand, the algorithm
by Ukkonen [1995] constructs a slightly different version, which is modified
so as to be suitable for his on-line algorithm.

As a preliminary to define the modified suffix tree, we firstly introduce a
relation Xw over Σ∗ such that

Xw = {(x, xa) | x ∈ Substr(w) and a ∈ Σ is unique s.t. xa ∈ Substr(w)}.

Let ≡′L
w be the equivalence closure of Xw, i.e., the smallest superset of Xw

that is symmetric, reflexive, and transitive.

Proposition 5. (Inenaga et al. [2001a]) For any string w ∈ Σ∗, ≡L
w is

a refinement of ≡′L
w.

Proof. Let x, y be any strings in Substr(w) and assume x ≡L
w y. According

to Proposition 1, we firstly assume that x ∈ Prefix(y). It follows from

Proposition 2 that there uniquely exist strings α, β ∈ Σ∗ such that
w−→x = xα

6 SHUNSUKE INENAGA

and
w−→y = yβ. Note that β ∈ Suffix(α). Let γ ∈ Σ∗ be the string satisfying

α = γβ. Then γ is the sole string such that xγ = y. By the definition of
≡′L

w, we have x ≡′L
w y. A similar argument holds in case that y ∈ Prefix(x).

�

Corollary 1. (Inenaga et al. [2001a]) For any w ∈ Σ∗, every equiva-
lence class under ≡′L

w is a union of one or more equivalence classes under
≡L

w.

The equivalence class of a string x ∈ Σ∗ with respect to ≡′L
w is denoted by

[x]′L
w
.

Example 2. Let w = abcbc. All equivalence classes in ≡′L
w are [ε]′L

w
=

{ε}, [a]′L
w

= {abcbc, abcb, abc, ab, a}, [b]′L
w

= {bcbc, bcb, bc, b}, and [c]′L
w

=
{cbc, cb, c}.
Note the differences between the above example and Example 1.

The longest member of [x]′L
w

is denoted by
w

=⇒
x .

The next proposition is an alternate of
w

=⇒
(·) to Proposition 3 with respect

to
w−→
(·).

Proposition 6. Let w ∈ Σ∗ and x ∈ Substr(w) − Suffix(w). Assume
w

=⇒
x =

x. Then, for any y ∈ Suffix(x),
w

=⇒
y = y.

Proof. Since
w

=⇒
x = x and x /∈ Suffix(w), there are at least two characters

a, b ∈ Σ such that xa, xb ∈ Substr(w) and a �= b. Since y ∈ Suffix(x), y is

also followed by both a and b in the string w. Thus
w

=⇒
y = y. �

Remark that the precondition of the above proposition slightly differs from
that of Proposition 3. Namely, when x is a suffix of w, this proposition
does not always hold.

From here on, we explore some relationships between
w−→
(·) and

w
=⇒
(·).

Lemma 2. (Inenaga et al. [2001a]) Let w ∈ Σ∗. For any x ∈ Substr(w),
w−→x is a prefix of

w
=⇒
x . If

w−→x �=
w

=⇒
x , then

w−→x ∈ Suffix(w).

Proof. We can prove that
w−→x ∈ Prefix(

w
=⇒
x) by Proposition 1 and Corol-

lary 1. Now suppose
w−→x �=

w
=⇒
x . Let

w−→x = xβ with β ∈ Σ+. Supposing
w

=⇒
x = xα

with α ∈ Σ+, we have β ∈ Prefix(α). Let βγ = α with γ ∈ Σ∗. By the

assumption
w−→x �=

w
=⇒
x , we have xβ �≡L

w xα, although γ is the sole string that

BIDIRECT. CONST. SUFFIX TREES 7

follows
w−→x in w since

w
=⇒
x = xα = xβγ =

w−→x ·γ. This means that x is a suffix
of w followed by no character. �

See Example 1 and Example 2 to confirm the above lemma.

Lemma 3. Let w ∈ Σ∗ and x ∈ Suffix(w). If x /∈ Prefix(y) for any string

y ∈ Substr(w) − {x}, then
w−→x =

w
=⇒
x .

Proof. The precondition implies that there is no character a ∈ Σ satis-

fying xa ∈ Substr(w). Thus we have
w

=⇒
x = x. On the other hand, we obtain

w−→x = x by Proposition 4, because x ∈ Suffix(w). Hence
w−→x =

w
=⇒
x . �

Lemma 4. Let w ∈ Σ∗ with |w| = n. Assume that the last character w[n]
is unique in w, that is, w[n] �= w[i] for any 1 ≤ i ≤ n − 1. Then, for any

string x ∈ Substr(w),
w−→x =

w
=⇒
x .

Proof. By the contraposition of the second statement of Lemma 2, if

x /∈ Suffix(w), then
w−→x =

w
=⇒
x . Because of the unique character w[n], any suffix

z of w satisfies the precondition of Lemma 3, and thus
w−→z =

w
=⇒
z . �

We are now ready to define STree′(w), which is a modified version of
STree(w).

Definition 2. STree′(w) is the tree (V,E) such that

V = {
w

=⇒
x | x ∈ Substr(w)},

E = {(
w

=⇒
x , aβ,

w
=⇒
xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa= xaβ,

w
=⇒
x �=

w
=⇒
xa},

and its suffix links are the set

F = {(
w

=⇒
ax,

w
=⇒
x) | x, xa ∈ Substr(w), a ∈ Σ,

w
=⇒
ax= a·

w
=⇒
x }.

Remark that STree′(w) can be obtained by replacing
w−→
(·) in STree(w) with

w
=⇒
(·). STree′(coco) and STree′(cocoa) are shown in Fig. 2.2.

We have the next corollary deriving from Lemma 4.

Corollary 2. Let w ∈ Σ∗ with |w| = n. Assume that the last character
w[n] is unique in w, that is, w[n] �= w[i] for any 1 ≤ i ≤ n − 1. Then,
STree(w) = STree′(w).

Indeed, STree(cocoa) in Fig. 2.1 and STree′(cocoa) in Fig. 2.2 are the same,
where the last character a is unique in string cocoa.

According to Corollary 2, using an end-marker $ that occurs nowhere
in w, we have STree(w$) = STree′(w$) for any w ∈ Σ∗.

8 SHUNSUKE INENAGA

oc
o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Fig. 2.2: STree′(coco) on the left, and STree′(cocoa) on the right. Solid arrows represent
the edges, and dotted arrows denote suffix links.

3. Bidirectional Construction of Suffix Trees

3.1 Right Extension

Assume that we have STree′(w) with some w ∈ Σ∗. Now we consider up-
dating it into STree′(wa) with a ∈ Σ, by inserting the suffixes of wa into
STree′(w). Ukkonen [1995] achieved the following result.

Theorem 3.1. (Ukkonen [1995]) For any a ∈ Σ and w ∈ Σ∗, STree′(w)
can be updated to STree′(wa) in amortized constant time.

The construction of STree′(cocoa) with right extension is shown in Fig. 3.3.

Here we only recall essence of Ukkonen’s algorithm together with some
supporting lemmas and propositions.

Let y be the longest string in Substr(w)∩ Suffix(wa). Then y is called the
longest repeated suffix of wa and denoted by LRS(wa). Since every string
x ∈ Suffix(y) belongs to Substr(w), we do not need to newly insert any x
into STree′(w).

Lemma 5. Let a ∈ Σ and w ∈ Σ∗. Let y = LRS(w). For any string

x ∈ Suffix(w) − Suffix(y),
wa
=⇒
x =

w
=⇒
x ·a.

Proof. Since y = LRS(w), any string x ∈ Suffix(w) − Suffix(y) appears

only once in w as a suffix of w, and is therefore
w

=⇒
x = x. Also, x is followed

only by a in wa, and thus
wa
=⇒
x = xa. �

The above lemma implies that a leaf node of STree′(w) is also a leaf node in
STree′(wa). Thus we need no explicit maintenance for leaf nodes. Namely,

BIDIRECT. CONST. SUFFIX TREES 9

oc

o

c

c

o

o

Σ

coco

oc
o

c

c

o

o

a

a
a

Σ

o
c
o
c

c

Σ

coc

o
c
o

Σ

co

c

Σ

c

Σ

ε

o
c

o

c

c

o

o

a

a
a

a

Σ

a
o

c
o

c

c

o

o

a

a
a

a

Σ

cocoa

o
c

o

c

c

o

o

a

a

Σ

Fig. 3.3: The construction of STree′(w) with right extension, where w = cocoa. The star
mark represents the longest repeated suffix of each suffix tree. The ⊥ node corresponds
to the eliminator symbol ξ. The Σ symbol represents any character in the alphabet. The
suffix links of all leaf nodes are omitted here, because they are not really necessary in the
algorithm.

we can insert all strings of Suffix(w)−Suffix(y) into STree′(w) automatically
(for more detail, see Ukkonen [1995]). Now we can focus only on the suffixes
of LRS(wa).

Proposition 7. Let a ∈ Σ and w ∈ Σ∗. Let y = LRS(w) and z =

LRS(wa). For any string x ∈ Suffix(y) − Suffix(z)a−1,
wa
=⇒
x = x.

Proof. Since x ∈ Suffix(y), x has appeared at least twice in w. Because
x /∈ Suffix(z)a−1, xa /∈ Suffix(z). These facts imply the existence of b ∈ Σ

such that xb ∈ Substr(w) and b �= a. Consequently, we have
wa
=⇒
x = x. �

The above proposition implies that if x ∈ Suffix(y),
w

=⇒
x �= x (

w
=⇒
x is implicit

in STree′(w)), and
wa
=⇒
x = x (

wa
=⇒
x will be explicit in STree′(wa)), a new explicit

10 SHUNSUKE INENAGA

node
wa
=⇒
x = x has to be created in the update of STree′(w) to STree′(wa).

Plus, a new leaf node
wa
=⇒
xa= xa is created with the new edge (

wa
=⇒
x , a,

wa
=⇒
xa).

Now the next question is how to detect where to create the new explicit

node
aw
=⇒
x in the suffix tree.

We here define the eliminator ξ for any character a ∈ Σ by

aξ = ξa = ε

and |ξ| = −1. Moreover, we define that ξ ∈ Prefix(ε) and ξ ∈ Suffix(ε),
but ξ /∈ Prefix(x) and ξ /∈ Suffix(x) for any x ∈ Σ+. The symbol ξ corre-
sponds to the auxiliary node ⊥ introduced by Ukkonen [1995]. Owing to
the introduction of ξ, we can establish the following lemma.

Lemma 6. Let a ∈ Σ and w ∈ Σ∗. Let y = LRS(w) and z = LRS(wa).
Assume x ∈ Suffix(y) − Suffix(z)a−1. Suppose t is the longest string in

Prefix(x) such that
w

=⇒
t = t. Let x′ = Suffix(x) with |x′| + 1 = |x|, and

t′ = Suffix(t) with |t′| + 1 = |t|. For the string α ∈ Σ∗ such that tα = x,
t′α = x′.

Notice that we can reach string x′ via the suffix link of the node for t in
STree′(w) and along the path spelling out α from the node for t′ (recall Def-

inition 2). For instance, see the 1st and 2nd phases for cocoa in Fig. 3.3.

After creating new explicit nodes
w

=⇒
co and

w
=⇒
coa, the star mark goes backward

to the parent node of
w

=⇒
co , which is the root node

w
=⇒
ε . Then it moves to ⊥

node via the suffix link of
w

=⇒
ε , and goes down along edges with spelling out

co. The star mark is now on the location for o, where a new explicit node
will be created in the next phase. This operation is continued until the star
mark reaches LRS(cocoa). Ukkonen [1995] proved that the amortized cost
of this operation is constant, on the assumption that every edge label α of
STree′(w) is actually implemented by a pair (i, j) of integers such that the
substring of w beginning at position i and ending at position j is α.

3.2 Left Extension

Weiner [1973] proposed an algorithm to construct STree(aw) by updating
STree(w) with a ∈ Σ in amortized constant time. On the other hand, what
we treat in this section is the conversion of STree′(w) into STree′(aw). From
here on we delve in what happens to STree′(w) when updated to STree′(aw).

Lemma 7. Let a ∈ Σ and w ∈ Σ∗. For any string x ∈ Substr(w) −
Prefix(aw),

w
=⇒
x =

aw
=⇒
x .

BIDIRECT. CONST. SUFFIX TREES 11

Proof. Since x /∈ Prefix(aw), there is no new occurrence of x in aw. Thus
we have [x]′L

w
= [x]′L

aw
. �

The above lemma ensures that any implicit node of STree′(w) does not
become explicit in STree′(aw) if it is not associated with any prefix of aw.

Now we turn our attention to the strings in Prefix(aw). Basically, we
have to insert prefixes of aw into STree′(w) in order to obtain STree′(aw).
However, no strings in set Substr(w)∩Prefix(aw) need to be newly inserted
since they are already in STree′(w). Let x be the longest string in set
Substr(w) ∩ Prefix(aw). Then x is called the longest repeated prefix of aw
and denoted by LRP(aw). In updating STree′(w) to STree′(aw), we have to
insert all prefixes of aw that are longer than LRP(aw), into STree′(w).

Lemma 8. Let a ∈ Σ and w ∈ Σ∗. For any x = Prefix(aw) − Substr(w),
aw
=⇒
x = aw.

Proof. String x is a prefix of aw which is longer than LRP(aw). This
implies that there is no occurrence of x in w. Therefore x appears in aw
exactly once as a prefix of aw, meaning that there exists a unique character

that follows x in aw. Hence
aw
=⇒
x = aw. �

The above lemma means that, simply by adding the new leaf node
aw
=⇒
aw= aw

to STree′(w), we can obtain STree′(aw). Moreover, the in-coming edge of the

leaf node
aw
=⇒
aw will be inserted from the node that corresponds to LRP(aw).

We now clarify what happens to LRP(aw) when the new prefixes of aw are
inserted to STree′(w).

Proposition 8. Let a ∈ Σ and w ∈ Σ∗. Let x = LRP(aw) and y =

LRS(w). If x /∈ Suffix(w) − Suffix(y), then
aw
=⇒
x = x. Otherwise,

aw
=⇒
x = aw.

Proof. We first consider the case that x /∈ Suffix(w) − Suffix(y). Re-
call that x is the longest string in Substr(w) ∩ Prefix(aw). Moreover, x /∈
Suffix(w) − Suffix(y). Hence, there exist two characters b, c ∈ Σ such that

xb, xc ∈ Substr(aw) and b �= c. Thus we have
aw
=⇒
x = x.

Now we consider the second case, x ∈ Suffix(w) − Suffix(y). Here, x

occurs only once in w as its suffix. Thus
w

=⇒
x = x. On the other hand, by the

definition of LRP(aw), we obtain x ∈ Prefix(aw) − {aw}. Therefore, there
uniquely exists a character d ∈ Σ which follows x in aw. Hence we have
aw
=⇒
x = aw. �

The above proposition implies that if LRP(aw) does not correspond to a leaf
node of STree′(w), it will be represented by an explicit node in STree′(aw),
and otherwise, it becomes implicit in STree′(aw) (see the 3rd and 4th steps

12 SHUNSUKE INENAGA

of Fig. 3.6 to be shown later on). We stress that this characterizes a differ-
ence between STree′(w) and STree(w). More concretely, Weiner’s original
algorithm constructs STree(aw) on the basis of the next proposition.

Proposition 9. For any a ∈ Σ and w ∈ Σ∗, if x = LRP(aw), then
aw−→x = x.

Now the next question is how to locate LRP(aw) in STree′(w). Our idea is
similar to Weiner’s strategy for constructing STree(w). Let y be the longest
element in set Prefix(w) ∪ {ξ} such that ay ∈ Substr(w). Then y is called
the base of aw and denoted by Base(aw).

Lemma 9. (Weiner [1973]) Let a ∈ Σ and w ∈ Σ∗. If y = Base(aw), then
ay = LRP(aw).

Proof. Assume contrarily that y′ is the string such that ay′ = LRP(aw)
and |y′| > |y|. By the definition of LRP(aw), we have ay′ ∈ Prefix(aw),
which yields y′ ∈ Prefix(w). It, however, contradicts the precondition that
y = Base(aw) since |y′| > |y|. �

According to the above lemma, Base(aw) can be a clue to locating LRP(aw)
in STree′(w).

Let z be the longest element in set Prefix(w) ∪ {ξ} such that
w

=⇒
az= az.

Then z is called the bridge of aw and denoted by Bridge(aw).

Lemma 10. Let a ∈ Σ and w ∈ Σ∗. If x = LRP(w), y = Base(aw) and
z = Bridge(aw), then y ∈ Prefix(x) and z ∈ Prefix(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see
that |LRP(aw)| ≤ |LRP(w)| + 1, which implies |y| ≤ |x|. Now we ob-
tain y ∈ Prefix(x). It can be readily shown that az ∈ Prefix(ay), since
ay = LRP(aw). Thus we have z ∈ Prefix(y). �

Let y = Base(aw) and z = Bridge(aw). Assume γ ∈ Σ∗ is the string satis-
fying zγ = y. Then, we have azγ = LRP(aw) by Lemma 9 and Lemma 10.

The detection of LRP(aw) in STree′(w) is illustrated in Fig. 3.4. We
start from LRP(w) and then go up the path backward until encountering
Bridge(aw). We move to the node for az and go down the path spelling out
γ, and now we are at the location for LRP(aw). Finally we insert a new edge
labeled with βα from the location for LRP(aw) due to Lemma 8, and the
resulting structure is STree′(aw). The dashed arrow from Bridge(aw) = z to
az is the labeled reversed suffix link of z. The set F ′ of the links of STree′(w)
is defined as follows.

F ′ = {(
w

=⇒
x , a,

w
=⇒
ax) | x, ax ∈ Substr(w), a ∈ Σ, and

w
=⇒
ax= a·

w
=⇒
x }.

Observe that there is a one-to-one correspondence between F and F ′ for
STree′(w) (see Definition 1).

BIDIRECT. CONST. SUFFIX TREES 13

α

β

γ

x = LRP(w)

y = Base(aw)

z = Bridge(aw) a az

γ

β
α

w

LRP(aw) = azγ = ay

aw

ε

Fig. 3.4: In STree′(w) we start from LRP(w) and go up until Bridge(w). Then we move
to az and go down along the path spelling out γ. We are now on the location for LRP(aw),
and from there we insert a new edge labeled with βα. Now all prefixes of aw are inserted,
we have STree′(aw).

In order that we can find Base(aw) efficiently, we maintain a table for
each explicit node, as well as Weiner’s algorithm. For every explicit node
this table can be computed in constant time and space for any fixed alphabet.
Note that, however, Base(w) can sometimes be associated with an implicit
node in STree′(w). The following lemma shows a property of Base(w) when
it is implicit in STree′(w).

Lemma 11. Let a ∈ Σ and w ∈ Σ∗. Let y = Base(aw). If y �=
w

=⇒
y , then

y = LRS(w).

Proof. Since ay = LRP(aw), y appears at least twice in w. We now
consider the following three cases.
(1) All occurrences of y in w are followed by same character b. In this

case, string yb turns out to be a prefix of w that is longer than y and
appears more than once in w. It means that y �= Base(w), which is a
contradiction.

(2) There exist at least two distinct characters b, c such that yb, yc ∈
Substr(w). In this case,

w
=⇒
y = y, a contradiction.

(3) One occurrence of y in w is followed by no character. This implies that
y is a suffix of w.

Therefore only the third case is possible. This case, we have y ∈ Suffix(w)
and y ∈ Prefix(w), which implies that y is the longest string satisfying the
condition. Therefore, y = LRS(w). �

Since y = LRS(w), it is guaranteed that
w

=⇒
ay= ay. We hereby regard y as

Bridge(w) and maintain the labeled reversed suffix link of LRS(w), which is

14 SHUNSUKE INENAGA

o

a

o

o

ΣΣ

Σ

c
o
a

Σ

ΣΣΣ

ε

a
o

c
o

c

c

o

o

a

a
a

a

Σ

Σ

a

Σ

a

o
a o

a

o
a o

a oa

coa

a

ocoa
Σ Σ

o

a
c
o
a

a

o

a
c
o
a

o

o

cocoa

c

c

a a

aaa

Fig. 3.5: The construction of STree′(w) with left extension, where w = cocoa. The
triangle mark represents the longest repeated suffix of each suffix tree. The ⊥ node
corresponds to the eliminator symbol ξ. The Σ symbol represents any character in the
alphabet.

always associated with the shortest leaf node of STree′(w).
By a similar argument to Weiner [1973], it can be established that the

amortized amount of time needed for the detection of LRP(aw) in STree′(w)
is constant, again on the assumption that every edge label is implemented
by a pair of integers.

We now have the following theorem.

Theorem 3.2. For any a ∈ Σ and w ∈ Σ∗, STree′(w) can be updated to
STree′(aw) in amortized constant time.

Fig. 3.5 shows the construction of STree′(cocoa) with left extension.

3.3 Mutual Influences

Here, we consider mutual influences between Right Extension and Left Ex-
tension. The next lemma shows what happens to LRP(w) when STree′(w)
is updated to STree′(wa).

Lemma 12. Let a ∈ Σ and w ∈ Σ∗. Assume LRP(w) = LRS(w). Let
x = LRS(w). If xa ∈ Prefix(w), then LRP(wa) = xa.

Proof. Since xa ∈ Prefix(w), LRS(wa) = xa. Thus xa = LRP(wa). �

This lemma shows when and where LRP(wa) moves from the location of
LRP(w) according to the character a newly added to the right of w (see the

BIDIRECT. CONST. SUFFIX TREES 15

abε

Σ
Σ

a

Σ
Σ

a
b
b

a

Σ
Σ

a
b

a

b

bab

Σ
Σ

a
b

a

a
b

b

abab

b

Σ
Σ

a
b

a
b

b

a

a
b

ababa

b

Σ
Σ

a
b

a
b

b

a

a

b
a

a

ababac

b

Σ
Σ

a

b

a

b

b

a

a

b
a

a

c

c c

c c

c

a

b

a

c

a

b

a

Fig. 3.6: A bidirectional construction of STree′(w) with w = ababac. Solid arrows rep-
resent edges, and dotted arrows denote labeled reversed suffix links. On Right Extension,
the labeled reversed suffix links are used for another direction, that is, as “normal” suffix
links. In each suffix tree, the triangle (star, respectively) indicates the location of the
longest repeated prefix (suffix, respectively). The character newly added in each step is
underlined.

5th step in Fig. 3.6). Examining the precondition, “if xa ∈ Prefix(w)”, is
feasible in O(|Σ|) time, which is regarded as O(1) if Σ is a fixed alphabet.

The following lemma stands in contrast to Lemma 12.

Lemma 13. Let a ∈ Σ and w ∈ Σ∗. Assume LRP(w) = LRS(w). Let
x = LRP(w). If ax ∈ Suffix(w), then LRS(aw) = ax.

This lemma shows when and where LRS(aw) moves from the location of
LRS(w) according to the character a newly added to the left of w. Exam-
ining the precondition, “if ax ∈ Suffix(w)”, is also possible in O(|Σ|) time,
and moving from LRS(w) to LRS(aw) is possible in constant time by the
use of the labeled reversed suffix link of LRS(w) (see the 3rd and 4th steps
of Fig. 3.6).

As a result of discussion, we finally obtain the following:

Theorem 3.3. For any string w ∈ Σ∗, STree′(w) can be constructed in
bidirectional manner and in O(|w|) time.

A bidirectional construction of STree′(w) with w = ababac is displayed
in Fig. 3.6.

16 SHUNSUKE INENAGA

4. Concluding Remarks

We introduced an algorithm for bidirectional construction of suffix trees,
which performs in linear time. This is a counterpart of the algorithm of Stoye
[1995] for bidirectional construction of affix trees. We stress that our new
algorithm requires less space than Stoye’s.

An interesting fact is that the tables for finding Base(w) used in Weiner
[1973] correspond to the edges of DAWG(wrev) (see Crochemore and Rytter
[1994]). This implies that our algorithm is also able to update a DAWG
to the right direction. On the other hand, in Inenaga et al. [2001a] we
presented a linear-time algorithm that constructs not only STree′(w) but
also DAWG(wrev) in a left-to-right on-line manner, which is based on the
algorithm by Ukkonen [1995]. This algorithm enables us to update a DAWG
to the left direction. Therefore, the algorithm of this paper turns out to be
adaptive to bidirectional construction of DAWGs.

An interesting open problem is whether or not linear-time bidirectional
construction of CDAWGs is possible. It can be done in amortized constant
time to convert CDAWG(w) into CDAWG(wa) by the use of the algorithm
of Inenaga et al. [2001b]. However, as is mentioned in Inenaga et al. [2002a],
we conjecture that the conversion of CDAWG(w) to CDAWG(aw) would not
be possible in (amortized) constant time (also see Inenaga et al. [2002b]).
Still, there might remain a possibility to construct CDAWGs in a right-to-
left on-line manner. That is, a chunk of characters x (namely a string x)
are at once appended to the left of the current string w, so that updating
CDAWG(w) to CDAWG(xw) can be done in amortized constant time (this
case we would not obtain CDAWG(vw) for any proper suffix v of x excepting
v = ε). However, we are unsure if such convenient selection of the length of
x is really possible or not.

Acknowledgements

The author wishes to thank Prof. Ayumi Shinohara and Prof. Masayuki
Takeda. Daily fruitful and enthusiastic discussion with them led the author
to the inspiration for this work.

References

Apostolico, Alberto. 1985. The Myriad Virtues of Subword Trees. In Combinatorial
Algorithm on Words, Volume 12 of NATO Advanced Science Institutes, Series F.
Springer-Verlag, 85–96.

Baĺık, Miroslav. 1998. Implementation of DAWG. In Proc. The Prague Stringology
Club Workshop ’98 (PSCW’98). Czech Technical University.

Blumer, Anselm, Blumer, Janet, Haussler, David, Ehrenfeucht, Andrzej,

Chen, M. T., and Seiferas, Joel. 1985. The Smallest Automaton Recognizing
the Subwords of a Text. Theoretical Computer Science 40, 31–55.

Blumer, Anselm, Blumer, Janet, Haussler, David, McConnell, Ross, and

Ehrenfeucht, Andrzej. 1987. Complete Inverted Files for Efficient Text Retrieval
and Analysis. Journal of the ACM 34, 3, 578–595.

BIDIRECT. CONST. SUFFIX TREES 17

Breslauer, Dany. 1998. The suffix tree of a tree and minimizing sequential transducers.
Theoretical Computer Science 191, 131–144.

Chen, M. T. and Seiferas, Joel. 1985. Efficient and Elegant Subword Tree construc-
tion. In Combinatorial Algorithm on Words, Volume 12 of NATO Advanced Science
Institutes, Series F. Springer-Verlag, 97–107.

Crochemore, Maxime. 1986. Transducers and Repetitions. Theoretical Computer Sci-
ence 45, 63–86.

Crochemore, Maxime and Rytter, Wojciech. 1994. Text Algorithms. Oxford Uni-
versity Press, New York.

Crochemore, Maxime and Vérin, Renaud. 1997. On Compact Directed Acyclic Word
Graphs. In Structures in Logic and Computer Science, Volume 1261 of Lecture Notes
in Computer Science. Springer-Verlag, 192–211.

Farach, M. 1997. Optimal suffix tree construction with large alphabets. In Proc. The
38th Annual Symposium on Foundations of Computer Science (FOCS’97). IEEE
Computer Society, 137–143.

Giegerich, Robert and Kurtz, Stefan. 1997. From Ukkonen to McCreight and
Weiner: A Unifying View of Linear-Time Suffix Tree Construction. Algorithmica
19, 3, 331–353.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences. Cambridge Univer-
sity Press, New York.

Inenaga, Shunsuke. 2002. Bidirectional Construction of Suffix Trees. In Proc. The
Prague Stringology Conference ’02 (PSC’02). Czech Technical University, 75–87.

Inenaga, Shunsuke, Hoshino, Hiromasa, Shinohara, Ayumi, Takeda, Masayuki,

and Arikawa, Setsuo. 2001a. On-Line Construction of Symmetric Compact Di-
rected Acyclic Word Graphs. In Proc. of 8th International Symposium on String
Processing and Information Retrieval (SPIRE’01). IEEE Computer Society, 96–110.

Inenaga, Shunsuke, Hoshino, Hiromasa, Shinohara, Ayumi, Takeda, Masayuki,

Arikawa, Setsuo, Mauri, Giancarlo, and Pavesi, Giulio. 2001b. On-Line Con-
struction of Compact Directed Acyclic Word Graphs. In Proc. 12th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM’01), Volume 2089 of Lecture Notes
in Computer Science. Springer-Verlag, 169–180.

Inenaga, Shunsuke, Shinohara, Ayumi, Takeda, Masayuki, and Arikawa, Setsuo.
2002a. Compact Directed Acyclic Graphs for a Sliding Window. In Proc. of 9th In-
ternational Symposium on String Processing and Information Retrieval (SPIRE’02),
Volume 2476 of Lecture Notes in Computer Science. Springer-Verlag, 310–324.

Inenaga, Shunsuke, Shinohara, Ayumi, Takeda, Masayuki, Bannai, Hideo, and

Arikawa, Setsuo. 2002b. Space-Economical Construction of Index Structures for
All Suffixes of a String. In Proc. of 27th International Symposium on Mathemati-
cal Foundation of Computer Science (MFCS’02), Volume 2420 of Lecture Notes in
Computer Science. Springer-Verlag, 341–352.

Maaß, Moritz G. 2000. Linear Bidirectional On-Line Construction of Affix Trees.
In Proc. 11th Annual Symposium on Combinatorial Pattern Matching (CPM’00),
Volume 1848 of Lecture Notes in Computer Science. Springer-Verlag, 320–334.

Manber, Udi and Myers, Gene. 1993. Suffix arrays: A new method for on-line string
searches. SIAM J. Compt. 22, 5, 935–948.

McCreight, Edward M. 1976. A space-economical suffix tree construction algorithm.
Journal of the ACM 23, 2, 262–272.

Stoye, Jens. 1995. Affixbäume. Master’s thesis, Universität Bielefeld.
Ukkonen, Esko. 1995. On-line Construction of Suffix Trees. Algorithmica 14, 3, 249–

260.
Weiner, Peter. 1973. Linear pattern matching algorithms. In Proc. 14th Annual Sym-

posium on Switching and Automata Theory, 1–11.

