
String Processing Algorithms

Shunsuke Inenaga

March, 2003

Abstract

The thesis describes extensive studies on various algorithms for efficient string processing.

Data available in/via computers are often of enormous size, and thus, it is significantly

important and necessary to invent time- and space-efficient methods to process them.

Most of such data are, in fact, stored and manipulated as strings.

String matching is most fundamental in string processing, where the problem is to

examine whether or not a pattern string p occurs in a text string w. There are two cases

to consider; p is fixed and w is flexible, and vise versa. In the former case, it is adequate

to employ the noble algorithm by Knuth, Morris, and Pratt that solves the problem in

O(|w|) time using O(|p|) space. The thesis, on the other hand, considers the latter case.

When w is fixed, it is natural, and ideal, to use a data structure that supports indices

of w. Such a data structure is called an index structure. A linear-spaced index structure

was first given by Weiner in 1973, named suffix trees. Suffix trees are regarded as a

compaction of suffix tries that are a basic index structure requiring quadratic space. On

the other hand minimizing suffix tries yields another type of index structure called directed

acyclic word graphs (DAWGs), which was introduced by Blumer et al. in 1985. Moreover,

by either minimizing suffix trees or compacting DAWGs gives us compact directed acyclic

word graphs (CDAWGs). CDAWGs were also invented by Blumer et al. in 1987.

In the thesis we delve in those index structures, revealing their relationships in terms

of equivalence classes on strings. After giving such theoretical characteristics of them, we

explore ingenious algorithms related to those index structures for time- and space-efficient

string processing in practice.

Particularly, we first introduce an on-line algorithm that directly constructs a CDAWG

for a single string w in O(|w|) time, and second, give its straightforward extension to a

set S of strings whose running time is O(‖S‖) where ‖S‖ denotes the total length of the

strings in S. A further, deeper analysis of the on-line algorithm gives us a generalized

i

ABSTRACT ii

algorithm capable of building, in on-line, all of the four index structures, suffix tries,

suffix trees, DAWGs, and CDAWGs. It clarifies an algorithmic unified view and reveals

correspondence between algorithms and definitions of those structures.

The generalized algorithm is then improved so that a trie structure T representing

a set S of strings can be given as an input. Except in case of constructing suffix tries

that require quadratic space, the improved algorithm runs in O(|T |) time, where |T | is

the number of nodes in the trie. The point is that we always have the inequality that

|T | ≤ ‖S‖, and the more and longer prefixes the strings in S share, the less |T | becomes.

Another context of using index structures could be employing them to support indices

for a part of a whole text w, which is the so-called sliding window mechanism. When

only a limited amount of memory is available, a sliding window is very useful and often

applied actually; e.g., in the process of on-line data stream. Another application of

sliding windows is a text compression scheme called prediction by partial matching (PPM).

Larsson proposed a linear-time algorithm for building and maintaining suffix trees for a

sliding window, and his algorithm contributed to reduce space-requirement in PPM. Since

PPM is known to be the best text-compression scheme from the viewpoint of compression

ratio, it is quite meaningful to pursue a reduction of space requirement. The thesis

indeed gives a space-economical counterpart of Larsson’s algorithm, i.e., an algorithm to

construct and maintain CDAWGs for a sliding window is given here. Our algorithm runs

in O(|w|) time with O(M) space like Larsson’s algorithm, where M is the width of the

sliding window.

Another challenging problem is to store indices of w and wrev together, where wrev

is the reversal of w. The resulting structure is called a bidirectional index structure.

Chen and Seiferas pointed out the fact that the suffix tree of w can share the same

nodes with the DAWG of wrev. In the thesis we give an on-line algorithm for building

both the suffix tree of w and the DAWG of wrev, in linear time and space. The most

space-economical bidirectional index structure ever known is symmetric compact directed

acyclic word graphs (SCDAWGs), invented by Blumer et al. in 1987. The thesis proposes

an algorithm to construct SCDAWGs on-line, in linear time, and directly.

Updating index structures to both directions, to the right and left, is also a challenging

and interesting problem indeed. Stoye invented a variant of suffix trees, called affix trees,

being more suitable for bidirectional updating. Due to the fact that the size of affix trees

is mostly larger than that of suffix tree, it could be said that Stoye’s algorithm makes

ABSTRACT iii

a sacrifice in space-requirement. As an improvement of this, the algorithm we propose

here can update suffix trees themselves to both directions. Another good feature of affix

trees is that they can also support indices of both w and wrev. However, our algorithm

can simultaneously update the suffix tree of w and the DAWG of wrev to both directions,

again saving memory space needed.

The above-mentioned topics were all about the substring pattern matching problem,

and in the following we go on to consider more intricate pattern matching problems. We

say that p is a subsequence pattern of w if p can be obtained by removing zero or more

characters from w. Episode patterns are a generalized concept of subsequence patterns: a

pair 〈p, k〉 is said to be an episode pattern of w if p is a subsequence of u such that u is a

substring of w of length less than or equal to k.

The problem considered is as follows: “Given two sets of strings, find a pattern that

is most abundant in one set and rarest in the other.” The machine discovery system

BONSAI developed by Shimozono et al. can find substring patterns that are best for the

purpose, separation of two given sets of strings. In order to improve the BONSAI system

Hirao et al. introduced a practical algorithm to find best subsequence patterns. The thesis

explores a further extension of BONSAI which is capable of discovery of best episode

patterns. The algorithm has been sped up in two ways; branch-and-bound heuristics and

the use of index structures for episode pattern matching, called episode directed acyclic

subsequence graphs (EDASGs).

Pattern matching with wildcard symbols has been studied extensively. A wildcard

� is called a variable-length-don’t-care (VLDC) symbol which matches any string, and

a pattern containing �’s is called a VLDC pattern. Since VLDC patterns are another

type of generalization of subsequence patterns, it is highly desired to invent a fast and

exact algorithm to discover VLDC patterns best for separating two given sets of strings.

A similar branch-and-bound heuristics can be employed in this case as well, but some

index structure to quickly solve the VLDC pattern matching problem was still needed.

Therefor, we created wildcard directed acyclic word graphs (WDAWGs), with which the

VLDC pattern matching problem is solvable in linear time with respect to the length

of a given pattern. We give two algorithms to build WDAWGs in time linear in the

output size. We then consider a VLDC pattern within a window that is composed of a

pair 〈q, k〉, where q is a VLDC pattern and k is a threshold value bounding the length

of the occurrence of q in w. A practical algorithm to discover the best pair 〈q, k〉 is also

ABSTRACT iv

proposed in the thesis. We also execute some computational experiments to show the

actual efficiency of our algorithms, by applying them to genomic sequences.

Acknowledgments

First and foremost, I wish to thank Prof. Ayumi Shinohara for his throughout supervision

over the past three years. His enthusiastic encouragement totally supported me, and his

apt advice guided me when I had difficulties in my research. Above all, I appreciate that

he offered me a perfect environment and situation in which I was able to fully focus on

my study.

I would also like to thank Prof. Masayuki Takeda, my second supervisor. It was he

who gave me the first research topic. His attitude towards research has been my good

model.

I would also like to express my appreciation to Prof. Setsuo Arikawa, Prof. Fumihiro

Matsuo, and Prof. Kazuaki Murakami, who are the members of the committee of my

thesis. I also thank all of those in Department of Informatics, Kyushu University, for

their generous support.

This research was partly supported by JST (Japan Science and Technology). The

results in the thesis were partially published in the proc. of CPM’01 and ’02, the proc. of

SPIRE’01 and ’02, the proc. of PSC’01 and ’02, the proc. of DS’01 and ’02, the proc. of

MFCS’02, the proc. of GIW’02, and Progress in Discovery Science. I am thankful for all

editors, committees, anonymous referees, and publishers.

I would like to express my appreciation to Prof. Wojciech Rytter and Prof. Leszek

Gasieniec. I enjoyed very much the discussion with them in my short visit to Department

of Computer Science, University of Liverpool. One of the results of the thesis was pub-

lished in the proc. of CPM’01 as a joint contribution with Giancarlo Mauri and Giulio

Pavesi from University of Milan-Bicocca. I appreciate their comments for its extended

version that is presented in the thesis. Also, I would express my thanks for all of those

with whom I had fruitful discussions at conferences.

Last, but not least, I really thank my parents for their support.

v

Contents

Abstract i

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Our Contribution . 5

1.3 Organization of the Thesis . 8

2 Preliminaries 10

2.1 Notation . 10

2.2 Equivalence Relations on Strings . 11

2.3 Graphs and Trees . 14

2.4 Deterministic Finite Automata . 15

3 Data Structures for Substring Pattern Matching 16

3.1 Suffix Tries . 17

3.2 Suffix Trees . 18

3.3 DAWGs . 19

3.4 CDAWGs . 20

3.5 Suffix Trees Redefined . 22

3.6 CDAWGs Redefined . 24

4 On-Line Construction of CDAWGs 26

4.1 On-Line Construction of Suffix Tries . 27

4.2 On-Line Construction of Suffix Trees . 29

4.3 On-Line Construction of CDAWGs . 32

vi

CONTENTS vii

5 CDAWGs for Sets of Strings 47

5.1 Construction of CDAWGs for Sets of Strings 47

5.2 Constructing the CDAWG for a Trie . 49

6 CDAWGs for a Sliding Window 57

6.1 Suffix Trees for a Sliding Window . 58

6.2 CDAWGs for a Sliding Window . 59

7 On-Line Construction of Symmetric CDAWGs 69

7.1 Bidirectional Index Structures . 71

7.2 On-Line Construction of STree(w) with DAWG(wrev) 73

7.3 On-Line Construction of SCDAWGs . 83

8 Bidirectional Construction of Suffix Trees 89

8.1 Bidirectional Construction of Suffix Trees 90

8.2 Concluding Remarks . 97

9 Generic Construction of Index Structures 99

9.1 Construction of an Index Structure for a Single String 100

9.2 Extension to a Set of Strings . 104

10 Other Pattern Matching Problems 113

10.1 Subsequence Pattern Matching . 113

10.2 Episode Pattern Matching . 114

10.3 VLDC Pattern Matching . 116

10.4 VLDC Pattern Matching within a Window 117

11 Minimum All-Suffixes DAWGs 119

11.1 All-Suffixes Directed Acyclic Word Graphs 120

11.2 On-Line Construction of MASDAWGs . 124

12 Space-Economical Construction of MASDAWGs 132

12.1 Space-Economical Construction of MASDAWGs 133

12.2 Minimum All-Suffixes Compact Directed Acyclic Word Graphs 137

12.3 Concluding Remarks . 144

CONTENTS viii

13 Pattern Discovery from String Data Sets 145

13.1 Finding Best Patterns from Sets of Strings 147

13.2 Finding Best Substring Patterns . 148

13.3 Finding Best Subsequence Patterns . 149

13.4 Finding Best Episode Patterns . 150

13.5 Finding Best VLDC Patterns . 154

13.6 Finding Best VLDC Patterns in Window 155

13.7 Computational Experiments . 156

14 Concluding Remarks and Future Perspectives 163

Bibliography 167

Chapter 1

Introduction

1.1 Background and Motivations

Due to rapid advance in information technology and global growth of computer networks,

we can utilize a large amount of data today. This benefit, on the other hand, can turn

out to be a serious matter that we have to make considerable effort in retrieving the

information we really want and need from the enormous data available. Strings are the

most fundamental form to store data in computers, and thus, string processing is the core

of various applications in computer science. Lately, vast genomic sequences have been

mostly determined, and they are about to become available to the public. Extracting

important rules or knowledge from those string data sets, what is called text mining, has

therefore attracted much attention and expectation. In order to process such huge data of

giga- or even tera-bytes in a reasonable amount of time, space-economical data structures

and fast algorithms are definitely necessary.

String matching is of central importance to string processing, and the problem is

formalized as follows: “Given a text string w and a pattern string p, examine if p occurs

in w or not.” String p is said to be a substring pattern of w if w = xpy with some strings

x, y, and the substring pattern matching problem is most fundamental in string matching.

The algorithm by Knuth, Morris and Pratt [45] is capable of solving this problem in

O(|w|) time using O(|p|) space. Their algorithm constructs an automaton of size O(|p|)
that accepts any string which contains p as a substring, and runs the deterministic finite

automaton over a given text w. Therefore, it is very useful and fast when p is fixed and w

is flexible. In the opposite case where p is flexible and w is fixed, however, their algorithm

is no longer adequate since whenever we get a new pattern p, we have to reconstruct the

1

CHAPTER 1. INTRODUCTION 2

DFA and run it over w which is often tremendously long. This implies that we should

consider the use of some data structure that supports indices of w.

The most basic index structure for text strings is suffix tries. The suffix trie for w

is a DFA that accepts all substrings of w, and thus it enables us to solve the substring

pattern matching problem in O(|p|) time. The crucial drawback is, however, that the

suffix trie requires O(|w|2) space. It was Weiner who first succeeded improving the space

requirement so as to be linear, by introducing suffix trees [77]. For any string w, its suffix

tree can be obtained by removing any node having only one out-going edge from the suffix

trie of w and concatenating the edges. We call this procedure compaction (see Figure 1.1).

The suffix tree of w is regarded as a DFA accepting all substrings of w, whose transitions

are labeled with strings. Weiner proposed an algorithm that directly constructs, for any

string w, the suffix tree of w in O(|w|) time. Later on, McCreight [55] gave a more-

space economical algorithm for construction of suffix trees. Ukkonen [73] introduced an

elegant on-line algorithm to build suffix trees, which in linear time processes a given string

from left to right, one by one. Hence his algorithm allows us to extend the input string

to the right, by adding new characters. Also, his algorithm is applicable to linear-time

construction of the suffix tree for a set S of strings. Various applications of suffix trees

can be found in the literature [16, 26, 47, 72].

Kosaraju introduced the suffix tree for a trie T that represents a set S of strings [46].

He also proposed an O(|T | log |T |) time algorithm to construct the suffix tree for T , where

|T | is the number of nodes in T . His trie T merges the suffixes of strings in S, and thus,

the more and longer suffixes the strings in S share, the less |T | becomes. Namely, we

always have the inequality |T | ≤ ‖S‖, where ‖S‖ denotes the total length of strings in S.

Breslauer [11] gave an improved algorithm to build the suffix tree of T in O(|T |) time,

which is based on Weiner’s algorithm.

Another idea for transforming the suffix trie of w into a linear-spaced index structure

is to minimize it (see Figure 1.1). The resulting structure is the smallest DFA that accepts

all suffixes of w [15], which is called the directed acyclic word graph (DAWG) of w. Blumer

et al. [9] introduced DAWGs, and they gave a linear-time algorithm to construct DAWGs,

directly and on-line. An improvement of their algorithm to build the DAWG for a given

set of strings in linear time was proposed in [10]. DAWGs have been used in several

combinatorial algorithms on strings [16, 30, 6, 74].

The duality of suffix trees and DAWGs was pointed out by Chen and Seiferas [12]:

CHAPTER 1. INTRODUCTION 3

c

o

a

o

c

o

a

a

c

o

a

o

c

o

a

a

o

c

a
o

o

c

a

o

a

c

a a

Suffix Tree

CDAWG

DAWG

minimization

minimization compaction

compaction

o

c

a

o

o

c

a

o

a

c

a a

Suffix Trie

Figure 1.1: Relationship among STrie(w), STree(w), DAWG(w), and
CDAWG(w) with w = cocoa.

the DAWG of w and the suffix tree of wrev, where wrev is the reversal of w, can share the

same nodes. To be more concrete, the suffix links of the DAWG for w can be seen as the

edges of the suffix tree for wrev. This implies that, for any input string w, constructing

the DAWG for w gives us the suffix tree for wrev as well. To the contrary, it is mentioned

in [16] that Weiner’s algorithm inherently constructs both the suffix tree of w and the

DAWG of wrev for an input string w. A data structure that supports indices of both

w and wrev is called a bidirectional index structure. One benefit of bidirectional index

structures is that after finding p in w, we can easily detect not only the right contexts of

p in w (any string y such that py is a substring of w) but also the left contexts of p in w

(any string x such that xp is a substring of w).

An interesting fact is that minimizing suffix trees and compacting DAWGs yield the

same index structure called compacted acyclic word graphs (CDAWGs) [10]. As seen in the

example of Figure 1.1, CDAWGs have less nodes than both suffix trees and DAWGs. In

practice, as well, CDAWGs occupy less memory space than suffix trees and DAWGs [10,

18]. CDAWGs are therefore very attractive, but the first CDAWG-construction algorithm

CHAPTER 1. INTRODUCTION 4

by Blumer et al. [10] was not efficient because its strategy is to construct, for a given string

w, the DAWG of w and then convert it to the CDAWG of w. That is, it runs in time linear

in the input size, but does not in time linear in the output size. Then, Crochemore and

Vérin developed an algorithm to build CDAWGs directly, without constructing DAWGs as

intermediate. Their algorithm is based on McCreight’s suffix tree construction algorithm.

CDAWGs can also serve as a bidirectional index structure, namely, two CDAWGs for

w and wrev can share the same nodes, and they are regarded as one structure called the

symmetric compact directed acyclic word graph (SCDAWG) of w. The SCDAWG of w can

be obtained in linear time, in the process of compacting the DAWG of w together with

its suffix links corresponding to the suffix tree of wrev [10].

In case that only a limited amount of memory is available, such as when processing

an on-line data stream, the sliding window mechanism is very useful and often applied

actually. Another application of sliding windows is a text compression scheme called

prediction by partial matching (PPM) [14]. Larsson proposed a linear-time algorithm for

building and maintaining suffix trees for a sliding window, and the algorithm contributed

to reduce space-requirement in PPM∗ [13]. It is based on Ukkonen’s on-line algorithm

building suffix trees on-line. Since PPM is known to be the best text-compression scheme

from the viewpoint of compression ratio, it is quite meaningful to pursue a reduction of

its space requirement.

All the structures mentioned above are automata-oriented. Another form of index

structures is arrays. Examples are suffix arrays [53], suffix cacti [44], compact suffix ar-

rays [52], and compressed suffix arrays [25, 61]. They are in general more space-economical

than those automata-oriented structures (in constant term), but they instead sacrifice

searching time. Namely, searching a text w for a pattern p by using an array takes

O(|p| + log |w|) time. Very recently, Abouelhoda et al. [1] introduced enhanced suffix

arrays, with which searching w for p can be done in O(|p|) time. However, enhanced

suffix arrays are regarded as a clever implementation of suffix trees based on arrays, and

therefore, it is not very surprising that the search can be done in linear time.

What we have discussed so far is all about the substring pattern matching problem,

and in the following we go on to consider more intricate pattern matching problems. We

say that p is a subsequence pattern of w if p can be obtained by removing zero or more

characters from w. The problem of finding a subsequence p in w is also solvable in O(|p|)
time by means of an index structure called the directed acyclic subsequence graph (DASG)

CHAPTER 1. INTRODUCTION 5

of w, invented by Baeza-Yates [5]. The DASG of w is the smallest DFA that accepts all

subsequences of w.

The introduction of advanced patterns gives us a good possibility of finding better

rules and knowledge from given data sets. The problem considered is formalized as fol-

lows: “Given two sets of strings, find a pattern that is most abundant in one set and

rarest in the other.” The two sets are often referred to positive examples and negative

examples. Using the machine discovery system BONSAI [63], we can find some knowl-

edge based on substring patterns, which is best in the sense of separating these data sets.

A practical algorithm to discover best subsequence patterns was lately given in [28]. It

was indeed installed to the BONSAI system and its practical efficiency has been proved

experimentally [27].

1.2 Our Contribution

The thesis first focuses on CDAWGs that are known to be a very space-economical index

structure for the substring pattern matching. Although a direct construction algorithm

for CDAWGs was given by Crochemore and Vérin [18], it was just an off-line algorithm,

which leads the following inefficiency: even if we have at the moment the CDAWG of w,

to get the CDAWG of wa with any character a we have to reconstruct the CDAWG from

scratch. Thus we were not allowed to update a CDAWG with a new character by using

any existing algorithms. Our new algorithm for the construction of CDAWGs, however,

performs on-line, and thus it allows us an easy and efficient update of CDAWGs. The

proposed algorithm is based on Ukkonen’s suffix tree construction algorithm, together with

some essence from Blumer’s DAWG-construction algorithm. We show that our algorithm

builds for any string w the CDAWG of w in O(|w|) time. We then slightly modify the

algorithm so as to be applicable to a set of strings. The improved algorithm is able to

construct the CDAWG for a set S of strings in O(‖S‖) time.

A further, deeper analysis of the algorithm above gives us a generalized algorithm

capable of building, on-line, all of suffix tries, suffix trees, DAWGs, and CDAWGs. All

the differences among those are packed in one function of the algorithm, and thus, all

we have to do for switching to another mode is to change the function appropriately. In

other words, the algorithm clarifies an algorithmic unified view and reveals correspondence

between algorithms and definitions of those structures.

CHAPTER 1. INTRODUCTION 6

We also consider a trie T representing a set S of strings, as an input to the CDAWG

construction algorithm. In our trie T the prefixes of strings in S are merged together,

which means, the more and longer prefixes the strings in S share, the less |T | becomes.

Therefore, also in this case, the inequality |T | ≤ ‖S‖ holds. The algorithm we propose

here is able to build the CDAWG of T in O(|T |) time. This algorithm is a combination

of our on-line algorithm for constructing CDAWGs, and the depth-first search algorithm

for T . Moreover, by applying the above-mentioned generalized algorithm to this scheme,

we can construct any of the suffix trie, the suffix tree and the DAWG for T as well.

Construction of bidirectional index structures is also discussed in the thesis. We first

give an on-line algorithm which constructs, for a given string w, the suffix tree of w and

the DAWG of wrev simultaneously, in linear time. Second, we extend this algorithm to

linear-time, on-line construction of SCDAWGs. Basically, SCDAWGs have the same range

of applications as affix trees introduced by Stoye [66, 67], and linear-time algorithm for

on-line construction of affix trees was given in [51]. Nevertheless, we have the following

fact that, for any string w, the number of nodes in the SCDAWG of w is smaller than in

the affix tree of w. Therefore, the efficient construction of SCDAWGs is still meaningful.

Another good feature of affix trees is that they can be updated to both directions, to

the right and to the left. The thesis gives its counterpart: an algorithm for bidirectional

construction of suffix trees. We also show that the algorithm performs in O(|w|) time for

any input string w. Our algorithm turns out to contribute to reducing space-requirement,

since it is known that suffix trees generally have fewer nodes than affix trees.

We then focus on the sliding window mechanism for practical string processing with a

limited amount of memory space. The thesis indeed gives a space-economical counterpart

of Larsson’s algorithm, i.e., an algorithm to construct and maintain CDAWGs for a sliding

window. This algorithm is based on our on-line algorithm to construct CDAWGs, together

with some essence from Larsson’s algorithm for suffix trees of a sliding window. Our

algorithm runs in O(|w|) time with O(M) space, where M is the width of the sliding

window used. Since CDAWGs are more space-economical than suffix trees as is mentioned,

our new approach contributes to saving memory space needed in PPM.

The thesis then goes on to consider more complex and difficult string processing. In

concrete, given two sets of strings, we consider the problem of finding episode patterns [54]

that are most common to one set and most uncommon to the other. Episode patterns

are a generalized concept of subsequence patterns: a pair 〈p, k〉 is said to be an episode

CHAPTER 1. INTRODUCTION 7

pattern of w if p is a subsequence of u such that u is a substring of w of length less than or

equal to k. We present a practical algorithm to discover the best pair 〈p, k〉. The ingenious

point of our algorithm is that the threshold value k is not given beforehand, that is, it also

computes the best value of k for each possible pattern p. Thus, the search space for this

problem is Σ∗ ×N , where Σ is the alphabet used and N the set of real numbers. What

should be emphasized here is that, nevertheless, we can cleverly restrict the search space

to the same as that in finding best subsequence p only. Moreover, we employ heuristics for

pruning the search tree, inspired by Morishita and Sese [58]. The matching phase of the

algorithm is sped up by the use of episode directed acyclic subsequence graphs (EDASGs)

introduced by Trońıček [70]. The EDASG of w is an index structure with two kinds of

edges, one corresponding to the edges of the DASG of w and the other the DASG of wrev.

Pattern matching with wildcard symbols has been studied extensively, for the purpose

of more flexible and useful pattern matching. A wildcard � is called a variable-length-

don’t-care (VLDC) symbol which matches any string, and a pattern containing �’s is called

a VLDC pattern. VLDC patterns are another type of generalization of subsequence pat-

terns; e.g., finding subsequence pattern abc exactly corresponds to finding VLDC pattern

�a�b�c�, where a, b, c ∈ Σ. Thus, it is highly desired to invent a fast and exact algorithm

to discover VLDC patterns best for separating two given sets of strings. A similar pruning

heuristics can be employed in this case as well, but some index structure to quickly solve

the VLDC pattern matching problem was still needed. Therefor, we present a new index

structure called wildcard directed acyclic word graphs (WDAWGs), with which any VLDC

pattern p can be found in O(|p|) time.

A careful observation reveals that the WDAWG of w is inherently composed of the

DAWGs for all suffixes of w. The collection of all these DAWGs is called the naive

all-suffixes directed acyclic word graph of w, shortly the naive ASDAWG of w, and its

minimized version is called the minimum all-suffixes directed acyclic word graph (MAS-

DAWG) of w. The MASDAWG of w can therefore be constructed by applying the DAG-

minimization algorithm [60] to the naive ASDAWG of w, but also, we give a non-trivial

algorithm to construct the MASDAWG of w directly, in time linear in the output size.

We also propose another novel algorithm for more space-economical construction of MAS-

DAWGs. Then, we introduce the all-suffixes version for CDAWGs, named minimum all-

suffixes compact directed acyclic word graphs (MASCDAWGs). An algorithm which builds

the MASCDAWG for a given w is also presented, and we show it runs in linear time with

CHAPTER 1. INTRODUCTION 8

respect to the output size as well.

We then consider a VLDC pattern within a window that is composed of a pair 〈p, k〉,
where p is a VLDC pattern and k is a threshold value bounding the length of the occur-

rence of p in w. This is a generalization of episode patterns. A practical algorithm to

discover, from two given sets of strings, the best pair 〈p, k〉 is also proposed in the thesis.

We also execute some computational experiments on genomic sequences, which convince

us the actual efficiency of the algorithm.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2 we define some notations, and introduce several properties on strings

together with equivalence classes on strings. Chapter 3 is devoted to definitions of several

index structures such as suffix tries, suffix trees, DAWGs and CDAWGs, in which we will

delve in the following chapters.

In Chapter 4 we present an on-line algorithm that constructs the CDAWG for a given

string. We will prove that the proposed algorithm runs in linear time for any string. An

extension of this algorithm for construction of the CDAWG for a set of strings is given

in Chapter 5, which performs in time linear in the total length of strings in the set. We

improve it so as to build the CDAWG for a trie that represents a set of strings. It will

be proven that the algorithm runs in time proportional to the number of nodes in the

input trie. Chapter 6 presents an algorithm which constructs and maintain CDAWGs

under the sliding window mechanism. We show that CDAWGs for a sliding window can

be maintained with linear space with respect to the window size given, and in linear time

in the length of a given string.

In Chapter 7 we study bidirectional index structures. We give an on-line and linear-

time algorithm which, simultaneously, construct the suffix tree of a given string and the

DAWG of the reversed string. Moreover, we propose an on-line algorithm for building

SCDAWGs, which runs in linear time. An algorithm for bidirectional construction of

suffix trees is introduced in Chapter 8. There, we will show its linearity and correctness

as well.

In Chapter 9, we give a generic algorithm for construction of the index structures for

substring pattern matching. Namely, the algorithm is capable of constructing suffix tries,

CHAPTER 1. INTRODUCTION 9

suffix trees, DAWGs, and CDAWGs, only by changing one function.

Chapter 10 is devoted to introduction of more advanced pattern matching problems

such as subsequence pattern matching, episode pattern matching, VLDC pattern match-

ing. We give several efficient algorithms for solving those pattern matching problems.

In Chapter 11 we introduce a new data structure called MASDAWGs, which are

essentially the same as WDAWGs with which VLDC pattern matching is quickly solvable.

We give a lower-bound of the size of WDAWGs. Another two applications of MASDAWGs

can be found in this chapter. Also, we introduce an on-line algorithm for constructing the

MASDAWG of a given string, which runs in time linear in the output size. Moreover, in

Chapter 12 we present a space-economical algorithm which builds MASDAWGs. Then,

we introduce a new data structure called MASCDAWGs, which require less memory space

than MASDAWGs. We give an algorithm that constructs MASCDAWGs, and show it

runs in time linear in the output size.

In Chapter 13 we give several algorithms for pattern discovery from given string data

sets. We first present an efficient algorithm to find the best episode patterns for the

purpose of separating two given sets of strings. We secondly give a practical algorithm

that exactly finds the best VLDC patterns to distinguish two given sets of strings. Finally,

we show some experimental results to evaluate the actual efficiency of our algorithms.

Chapter 2

Preliminaries

2.1 Notation

Let N be the set of integers. Let Σ be a finite alphabet. An element of Σ∗ is called a

string. Let x be a string such that x = a1a2 · · ·an where n ≥ 1 and ai ∈ Σ for 1 ≤ i ≤ n.

The length of x is n and denoted by |x|, that is, |x| = n. If n = 0, x is said to be the empty

string. It is denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗−{ε}. Let y be a string such that

y = b1b2 · · · bm where m ≥ 1 and bj ∈ Σ for 1 ≤ j ≤ m. Then, string a1a2 · · ·anb1b2 · · · bm

is said to be the concatenation of x and y, and denoted by x · y, or simply, by xy. For any

string x ∈ Σ∗,

xε = εx = x.

Strings x, y, and z are said to be a prefix, substring, and suffix of string w = xyz,

respectively. The sets of prefixes, substrings, and suffixes of a string w are denoted by

Prefix (w), Substr(w), and Suffix (w), respectively.

Let w be a string and |w| = n. The i-th character of w is denoted by w[i] for 1 ≤ i ≤ n,

and the substring of w that begins at position i and ends at position j is denoted by w[i : j]

for 1 ≤ i ≤ j ≤ n. Let w[i :] = w[i : |w|] for 1 ≤ i ≤ n+1. For convenience, let w[i : j] = ε

for j < i. The reversed string of w, w[n] · · ·w[2]w[1], is denoted by wrev.

For a set S of strings w1, w2, . . . , w�, let |S| denote the cardinality of S, namely, |S| = �.

We denote by ‖S‖ the total length of strings in S, that is,

‖S‖ =

�∑
k=1

|wk|.

10

CHAPTER 2. PRELIMINARIES 11

The sets of prefixes, substrings, and suffixes of the strings in S are denoted by

Prefix (S), Substr(S), and Suffix (S), respectively.

Definition 1 Let S = {w1, . . . , wk} where wi ∈ Σ∗ for 1 ≤ i ≤ k and k ≥ 1. We say

that S has the prefix property iff wi /∈Prefix (wj) for any 1≤ i �=j≤ k.

2.2 Equivalence Relations on Strings

Let S ⊆ Σ∗. For any string x ∈ Σ∗, let Sx−1 = {u | ux ∈ S} and x−1S = {u | xu ∈ S}.

Definition 2 Let w ∈ Σ∗. The equivalence relations ≡L
w and ≡R

w on Σ∗ are defined by

x ≡L
w y ⇔ Prefix (w)x−1 = Prefix (w)y−1,

x ≡R
w y ⇔ x−1Suffix (w) = y−1Suffix (w).

The equivalence class of a string x ∈ Σ∗ with respect to ≡L
w (resp. ≡R

w) is denoted by [x]L
w

(resp. [x]R
w
).

Note that all strings that are not in Substr(w) form one equivalence class under ≡L
w.

This equivalence class is called the degenerate class. All other classes are called non-

degenerate. Similar arguments hold for ≡R
w.

Example 1 Let w = abcbc. For example, b ≡L
w bc since Prefix (w)b−1 = Prefix (w)(bc)−1

= {abc, a}.
All non-degenerate equivalence classes under ≡L

w are [ε]L
w

= {ε}, [b]L
w

= {bc, b}, [a]L
w

=

{abcbc, abcb, abc, ab, a}, [bcb]L
w

= {bcbc, bcb}, [c]L
w

= {c}, and [cb]L
w

= {cbc, cb}.

Example 2 Let w = abcbc. For example, c ≡R
w bc since c−1Suffix (w) = (bc)−1Suffix (w)

= {bc, ε}.
All non-degenerate equivalence classes under ≡R

w are [ε]R
w

= {ε}, [a]R
w

= {a}, [ab]R
w

=

{ab}, [abc]R
w

= {abc}, [b]R
w

= {b}, [c]R
w

= {bc, c}, [cb]R
w

= {abcb, bcb, cb}, and [cbc]L
w

=

{ababc, bcbc, cbc}.

Proposition 1 (Blumer et al. [10]) Let w ∈ Σ∗ and x, y ∈ Substr(w). If x ≡L
w y, then

either x is a prefix of y, or vice versa. If x ≡R
w y, then either x is a suffix of y, or vice

versa.

CHAPTER 2. PRELIMINARIES 12

Proof. By the definition of ≡L
w, we have Prefix (w)x−1 = Prefix (w)y−1. There are three

cases to consider:

(1) When |x| = |y|. Obviously, x = y in this case. Thus x ∈ Prefix (y) and y ∈ Prefix (x).

(2) When |x| > |y|. Let u be an arbitrary string in Prefix (w). Assume u = sx with

s ∈ Σ∗. Then s ∈ Prefix (w)x−1, which results in s ∈ Prefix (w)y−1. Hence, there

must exist a string v ∈ Prefix (w) such that v = sy. By the assumption that |x| > |y|,
we have |u| > |v|. From the fact that both u and v are in Prefix (w), it is derived

that v ∈ Prefix (u). Consequently, y ∈ Prefix (x).

(3) When |x| < |y|. By a similar argument to Case (2), we have x ∈ Prefix (y).

The case of ≡R
w is proved similarly. �

Definition 3 For any string x ∈ Substr(w),
w−→x (resp.

w←−x) denotes the longest member

of [x]L
w

(resp. [x]R
w
). We call

w−→x (resp.
w←−x) the representative of [x]L

w
(resp. [x]R

w
).

What
w−→x (resp.

w←−x) means intuitively is that
w−→x (resp.

w←−x) is the string obtained by

extending x in [x]L
w

(resp. [x]R
w
) as long as possible. The following proposition states that

each equivalence class in ≡L
w (≡R

w) other than the degenerate class has a unique longest

member.

Proposition 2 (Blumer et al. [10]) Let w ∈ Σ∗. For any string x ∈ Substr(w), there

uniquely exist two strings α, β ∈ Σ∗ such that
w−→x = xα and

w←−x = βx.

Proof. Let
w−→x = xα with α ∈ Σ∗. For a contradiction, assume there exists a string

γ ∈ Σ∗ such that
w−→x = xγ and γ �= α. By Proposition 1, either xα ∈ Prefix (xγ) or

xγ ∈ Prefix (xα) must stand, since xα ≡L
w xβ. However, neither of them actually holds

since |α| = |γ| and α �= γ, which yields a contradiction. Hence, α is the only string

satisfying
w−→x = xα. The case of

w←−x = βx can be proven similarly. �

Proposition 3 Let w ∈ Σ∗ and x ∈ Substr(w). Assume
w−→x = x. Then, for any y ∈

Suffix (x),
w−→y = y.

Proof. Assume contrarily that there uniquely exists a string α ∈ Σ+ such that
w−→y = yα.

Since y ∈ Suffix (x), x is always followed by α in w. It implies that Prefix (w)x−1 =

Prefix (w)(xα)−1, and therefore we have x ≡L
w xα. Since |α| > 0,

w−→x is not the longest in

[x]Lw, which is a contradiction. Hence,
w−→y = y. �

CHAPTER 2. PRELIMINARIES 13

Analogously, we have:

Proposition 4 Let w ∈ Σ∗ and x ∈ Substr(w). Assume
w←−x = x. Then, for any y ∈

Prefix (x),
w←−y = y.

Proof. By Proposition 3. �

Proposition 5 Let w ∈ Σ∗. For any string x ∈ Suffix (w),
w−→x = x. Symmetrically, for

any string y ∈ Prefix (w),
w←−y = y.

Proof. By Proposition 2 there uniquely exists a string α ∈ Σ∗ such that
w−→x = xα. Since

x ∈ Suffix (w), α = ε. It is similarly proven that, letting
w←−y = βy with β ∈ Σ∗, we have

β = ε. �

Definition 4 For any string x ∈ Substr(w), let
w←→x be the string βxα (α, β ∈ Σ∗) such

that
w−→x = xα and

w←−x = βx.

What
w←→x = βxα implies is that:

(1) every time x occurs in w ∈ S, it is preceded by β and followed by α within w.

(2) α and β are the longest strings satisfying (1).

Definition 5 Let x, y ∈ Σ∗. We write x ≡w y if,

1. x, y ∈ Substr(w) and
w←→x =

w←→y , or

2. x /∈ Substr(w) and y /∈ Substr(w).

The equivalence class of a string x ∈ Σ∗ with respect to ≡w is denoted by [x]w.

For any string x ∈ Substr(w),
w←→x is the unique longest member of [x]w, and is called the

representative of [x]w.

Example 3 Let w = abcbc. For example, ab ≡w bcb since
w←→
ab =

w←→
bcb = abcbc.

All non-degenerate equivalence classes under ≡w are [ε]w = {ε}, [b]w = {bc, b, c}, and

[a]w = {abcbc, abcb, abc, ab, a, bcbc, bcb cbc, cb}.

Lemma 1 (Blumer et al. [10]) The equivalence relation ≡w is the transitive closure of

the relation ≡L
w ∪ ≡R

w.

CHAPTER 2. PRELIMINARIES 14

It follows from the lemma above that

Corollary 1 For any string x ∈ Substr(w),

w←→x =

w−−→
(

w←−x) =

w←−−
(

w−→x).

Note that, for a string w ∈ Σ∗, |Substr(w)| = O(|w|2). For example, consider string

anbn. However, considering set S = {x | x ∈ Substr(w) and x =
w−→x }, we have |S| =

O(|w|) for any w ∈ Σ∗. Similar arguments hold with
w←−x and

w←→x . The following lemma

gives tighter upper-bounds.

Lemma 2 (Blumer et al. [9, 10]) Assume that |w| > 1. The number of the non-

degenerate equivalence classes in ≡L
w (or ≡R

w) is at most 2|w| − 1. The number of the

non-degenerate equivalence classes in ≡w is at most |w|+ 1.

2.3 Graphs and Trees

Let V be a finite set of nodes. Let E be a finite set of edges, namely, a set of pairs of

nodes. Then G = (V, E) is said to be a directed graph.

In a directed graph G = (V, E), the sequence of nodes u0, u1, . . . , un is called a path if

(ui−1, ui) ∈ E for each i (1 ≤ i ≤ n). The depth of the path is n. A path with u0 = un is

called a cycle. If G has no cycles, it is called a directed acyclic graph (DAG, for short).

An edge (u, v) is said to be an out-going edge of u and an in-coming edge of v. The

number of in-coming (resp. out-going) edges of a node u is said to be the in-degree (resp.

out-degree) of u.

A directed graph T with the following properties is called a tree.

- There uniquely exists a node of in-degree zero in T . It is called the root node.

- For any node u in T , there uniquely exists a path from the root node to u.

If (u, v) is an edge of T , then u is said to be a parent node of v, and v is said to be a

child node of u. Any node in a tree other than the root node has its unique parent node.

A node of out-degree zero is called a leaf node. A node that is neither the root node nor

a leaf node is called an internal node. If there is a path from a node u to a node v, u is

said to be an ancestor of v, and v is said to be a descendant of u.

CHAPTER 2. PRELIMINARIES 15

2.3.1 Tries

We here consider an edge-labeled tree T = (V, E) with E ⊆ V × Σ+ × V where the

second component of each edge represents its label. Let S be a set of strings. The tree

representing all strings in S is called the trie and denoted by Trie(S).

Definition 6 Trie(S) is the tree (V, E) such that

V = {x | x ∈ Prefix (S)},
E = {(x, a, xa) | x, xa ∈ Prefix (S) and a ∈ Σ}.

If S has the prefix property, each string in S is represented by a leaf node in Trie(S).

In some cases it is favorable that all strings in S are associated with leaf nodes of Trie(S).

In such case, we consider the set S ′ such that

S ′ = {wi$i | wi ∈ S and $i /∈ Σ for 1 ≤ i ≤ |S|}.

For any set S of strings, S ′ has the prefix property. Hence every string in S ′ is represented

by a leaf node in Trie(S ′).

2.4 Deterministic Finite Automata

A deterministic finite automaton (DFA for short) is a quintuplet M = (Q, Σ, δ, q0, F) with

the following components:

Q is a non-empty set. Its elements are called states.

Σ is an alphabet.

δ is a function Q× Σ→ Q. It is called the state-transition function.

q0 ∈ Q is the initial state.

F is a subset of Q. Its elements are called accepting states.

We extend the state-transition function δ : Q×Σ→ Q to δ̂ : Q×Σ∗ → Q, as follows.{
δ̂(q, ε) = q (q ∈ Q)

δ̂(q, xa) = δ(δ̂(q, x), a) (q ∈ Q, a ∈ Σ, x ∈ Σ∗)

Let w be an arbitrary string in Σ∗. If δ̂(q0, w) ∈ F , we say that w is accepted by DFA M .

We can examine in O(|w|) time whether or not w is accepted by DFA M .

Chapter 3

Data Structures for Substring

Pattern Matching

The substring matching problem is the most fundamental and important problem in string

processing. The problem is defined as follows:

Definition 7 (Substring Pattern Matching Problem)

Instance: text w ∈ Σ∗ and pattern p ∈ Σ∗.

Determine: whether p is a substring of w.

The algorithm by Knuth, Morris and Pratt [45] is capable of solving the above prob-

lem in O(|w|) time using O(|p|) space. Namely, their algorithm constructs a DFA that

accepts any string which contains p as a substring, and runs the DFA over a given text w.

Therefore, it is very useful and fast when p is fixed and w is flexible. In the opposite case

where p is flexible and w is fixed, however, their algorithm is no longer adequate since

whenever we get a new pattern p, we have to reconstruct the DFA and run it over the

same string w which is often tremendously long. This implies that we should consider the

use of some data structure that supports indices of w.

In this chapter of the thesis, we give definitions of data structures such as suffix tries,

suffix trees, directed acyclic word graphs (DAWGs), and compact directed acyclic word

graphs (CDAWGs). The suffix trie, the suffix tree, the DAWG, and the CDAWG of string

w ∈ Σ∗ are denoted by STrie(w), STree(w), DAWG(w), and CDAWG(w), respectively.

The language recognized by any of these data structures is Substr(w), and therefore,

they can serve as index structures with which the substring pattern matching problem is

solvable in O(|p|) time for any given pattern p.

16

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 17

oc

o

c

c

o

o

oc

o

c

c

o

o

a

a

a

a

a

Figure 3.1: STrie(coco) on the left, and STrie(cocoa) on the right. The solid
arrows represent the edges, and the dotted arrows denote the suffix
links.

We define them as edge-labeled graphs (V, E) with E ⊆ V × Σ+ × V . We also define

the suffix links of each index structure. Suffix links are kinds of failure function often

utilized for time-efficient construction of the index structures [55, 73, 9, 10, 18].

3.1 Suffix Tries

Definition 8 STrie(w) is the tree (V, E) such that

V = {x | x ∈ Substr(w)},
E = {(x, a, xa) | x, xa ∈ Substr(w) and a ∈ Σ},

and its suffix links are the set

F = {(ax, x) | x, ax ∈ Substr(w) and a ∈ Σ}.

Note that STrie(w) is a DFA that accepts all strings in Substr(w). Moreover, observe

that STrie(w) = Trie(Suffix (w)). The root node of STrie(w) corresponds to ε. When

Suffix (w) − {ε} has the prefix property, every string in Suffix (w) − {ε} is represented

by a leaf node in STrie(w). STrie(coco) and STrie(cocoa) are displayed in Figure 3.1

together with their suffix links.

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 18

o
c

o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Figure 3.2: STree(coco) on the left, and STree(cocoa) on the right. The solid
arrows represent the edges, and the dotted arrows denote the suffix
links.

3.2 Suffix Trees

Definition 9 STree(w) is the tree (V, E) such that

V = {
w−→x | x ∈ Substr(w)},

E = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

and its suffix links are the set

F = {(
w−→ax,

w−→x) | x, ax ∈ Substr(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

The root node of STree(w) is associated with
w−→ε = ε. If Suffix (w)−{ε} has the prefix

property, every string in Suffix (w)− {ε} is represented by a leaf node in STree(w).

Remark that the node set of STree(w) is a subset of that of STrie(w), as seen in

the definitions. It means that a string in Substr(w) might be represented on an edge

in STree(w). In this case, we say that the string is represented on an implicit node.

Conversely, every string in the node set V of STree(w) is said to be represented in an

explicit node. For example, in STree(coco) of Figure 3.2, string c is represented on an

implicit node, while string co is on an explicit node. STree(w) can be seen as the com-

pacted version of STrie(w) with “
w−→
(·) operation”. Compare STrie(cocoa) in Figure 3.1

and STree(cocoa) in Figure 3.2. STree(cocoa) can be obtained by removing any inter-

nal nodes of out-degree one from STrie(cocoa), and the suffix links associated with the

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 19

removed nodes are also deleted. However, this approach cannot derive STree(coco) from

STrie(coco) (see Figure 3.1 and Figure 3.2). That is, even if a node
w−→x is of out-degree

one in STrie(w), it is not removed if
w−→x ∈ Suffix (w).

The following theorem follows from Definition 9 and Lemma 2.

Theorem 1 (McCreight [55]) Let STree(w) = (V, E). Assume |w| > 1. Then |V | ≤
2|w| − 1 and |E| ≤ 2|w| − 2.

3.3 DAWGs

Definition 10 DAWG(w) is the directed acyclic graph (V, E) such that

V = {[x]R
w
| x ∈ Substr(w)},

E = {([x]R
w
, a, [xa]R

w
) | x, xa ∈ Substr(w) and a ∈ Σ},

and its suffix links are the set

F = {([ax]R
w
, [x]R

w
) | x, ax ∈ Substr(w), a ∈ Σ, and [ax]R

w
�= [x]R

w
}.

The node [ε]Rw = {ε} is called the source node of DAWG(w). For any w ∈ Σ∗ there

uniquely exists a node of out-degree zero in DAWG(w). This node is called the sink node

of DAWG(w), and corresponds to [w]R
w
.

Definition 11 Let [x]Rw be a node of DAWG(w). The length of the node is the length of

the representative of [x]Rw, namely, |
w←−x |.

The length of node [x]Rw is denoted by length([x]Rw).

Definition 12 Assume ([x]R
w
, a, [y]R

w
) is an edge of DAWG(w), where a ∈ Σ, w ∈ Σ∗, and

x, y ∈ Substr(w). If length([y]R
w
) = length([x]R

w
) + |a| = length([x]R

w
) + 1, the edge is said

to be solid. Otherwise, it is said to be non-solid.

For example, in DAWG(w) of Figure 3.3 where w = coco, edge ([c]R
w
, o, [co]R

w
) is solid,

whereas edge ([ε]R
w
, o, [co]R

w
) is non-solid.

As seen in the definition, each node of DAWG(w) is a non-degenerate equivalence class

with respect to ≡R
w . See STrie(cocoa) in Figure 3.1. Observe that, by ‘merging’ isomor-

phic subtrees of STrie(w) according to the equivalence classes under ≡R
w , DAWG(cocoa)

is obtained. In this sense, DAWG(w) can be seen as the minimized version of STrie(w)

with “[(·)]Rw operation”. In fact, we have the following theorem.

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 20

o

c

o

c

o

o

c

o

c

o

a

a

a

Figure 3.3: DAWG(coco) on the left, and DAWG(cocoa) on the right. The solid
arrows represent the edges, and the dotted arrows denote the suffix
links.

Theorem 2 (Crochemore [15]) For any w ∈ Σ∗, DAWG(w) is the smallest DFA that

recognizes all suffixes of w.

Suppose that ax is the shortest member of [ax]R
w
, for some character a ∈ Σ and string

x ∈ Substr(w). Then the suffix link of node [ax]R
w

of DAWG(w) points to the node [x]R
w

(for example, see nodes [oco]R
w

and [co]R
w

of DAWG(cocoa) in Figure 3.3).

The following theorem follows from Definition 10 and Lemma 2.

Theorem 3 (Blumer et al. [9]) Let DAWG(w) = (V, E). Assume |w| > 1. Then

|V | ≤ 2|w| − 1 and |E| ≤ 3|w| − 3.

3.4 CDAWGs

Definition 13 CDAWG(w) is the directed acyclic graph (V, E) such that

V = {[
w−→x]Rw | x ∈ Substr(w)},

E = {([
w−→x]Rw, aβ, [

w−→xa]Rw) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

and its suffix links are the set

F = {([
w−→ax]Rw, [

w−→x]Rw) | x, ax ∈ Substr(w), a ∈ Σ,
w−→ax = a ·

w−→x , and [
w−→x]Rw �= [

w−→ax]Rw}.

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 21

o
c

o

c
o

o
c

o

c

o

a

a

a

Figure 3.4: CDAWG(coco) on the left, and CDAWG(cocoa) on the right. The
solid arrows represent the edges, and the dotted arrows denote the
suffix links.

The node [
w−→ε]Rw = ε is called the source node, and the node [

w−→w]Rw, which is of out-degree

zero, is called the sink node of CDAWG(w). Notice there is a one-to-one correspondence

between [
w−→x]Rw and

w←→x according to Corollary 1.

Definition 14 Let [
w−→x]Rw be a node of CDAWG(w). The length of the node is

∣∣∣
w←−−

(
w−→x)

∣∣∣ =

|
w←→x |.

The length of node [
w−→x]Rw is denoted by length([

w−→x]Rw).

Definition 15 Assume ([
w−→x]R

w
, α, [

w−→y]R
w
) is an edge of CDAWG(w), where α, w ∈ Σ∗, and

x, y ∈ Substr(w). If length([
w−→y]R

w
) = length([

w−→x]R
w
) + |α|, the edge is said to be solid.

Otherwise, it is said to be non-solid.

In CDAWG(w) of Figure 3.4, where w = coco, edge ([
w−→ε]R

w
, co, [

w−→co]R
w
) is solid, while edge

([
w−→ε]R

w
, o, [

w−→co]R
w
) is non-solid.

It follows from the definitions that CDAWG(w) is the minimization of STree(w) with

“[(·)]R
w

operation”. In fact, CDAWG(cocoa) in Figure 3.4 can be obtained by ‘merging’

the isomorphic subtrees of STree(cocoa) according to the equivalence classes under ≡R
w.

Similarly, CDAWG(w) can also be seen as the compaction of DAWG(w) with “
w−→
(·) oper-

ation”. Indeed CDAWG(cocoa) is obtained by compacting edges of DAWG(cocoa) in

Figure 3.3 due to the equivalence classes under ≡L
w.

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 22

oc
o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Figure 3.5: STree ′(coco) on the left, and STree ′(cocoa) on the right. The solid
arrows represent the edges, and the dotted arrows denote the suffix
links.

Suppose that ay =
w−→ax is the shortest member of [

w−→ax]R
w

for some character a ∈ Σ and

strings x, y ∈ Substr(w). Then the suffix link of node [
w−→ax]R

w
points to the node [y]R

w
, where

y =
w−→y .

The following theorem follows from Definition 13 and Lemma 2.

Theorem 4 (Blumer et al. [10], Crochemore and Vérin [18])

Let CDAWG(w) = (V, E). Assume |w| > 1. Then |V | ≤ |w|+ 1 and |E| ≤ 2|w| − 2.

3.5 Suffix Trees Redefined

For any string w ∈ Σ∗, let STree ′(w) denote the tree obtained by removing all internal

nodes of out-degree one from STree(w). As seen in Figure 3.5, nodes
w−→co and

w−→o in

STree(coco) are omitted in STree ′(coco) together with their suffix links. Ukkonen’s

suffix tree construction algorithm [73] builds STree ′(w), not STree(w). The following

preparation is necessary for a formal definition of STree ′(w).

We introduce a relation Xw over Σ∗ such that

Xw =
{
(x, xa)

∣∣x ∈ Substr(w) and a ∈ Σ is unique such that xa ∈ Substr(w)
}
,

and let ≡′L
w be the equivalence closure of Xw, i.e., the smallest superset of Xw that is

symmetric, reflexive, and transitive.

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 23

Proposition 6 For any string w ∈ Σ∗, ≡L
w is a refinement of ≡′L

w.

Proof. Let x, y be any strings in Substr(w) and assume x ≡L
w y. According to Propo-

sition 1, we firstly assume that x ∈ Prefix (y). It follows from Proposition 2 that there

uniquely exist strings α, β ∈ Σ∗ such that
w−→x = xα and

w−→y = yβ. Note that β ∈ Suffix (α).

Let γ ∈ Σ∗ be the string satisfying α = γβ. Then γ is the sole string such that xγ = y. By

the definition of≡′L
w, we have x≡′L

w y. A similar argument holds in case that y ∈ Prefix (x).

�

Corollary 2 For any w ∈ Σ∗, every equivalence class under ≡′L
w is a union of one or

more equivalence classes under ≡L
w.

The equivalence class of a string x ∈ Σ∗ with respect to ≡′L
w is denoted by [x]′L

w
.

Example 4 Let w = abcbc. All equivalence classes in ≡′L
w are [ε]′L

w
= {ε}, [a]′L

w
=

{abcbc, abcb, abc, ab, a}, [b]′L
w

= {bcbc, bcb, bc, b}, and [c]′L
w

= {cbc, cb, c}.

Note the differences between the above example and Example 1 with respect to ≡L
w.

The longest member of [x]′L
w

is denoted by
w

=⇒
x . We are now ready to define STree ′(w).

Definition 16 STree ′(w) is the tree (V, E) such that

V = {
w

=⇒
x | x ∈ Substr(w)},

E = {(
w

=⇒
x , aβ,

w
=⇒
xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ,

w
=⇒
x �=

w
=⇒
xa},

and its suffix links are the set

F = {(
w

=⇒
ax,

w
=⇒
x) | x, xa ∈ Substr(w), a ∈ Σ,

w
=⇒
ax = a ·

w
=⇒
x }.

Remark that STree ′(w) can be obtained by replacing
w−→
(·) in STree(w) with

w
=⇒
(·).

From here on, we explore some relationships between
w−→
(·) and

w
=⇒
(·).

Lemma 3 Let w ∈ Σ∗. For any x ∈ Substr(w),
w−→x is a prefix of

w
=⇒
x . If

w−→x �=
w

=⇒
x , then

w−→x ∈ Suffix (w).

Proof. We can prove that
w−→x ∈ Prefix (

w
=⇒
x) by Proposition 1 and Corollary 2. Now

suppose
w−→x �=

w
=⇒
x . Let

w−→x = xβ with β ∈ Σ+. Supposing
w

=⇒
x = xα with α ∈ Σ+, we have

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 24

β ∈ Prefix (α). Let βγ = α with γ ∈ Σ∗. By the assumption
w−→x �=

w
=⇒
x , we have xβ �≡L

w xα,

although γ is the sole string that follows
w−→x in w since

w
=⇒
x = xα = xβγ =

w−→x · γ. This

means that x is a suffix of w followed by no character. �

See Example 1 and Example 4 to confirm the above lemma.

Lemma 4 Let w ∈ Σ∗ and x ∈ Suffix (w). If x /∈ Prefix (y) for any string y ∈ Substr(w)−
{x}, then

w−→x =
w

=⇒
x .

Proof. The precondition implies that there is no character a ∈ Σ satisfying xa ∈
Substr(w). Thus we have

w
=⇒
x = x. On the other hand, we obtain

w−→x = x by Proposition 5,

because x ∈ Suffix (w). Hence
w−→x =

w
=⇒
x . �

The following corollary gives a sufficient condition so that STree ′(w) = STree ′(w).

Corollary 3 Let w ∈ Σ∗. If Suffix (w) − {ε} has the prefix property, STree ′(w) =

STree(w).

Indeed, STree(cocoa) in Figure 3.2 and STree ′(cocoa) in Figure 3.5 are the same, where

Suffix (cocoa) has the prefix property. According to the above corollary, using an end-

marker $ that occurs nowhere in w, we have STree(w$) = STree ′(w$) for any w ∈ Σ∗.

3.6 CDAWGs Redefined

Similar to STree ′(w), for any string w ∈ Σ∗, CDAWG ′(w) has no internal node of out-

degree one.

Definition 17 CDAWG ′(w) is the directed acyclic graph (V, E) such that

V = {[
w

=⇒
x]R

w
| x ∈ Substr(w)},

E = {([
w

=⇒
x]R

w
, aβ, [

w
=⇒
xa]R

w
) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ, and

w
=⇒
x �=

w
=⇒
xa},

and its suffix links are the set

F = {([
w

=⇒
ax]Rw, [

w
=⇒
x]Rw) | x, ax ∈ Substr(w), a ∈ Σ,

w
=⇒
ax = a ·

w
=⇒
x , and [

w
=⇒
x]Rw �= [

w
=⇒
ax]Rw}.

As in case of STree ′(w) and STree(w), the above definition equals the one obtained by

substituting “
w−→
(·) operation” with “

w
=⇒
(·) operation” in Definition 13 for CDAWG ′(w).

CHAPTER 3. DATA STRUCTURES FOR SUBSTRING PATTERN MATCHING 25

o
c

o

c

o

c

o

o
c

o

c

o

a

a

a

Figure 3.6: CDAWG ′(coco) on the left, and CDAWG ′(cocoa) on the right. The
solid arrows represent the edges, and the dotted arrows denote the
suffix links.

Corollary 4 Let w ∈ Σ∗. If Suffix (w) − {ε} has the prefix property, CDAWG ′(w) =

CDAWG(w).

Remark that CDAWG ′(cocoa) in Figure 3.6 and CDAWG(cocoa) in Figure 3.4 are the

same, where Suffix (cocoa) has the prefix property. Again, it derives from the above

corollary that, using an end-marker $, we have CDAWG ′(w$) = CDAWG(w$) for any

w ∈ Σ∗.

Chapter 4

On-Line Construction of CDAWGs

In this chapter we focus our attention on compact directed acyclic word graphs (CDAWGs)

introduced by Blumer et al. [10]. Crochemore and Vérin showed a relationship among

suffix tries, suffix trees, DAWGs, and CDAWGs [18]. Suffix trees (resp. DAWGs) are the

compacted (resp. minimized) version of suffix tries, as shown in Figure 1.1. Similarly,

CDAWGs can be obtained by either compacting DAWGs or minimizing suffix trees. This

implies that CDAWGs have less nodes than the other three index structures.

Not only in theory as stated above, but also in practice, CDAWGs provide significant

reductions of the memory space required by suffix trees and DAWGs, as experimental re-

sults have shown in [10, 18]. In bioinformatics a considerable amount of DNA sequences

has to be processed efficiently, both in space and time. Therefore, from a practical view-

point, CDAWGs could also play an important role in bioinformatics.

The first algorithm to construct CDAWG(w) for a given string w was presented in [9].

It once builds DAWG(w), then removes every node of out-degree one and modifies its edges

accordingly, so that the resulting structure becomes CDAWG(w). It runs in liner time,

but its main drawback is the construction of the DAWG as an intermediate structure,

which takes larger space. A solution to this matter was provided by Crochemore and

Vérin [18]: a linear-time algorithm to construct CDAWGs directly. Their algorithm is

based on McCreight’s suffix tree construction algorithm [55]. Both algorithms are off-

line, that is, the whole input string has to be known beforehand. Thus, the structure

(suffix tree or CDAWG) has to be rebuilt from scratch, when a new character is added to

the input string. Table 4.1 summarizes some properties of typical algorithms to construct

index structures. As seen there, a missing piece was an on-line algorithm for constructing

CDAWGs.

26

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 27

Index Structure Algorithm linear time on-line set of strings

suffix tries Ukkonen [73] —
√ √

suffix trees
Weiner [77]

McCreight [55]
Ukkonen [73]

√
√
√ √ √

DAWGs
Blumer et al. [9]
Blumer et al. [10]

√
√

√
√ √

CDAWGs
Blumer et al. [10]

Crochemore and Vérin [18]
Inenaga et al. [39]

√
√
√ √

√

√

Table 4.1: The properties of algorithms for construction of index structures.

In this chapter, we present a new linear-time algorithm which, for a given string w,

directly constructs CDAWG ′(w). It is based on Ukkonen’s algorithm that constructs

STree ′(w) in linear time [73]. Our algorithm is on-line: it processes the characters of

the input string from left to right, one by one, with no need to know the whole string

beforehand. Our algorithm would be more efficient than the one in [18], in the sense

that our algorithm allows us to update the input string. Furthermore, we show that the

algorithm can be easily applied to building the CDAWG for a set of strings. The CDAWG

for a set of strings can be constructed by the algorithm given in [10] which compacts the

DAWG for the set. However, the drawback of this approach is that, when a new string

is added to the set, the DAWG has to be rebuilt from scratch. Instead, our algorithm

permits us the addition of a new string to the set.

This result primarily appeared in [39].

4.1 On-Line Construction of Suffix Tries

The on-line CDAWG construction algorithm we will give later on is based on Ukkonen’s

on-line suffix tree construction algorithm [73]. Moreover, Ukkonen’s algorithm is based

on an intuitive on-line algorithm that constructs suffix tries.

For a string x ∈ Substr(w), let suf (x) denote the node reachable via the suffix link

of the node x. It derives from Definition 8 that suf (x) = y for some y ∈ Substr(w) such

that x = ay for some character a ∈ Σ. For the case that x = ε, let suf (ε) =⊥ where ⊥ is

an auxiliary node called the bottom node. We suppose that there exists an edge (⊥, Σ, ε),

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 28

where the symbol Σ here means every character in the alphabet. We assume the ⊥ node

corresponds to the eliminator ξ defined below.

Definition 18 For any a ∈ Σ, we define the eliminator ξ by

aξ = ξa = ε

and |ξ| = −1. We define that ξ ∈ Prefix (ε) and ξ ∈ Suffix (ε), but ξ /∈ Prefix (x) and

ξ /∈ Suffix (x) for any x ∈ Σ+.

The edge (⊥, Σ, ε) is now consistently defined as well as other edges, since ξa = ε for any

a ∈ Σ. The auxiliary node ⊥ allows us to formalize the algorithm avoiding the distinction

between the empty suffix and other non-empty suffixes (in other words, between the root

node and other nodes). We leave suf (⊥) undefined.

The algorithm reads a given string w ∈ Σ∗ from left to right, while building STrie(w[1 :

i]) for 1 ≤ i ≤ |w|. It is easy to construct STrie(w[1 : i + 1]) by updating STrie(w[1 : i]).

What is necessary here is to insert suffixes of w[1 : i + 1] into STrie(w[1 : i]).

Definition 19 Let a ∈ Σ and u ∈ Σ∗. The longest repeated suffix (LRS) of ua is the

longest element of set Substr(u) ∩ Suffix (ua).

It is guaranteed that the LRS always exists for any string u ∈ Σ∗ since the empty string ε

belongs to set Substr(u) ∩ Suffix (ua) for any character a ∈ Σ. The LRS of au is denoted

by LRS (ua).

The suffixes of w[1 : i + 1] can be divided into the following two groups, by LRS (w[1 :

i + 1]).

(1) Suffixes w[h : i + 1] for 1 ≤ h ≤ j where LRS (w[j + 1 : i + 1]) = w[1 : i + 1].

(2) Suffixes w[h′ : i + 1] for j + 1 ≤ h′ ≤ i + 2.

The group (2) is empty in case that LRS (w[1 : i + 1]) = ε, that is, in case j + 1 = i + 2.

There is no need to newly insert any suffixes in the group (2), simply because they

have already been represented in STree ′(w[1 : i]). The algorithm creates a new node

corresponding to LRS (w[h : i + 1]) for each h (1 ≤ h ≤ j), together with a new edge

(w[h : i], w[i + 1], w[h : i + 1]), by traversing suf (w[h : i]) to move to the next node

w[h − 1 : j]. When it finds the node corresponding to LRS (w[j + 1 : i]), the algorithm

stops and the update is then completed. The node with respect to LRS (w[j + 1 : i + 1])

is called the end point of STrie(w[1 : i + 1]).

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 29

c

Σ

c

oc

o

Σ

co

oc

o

c

c

Σ

coc

oc

o

c

c

o

o

Σ

coco

a
oc

o

c

c

o

o

a

a

a

a

Σ

cocoa

Σ

ε

Figure 4.1: On-line construction of STrie(w) with w = cocoa.

The on-line construction of STrie(cocoa) is shown in Figure 4.1.

Unfortunately, STrie(w) cannot be constructed in O(|w|) time, since it requires O(|w|2)
space. Still, we have the following theorem.

Theorem 5 (Ukkonen [73]) Assume Σ is a fixed alphabet. For any string w ∈ Σ∗,

STrie(w) can be constructed on-line and in linear time and space with respect to the

output size.

4.2 On-Line Construction of Suffix Trees

In this section we firstly summarize Ukkonen’s suffix tree construction algorithm in the

comparison with the previous suffix trie algorithm. Figure 4.2 shows the on-line construc-

tion of STree ′(cocoa). Focus on the update of STree ′(co) to STree ′(coc). Differently

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 30

from that of STrie(co) to STrie(coc), the edges leading to leaf nodes are automatically

extended with the new character c in STree ′(coc). This is feasible by the idea so-called

open edges.

See the first and second steps of the update of STree ′(coco) to STree ′(cocoa). The

gray star mark indicates the active point from which a new edge is created in each step.

After the new edge (co, a, coa) is inserted, the active point moves to the implicit node

for string o. In case of the suffix trie, it is possible to move there by traversing the suffix

link of node co. However, there is yet to be the suffix link of node co in the suffix tree.

Thereof, Ukkonen’s algorithm simulates the traversal of the suffix link as follows: First, it

goes up to the explicit parent node ε of node co which has its own suffix link. After that,

it moves to the bottom node ⊥ via the suffix link of the root node, and then advances

along the path spelling out co. Note that the string co corresponds to the label of the

edge the active point went up backward. This way, in Ukkonen’s algorithm the active

point moves via ‘implicit’ suffix links. Since suffix links of leaf nodes are never utilized in

Ukkonen’s algorithm, it does not create any of them.

4.2.1 Ukkonen’s Algorithm

Ukkonen’s on-line suffix tree construction algorithm is based on the on-line algorithm to

build suffix tries recalled in Section 4.1. As stated in Definition 16, an edge of STree ′(w) is

labeled by a string α ∈ Substr(w). The key to achieve a linear-space implementation of the

suffix tree is to label the edge (
w

=⇒
x , α,

w
==⇒
xα) in STree ′(w) by (k, p), such that w[k : p] = α.

An implicit node y ∈ Substr(w), where
w

=⇒
y �= y, can be represented by a pair (

w
=⇒
x , α)

of an explicit node
w

=⇒
x and a string α ∈ Substr(w) such that y =

w
=⇒
x · α. The pair (

w
=⇒
x , α)

is called a reference pair for the implicit node y. Note that explicit nodes can also be

represented by reference pairs. There can be more than one reference pair for y. The

reference pair (
w

=⇒
x , α) for y in which |α| is minimized is called the canonical reference pair

for y. The reference pair can also be written as (
w

=⇒
x , (k, p)) such that w[k : p] = α.

Ukkonen’s algorithm reads a given string w ∈ Σ∗ from left to right, while building

STree ′(w[1 : i]) for 1 ≤ i ≤ |w|. Suppose that we from now on update STree ′(w[1 : i]) to

STree ′(w[1 : i+1]). The group (1) of the suffixes of w[1 : i+1], mentioned in the previous

section, can moreover be divided into two as follows by integer j′.

(1-a) Suffixes w[l : i + 1] for 1 ≤ l ≤ j′ where w[j′ + 1 : i] is the LRS of w[1 : i].

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 31

(1-b) Suffixes w[� : i + 1] for j′ + 1 ≤ � ≤ j.

We remark that all the suffixes of the group (1-a) are those represented by leaf nodes in

STree ′(w[1 : i]). Note that, for any l,

w[1:i]
====⇒
w[l : i] = w[l : i] and

w[1:i+1]
=======⇒

w[l : i + 1] = w[l : i + 1]. That

is, intuitively, every leaf node of STree ′(w[1 : i]) is also a leaf node in STree ′(w[1 : i + 1]).

This fact is crucial to Ukkonen’s algorithm in order that it automatically inserts those in

the group (1-a) into STree ′(w[1 : i + 1]), by means of open edges.

Suppose that (
w[1:i]
=⇒
x , α,

w[1:i]
==⇒
xα) is an edge of STree ′(w[1 : i]) where

w[1:i]
==⇒
xα is a leaf node.

Letting k be the integer such that w[k : i] = α, it is feasible to label the edge by (k,∞).

This way we need no explicit insertion of the suffixes of w[1 : i + 1] in the group (1-a).

The location from which a suffix w[� : i+1] with respect to the group (1-b) is inserted

is called the active point of STree ′(w[1 : i + 1]). The active point for w[1 : i + 1] begins at

the node w[j′ + 1 : i], where w[j′ + 1 : i] is the end point of STree ′(w[1 : i]). Assume we

are now inserting suffix w[� : i + 1] into STree ′(w[1 : i]), where j′ + 1 ≤ � ≤ j. There are

two cases to consider for the active point.

(Case 1) The active point is on an explicit node w[� : i]. In this case,

w[1:i]
====⇒
w[� : i] =

w[1:i+1]
====⇒
w[� : i] = w[� : i].

Let x = w[� : i]. In this case a new edge (
w[1:i+1]
==⇒
x , α,

w[1:i+1]
===⇒
xα) is created, where α =

w[i+1 : i+1]. Note
w[1:i+1]
===⇒
xα = w[� : i+1]. The edge is actually labeled by (i+1,∞).

After that, the active point moves to the explicit node suf (
w[1:i+1]
==⇒
x), corresponding to

w[�− 1 : i], in order to insert the next suffix w[�− 1 : i + 1].

(Case 2) The active point is on an implicit node w[� : i]. In this case,

w[1:i]
====⇒
w[� : i] �= w[� : i] but

w[�:i+1]
====⇒
w[� : i] = w[� : i].

Let (
w[1:i]
=⇒
x , α) be the canonical reference pair for the active point, namely,

w[1:i]
=⇒
x · α =

w[� : i]. Focus on the edge (
w[1:i]
=⇒
x , αβ,

w[1:i]
==⇒
xαβ) where β �= ε. The edge is replaced by

the edges (
w[1:i+1]

=⇒
x , α,

w[1:i+1]
==⇒
xα) and (

w[1:i+1]
==⇒
xα , β,

w[1:i+1]
===⇒
xαβ) where

w[1:i+1]
==⇒
xα is a new explicit node.

Then a new edge (
w[1:i+1]
==⇒
xα , γ,

w[1:i+1]
===⇒
xαγ) is created, where γ = w[i + 1 : i + 1]. Note

w[1:i+1]
===⇒
xαγ = w[� : i + 1]. The edge is actually labeled by (i + 1,∞).

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 32

After that, we need to move to the (implicit or explicit) node corresponding to

w[�− 1 : i], the next active point, but the table suf is yet to be computed for the

new node
w[1:i+1]
==⇒
xα . Thus we once move to its parent node

w[1:i+1]
=⇒
x for which suf (

w[1:i+1]
=⇒
x)

must have already been computed. Let suf (
w[1:i+1]

=⇒
x) =

w[1:i+1]
=⇒
y , where there exists some

character a such that
w[1:i+1]

=⇒
x = a ·

w[i+1]
=⇒
y . Note that

w[1:i+1]
=⇒
y ·α = w[�−1 : i]. We go down

from the node
w[1:i+1]

=⇒
y with spelling out α, to obtain the canonical reference pair for

the active point w[� − 1 : i]. The node w[�− 1 : i] either is already, or will in this

step become, explicit. The value of suf (
w[1:i+1]
==⇒
xα) is then set to w[�− 1 : i]. This way

the algorithm ‘simulates’ the suffix-link-traversal of suffix tries.

Figure 4.2 shows the on-line construction of STree ′(cocoa).

A pseudo-code for Ukkonen’s algorithm is shown in Fig 4.3. There, function canonize

is a routine to canonize a given reference pair. Function check end point is one that

returns true if a given reference pair is the end point, and false otherwise. Function

split edge splits an edge into two, by creating a new explicit node at the position to which

the given reference pair corresponds.

Theorem 6 (Ukkonen [73]) Assume Σ is a fixed alphabet. For any string w ∈ Σ∗,

STree ′(w) can be constructed on-line and in O(|w|) time, using O(|w|) space.

4.3 On-Line Construction of CDAWGs

Before delving into the technical detail of the algorithm for on-line construction of CDAWGs,

we informally describe how a CDAWG is built on-line. See Figure 4.4 that shows the

on-line construction of CDAWG ′(cocoa), in comparison with Figure 4.2 displaying the

on-line construction of STree ′(cocoa). Compare CDAWG ′(co) and STree ′(co). While

strings co and o are separately represented in STree ′(co), they are in the same node in

CDAWG ′(co). The destination of any open edge of a CDAWG is all the same, the sink

node. Open edges of a CDAWG are also automatically extended, as well as those of a

suffix tree (see CDAWG ′(coc) and CDAWG ′(coco)).

Focus on the first step of the update of CDAWG ′(coco) to CDAWG ′(cocoa). String

co there gets to be explicitely represented, and at the second step the active point is

on implicit node o. In case of the construction of STree ′(cocoa), edge (ε, ocoa, ocoa)

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 33

oc
o

c

c

o

o

a

a
a

Σ

o
c
o

Σ

co

c

Σ

c

Σ

ε

o
c

o

c

c

o

o

a

a
a

a

Σ

a
o

c
o

c

c

o

o

a

a
a

a

Σ

o
c
o
c

c

Σ

coc

oc

o

c

c

o

o

Σ
coco

o
c

o

c

c

o

o

a

a

Σ

cocoa

Figure 4.2: On-line construction of STree ′(w) with w = cocoa. The star repre-
sents the active point for each step.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 34

Algorithm for on-line construction of STree ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes root and ⊥;
2 for j := 1 to m do create edge (⊥, (−j,−j), root);
3 suf (root) := ⊥;
4 (s, k) := (root , 1); i := 0;
5 repeat
6 i := i + 1;
7 (s, k) := update(s, (k, i));
8 until w[i] = $;

function update(s, (k, p)): pair of integers;
/* (s, (k, p − 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p− 1), c) do
3 if k ≤ p− 1 then r := split edge(s, (k, p − 1)); /* implicit case. */
4 else r := s; /* explicit case. */
5 create node r′; create edge (r, (p,∞), r′);
6 if oldr �= nil then suf (oldr) := r;
7 oldr := r;
8 (s, k) := canonize(suf (s), (k, p− 1));
9 if oldr �= nil then suf (oldr) := s;

10 return canonize(s, (k, p));

function check end point(s, (k, p), c): boolean;
1 if k ≤ p then /* implicit case. */
2 let (s, (k′, p′), s′) be the w[k]-edge from s;
3 return (c = w[k′ + p− k + 1]);
4 else return (there is a c-edge from s);

function canonize(s, (k, p)): pair of node and integers;
1 if k > p then return (s, k); /* explicit case. */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 while p′ − k′ ≤ p− k do
4 k := k + p′ − k′ + 1; s := s′;
5 if k ≤ p then find the w[k]-edge (s, (k′, p′), s′) from s;
6 return (s, k);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by edges (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′);
4 return r;

Figure 4.3: Ukkonen’s on-line algorithm for constructing suffix trees.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 35

Σ

o
c

o

c

o

c

o

Σ

ε

Σ

o
c

o

c

o

c

o

a
a

Σ

o

c
o

c

o

a

a

c

o

a

Σ

o
c

o

c

o

a

a

Σ

o
c

o

c

o

a

a

a

Σ

o
c

o

c
c

coc

Σ

o
c

o

co

c

Σ

c

coco cocoa

Figure 4.4: On-line construction of CDAWG ′(w) with w = cocoa. The star
mark represents the active point for each step.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 36

is split into two edges (ε, o, o) and (o, coa, ocoa), and then an open edge (o, a, oa) is

newly created. However, in case of the CDAWG, edge (ε, ocoa, ocoa) is redirected to

node co, and the label is simultaneously modified accordingly. Since strings co and o

are equivalent under the equivalent relation ≡R
cocoa, they are merged into a single node in

CDAWG ′(cocoa).

4.3.1 The Algorithm

The algorithm presented in this section for on-line construction of CDAWGs behaves

similarly to Ukkonen’s algorithm. Let u = w[1 : i] and ua = w[1 : i + 1], namely,

a = w[i + 1]. The difference between them is summarized as follows.

- All the suffixes in the group (1) are equivalent under ≡R
ua. Thus all of them are

represented in the sink node [
ua
=⇒
ua]R

ua
. Namely, the destinations of the open edges are

all the same. According to this property, we can generalize the idea of open edges

as follows. For any open edge (s, (k,∞), t) of CDAWG ′(w) where t denotes the sink

node [
ua
=⇒
ua]Rua, we actually implement it as (s, (k, e), t) where e is a global variable that

denotes |ua|. Thus, when a new character added after u, we can extend all open

edges only with increasing the value of e by 1. Obviously, it only takes O(1) time.

- Consider (Case 2). There can be integers �1, �2 with j′ + 1 ≤ �1 < �2 ≤ j such

that w[�1 : i] ≡R
ua w[�2 : i]. In such case, they are merged into a single explicit node

[

ua
=====⇒
w[�1 : i]]R

ua
, during the update of CDAWG ′(u) to CDAWG ′(ua). The equivalence

test is performed on the basis of Lemma 5 to be given in the sequel.

- Consider strings x, y ∈ Substr(u) such that
u

=⇒
x = x and

u
=⇒
y = y. Assume that

x ≡R
u y, that is, they are represented in the same explicit node [x]R

u
in CDAWG ′(u).

Note that, however, x, y might not be equivalent under ≡R
ua. When CDAWG ′(u)

is updated to CDAWG ′(ua), then the node has to be separated into two nodes

[x]R
ua

and [y]R
ua

. Since this node separation happens only when x /∈ Suffix (ua) but

y ∈ Suffix (ua), we can do this procedure after we find the end point. The condition

of the node separation will be given later on, in Lemma 6.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 37

Merging Implicit Nodes.

As mentioned above, it can happen that two or more nodes implicit in CDAWG ′(u)

are merged into one explicit node in CDAWG ′(ua). As a concrete example, we show

in Figure 4.6 the snapshot of the conversion of CDAWG ′(u) into CDAWG ′(ua) with

u = abcabcab and a = a.

It can be observed that the implicit nodes for abcab, bcab, and cab are merged into

a single explicit node, and the implicit nodes for ab and b are also merged into another

single explicit node. The examination whether to merge implicit nodes can be done by

testing the equivalence of two nodes under the equivalence relation ≡R
ua. The equivalence

test can be performed on the basis of the following proposition and lemma.

Proposition 7 Let x ∈ Substr(w) for a string w, and let z =
w←→x . Then, string x occurs

within string z exactly once.

Lemma 5 Let w ∈ Σ∗. For any strings x, y ∈ Substr(w) with y ∈ Suffix (x),

x ≡R
w y ⇔ [

w−→x]R
w

= [
w−→y]R

w
.

Proof. If x ≡R
w y, we have

w←−x =
w←−y by Definition 3. By Corollary 1, we know

w−−→
(

w←−x) =

w←−−
(

w−→x) and

w−−→
(

w←−y) =

w←−−
(

w−→y), which yield

w←−−
(

w−→x) =

w←−−
(

w−→y). Again by Definition 3, we have

[
w−→x]R

w
= [

w−→y]R
w
.

Conversely, suppose [
w−→x]R

w
= [

w−→y]R
w
. Recall that

w←→x =

w←−−
(

w−→x) by Corollary 1 and

w←−−
(

w−→x) is

the unique longest member of [
w−→x]Rw. Similarly,

w←→y is the unique longest member of [
w−→y]Rw.

Thus we have
w←→x =

w←→y . Let z =
w←→x =

w←→y . Then z = αxβ for some strings α and β.

Since y is a suffix of x, there exists a string δ such that x = δy. We thus have z = αδyβ.

This occurrence of y in z must be the only one due to Proposition 7. Since
w←→y = αδyβ,

we conclude that every occurrence of y within w must be preceded by δ. Thus we have

x ≡R
w y. �

For any string x ∈ Substr(w), the equivalence class [
w−→x]Rw is the closest explicit child of

the node for x in CDAWG(w). Thus we can test the equivalence of two suffixes x, y of w

with Lemma 5.

The matter is that, for a string v ∈ Suffix(w), the node
w−→v might not be explicit in

CDAWG ′(w). Namely, on the equivalence test, we might refer to the node [
w

=⇒
x]R

w
instead

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 38

b
a
b

c
a
b

c
a
b

c
a
b

c
a
b
a

c
a
b
a

c
a
b
a

a

aa

a a

b
a
b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c
a

b

c

a
b

b

a

c
a

b

b

c

a

b

a

a

a
c

c

a

a

b

b

b

a

c

c

a

b

b

b

a

c

c

a

b

b

a

Figure 4.5: Comparison of conversions. One is from STree ′(u) to STree ′(ua),
while the other is from CDAWG ′(u) to CDAWG ′(ua) for u =
abcabcab and a = a. The black circles represent implicit nodes
to be merged in the next step, connected by implicit suffix links
corresponding to the traversal by the active point.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 39

Σ

c

c

a

a

b

b

b

a

c

c

a

b

b

b

a

c

c

a

b

b

a

abcabcab abcabcaba

Σ

c

c

a

a

b

b

b

a

c

c

a

b

b

b

a

c

c

a

b

b

a

a
a

a

Σ

c

c

a

a

b

b

b

a

c

c

a

b

b

b

a

c

c

a

b

b

a

a

a

aa

Σ

c

c

a

a

b

b

b

a

c
a

b

b

c

c

a

b

b

a

a

a
a

Σ

c

c

a

a

b

b

b

a

c
a

b

b

c

a

b

a

a

Σ

c

c

a

a

b

b

b

a

c
a

b

b

c

a

b

a

a

a

Σ

c

a
b

b

a

c
a

b

b

c

a

b

a

a

a

Σ

c

a

b

b

a

c
a

b

b

c

a

b

a

a

a

Figure 4.6: Detailed conversion from CDAWG ′(u) to CDAWG ′(ua) for u =
abcabcab and a = a.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 40

of [
w−→x]R

w
. Nevertheless, it does not actually happen in our on-line manner in which suffixes

are processed in decreasing order of their length.

See CDAWG ′(u) shown on the right of Figure 4.5, where u = abcabcab. The black

points are the implicit nodes the active point traverses in the next step via ‘implicit’

suffix links. In CDAWG ′(u), [

u
==⇒
cab]R

u
= [

u
=⇒
ab]R

u
= [

u
=⇒
u]R

u
. However, in CDAWG ′(ua), cab �≡R

ua

ab where a = a. See Figure 4.6 in which the detail of the update of CDAWG ′(u) to

CDAWG ′(ua) is displayed. Notice that there is no trouble on merging the implicit nodes.

Separating Explicit Nodes.

When CDAWG ′(u) is updated to CDAWG ′(ua), an explicit node [
u

=⇒
x]R

u
with x ∈ Substr(u)

might be separated into two explicit nodes [
ua
=⇒
x]Rua and [

ua
=⇒
y]Rua if x /∈ Suffix (ua), y ∈

Suffix (x), and y ∈ Suffix (ua). It is inherently the same ‘phenomenon’ as the node sepa-

ration occurring in the on-line construction of DAWGs [9]. Therefor we briefly recall the

essence of the node separation of DAWGs. For u ∈ Σ∗ and a ∈ Σ, ≡R
ua is a refinement of

≡R
u . Furthermore, we have the following lemma.

Lemma 6 (Blumer et al. [9]) Let u ∈ Σ∗ and a ∈ Σ. Let z be the LRS of ua. For a

string x ∈ Substr(u), assume x =
u←−x . Then,

[x]Ru =

{
[x]R

ua
∪ [z]R

ua
, if z ∈ [x]R

u
and x �= z;

[x]Rua, otherwise.

As stated in the above lemma, we need only to care about the node [x]Ru where z ∈ [x]Ru

and z is the LRS of ua. Namely only one node can be separated when a DAWG is

updated with a new character added. If z =
u←−x , the node is not separated (the latter

case). If z �=
u←−x , it is separated into two nodes [x]R

ua
and [z]R

ua
when DAWG(u) is updated

to DAWG(ua) (the former case). We examine whether z =
u←−x or not by checking the

length of
u←−x and z, as follows. Let y ∈ Substr(u) be the string such that

u←−y · a = z. Note

that there then exists an edge ([y]R
u
, a, [x]R

u
). Then,

z =
u←−x ⇔ length([y]Ru) + |a| = length([x]Ru), and

z �=
u←−x ⇔ length([y]Ru) + |a| < length([x]Ru).

If we define the length of the bottom node ⊥ by −1, no contradiction occurs even in case

that z = ε.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 41

Σ

o

c

o

c

o

a

a

a

cocoa cocoao

Σ

o

c

o

a

a

o

c

o
a a

c

Figure 4.7: The update of DAWG(u) to DAWG(ua), where u = cocoa and
a = o.

Figure 4.7 shows the conversion from DAWG(u) to DAWG(ua) with u = cocoa and

a = a. The LRS of the string cocoao is o, therefore we focus on edge ([ε]Ru , o, [o]Ru). Since

length([ε]Ru) + |o| = 1 < length([o]Ru) = 2, node [o]Ru is separated into two nodes [co]Rua and

[o]Rua, as shown in Figure 4.7.

Now we go back to the update of CDAWG ′(u) to CDAWG ′(ua). The test of whether

to separate a node when a CDAWG is updated can also be done on the basis of Lemma 6

in the very similar way. Since only explicit nodes can be separated, we merely need to

care about the case that z =
ua
=⇒
z where z is the LRS of ua. It is not difficult to establish

the following lemma.

Lemma 7 Let w ∈ Σ∗. Assume the LRS of w is z. Then, if z =
w

=⇒
z ,

w
=⇒
x =

w−→x for any

string x ∈ Substr(w).

This lemma guarantees that the representative of [
u

=⇒
x]R

u
is equal to

u←→x if the preconditions

in the lemma are satisfied. We can therefore execute the node separation test as follows:

If z =
u←→x , the node [x]R

u
is not separated (the latter case). If z �=

u←→x , it is separated

into two nodes [x]R
ua

and [z]R
ua

when CDAWG ′(u) is updated to CDAWG ′(ua) (the former

case). We examine if z =
u←→x or not by the length of

u←→x and z in the following way. Let

y ∈ Substr(u) be the string such that
u←→y · α = z for some string α ∈ Substr(u). Note

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 42

Σ

o
c

o

c

o

a

a

a

cocoa cocoao

Σ

o
c

o

c
o
a

a

a
o

o

o
c

o
a
o

a
o

Figure 4.8: The update of CDAWG ′(u) to CDAWG ′(ua), where u = cocoa and
a = o.

that there then exists an edge ([y]R
u
, α, [x]R

u
). Then,

z =
u←→x ⇔ length([y]Ru) + |α| = length([x]Ru), and

z �=
u←→x ⇔ length([y]Ru) + |α| < length([x]Ru).

Figure 4.8 shows the update of CDAWG ′(u) to CDAWG ′(ua), where u = cocoa and

a = o. The LRS of the string cocoao is o, therefore we focus on edge ([
u

=⇒
ε]Ru , o, [

u
=⇒
o]Ru).

Since length([
u

=⇒
ε]R

u
) + |o| = 1 < length([

u
=⇒
o]R

u
) = 2, node [

u
=⇒
o]R

u
is separated into two nodes

[
ua
=⇒
co]Rua and [

ua
=⇒
o]Rua, as shown in Figure 4.8.

Pseudo-Code.

The algorithm is described in Figure 4.9 and Figure 4.10. Function extension returns the

explicit child node of a given node (implicit or explicit). Function redirect edge redirects

a given edge to a given node, with modifying the label of the edge accordingly. Function

split edge is the same as the one used in Ukkonen’s algorithm, except that it also computes

the length of nodes. Function separate node separates a given node into two, if necessary.

It is essentially the same as the separation procedure for DAWG(w) given by Blumer et

al. [9], except that implicit nodes are also treated.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 43

Algorithm for on-line construction of CDAWG ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . , w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes source , sink , and ⊥;
2 for j := 1 to m do create a new edge (⊥, (−j,−j), source);
3 suf (source) := ⊥;
4 length(source) := 0; length(⊥) := −1;
5 e := 0; length(sink) := e;
6 (s, k) := (source , 1); i := 0;
7 repeat
8 i := i + 1; e := i; /* e is a global variable. */
9 (s, k) := update(s, (k, i));

10 until w[i] = $;

function update(s, (k, p)): pair of node and integers;
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p − 1), c) do
3 if k ≤ p− 1 then /* implicit case */
4 if s′ = extension(s, (k, p− 1)) then
5 redirect edge(s, (k, p− 1), r);
6 (s, k) := canonize(suf (s), (k, p − 1));
7 continue;
8 else
9 s′ := extension(s, (k, p− 1));

10 r := split edge(s, (k, p − 1));
11 else /* explicit case */
12 r := s;
13 create edge (r, (p, e), sink);
14 if oldr �= nil then suf (oldr) := r;
15 oldr := r;
16 (s, k) := canonize(suf (s), (k, p − 1));
17 if oldr �= nil then suf (oldr) := s;
18 return separate node(s, (k, p));

Figure 4.9: Main routine, function update, and function check end point of
the on-line algorithm to construct CDAWGs.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 44

function extension(s, (k, p)): node;
/* (s, (k, p)) is a canonical reference pair. */
1 if k > p then return s; /* explicit case */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 return s′;

function redirect edge(s, (k, p), r);
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 replace the edge by edge (s, (k′, k′ + p− k), r);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by edges (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′);
4 length(r) := length(s) + (p− k + 1);
5 return r;

function separate node(s, (k, p)): pair of node and integer;
1 (s′, k′) := canonize(s, (k, p));
2 if k′ ≤ p then return (s′, k′); /* implicit case */
3 /* explicit case */
4 if length(s′) = length(s) + (p− k + 1) then return (s′, k′); /* solid case */
5 /* non-solid case */
6 create node r′ as a duplication of s′; /* with the out-going edges of s′ */
7 suf (r′) := suf (s′); suf (s′) := r′;
8 length(r′) := length(s) + (p− k + 1);
9 repeat

10 replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
11 (s, k) := canonize(suf (s), (k, p − 1));
12 until (s′, k′) �= canonize(s, (k, p));
13 return (r′, p + 1);

Figure 4.10: Other functions for the on-line algorithm to construct CDAWGs.
Since function check end point and function canonize used here
are identical to those shown in Fig. 4.3, they are omitted.

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 45

Complexity of the Algorithm.

Theorem 7 Assume Σ is a fixed alphabet. For any string w ∈ Σ∗, the proposed algorithm

constructs CDAWG ′(w) on-line and in O(|w|) time, using O(|w|) space.

Proof. The linearity proof is in a sense the combination of the one of the on-line

algorithm for DAWGs [9] and the one of the on-line algorithm for suffix trees [73]. We

divide the time requirement into two components, both turn out to be linear. The first

component consists of the total computation time by canonize. The second component

consists of the rest.

Let x ∈ Substr(w). We define the suffix chain started at x on w, denoted by SCw(x),

to be the sequence of (possibly implicit) nodes reachable via suffix links from the (possibly

implicit) node associated with x to the source node in CDAWG ′(w), as in [9]. We define its

length by the number of nodes contained in the chain, and let |SCw(x)| denote it. Let k1 be

the number of iterations of the while loop of update and let k2 be the number of iterations

in the repeat-until loop in separate node, when CDAWG(w) is updated to CDAWG(wa).

By a similar argument in [9], it can be derived that |SCwa(wa)| ≤ |SCw(w)|−(k1+k2)+2.

Initially |SCw(w)| = 1 because w = ε, and then it grows at most two (possibly implicit)

nodes longer in each call of update. Since |SCw(w)| decreases by an amount proportional

to the sum of the number of iterations in the while loop and in the repeat-until loop on

each call of update, the second time component is linear in the length of the input string.

For the analysis of the first time component we have only to consider the number of

iterations in the while loop in canonize. By concerning the calls of canonize executed in

the while loop in update, it results in that the total number of the iterations is linear (by

the same argument in [73]). Thus we shall consider the number of iterations of the while

loop in canonize called in separate node. There are two cases to consider:

1. When the end point is on an implicit node. Then the computation in canonize takes

only constant time.

2. When the end point is on an explicit node. Let z be the LRS of w, which corresponds

to the end point. Consider the last edge in the path spelling out z from the source

node to the explicit node, and let the length of its label be k (≥ 1). The total

number of iterations of the while loop of canonize in the call of separate node is

at most k. Since the value of k increases at most by 1 each time a new character

CHAPTER 4. ON-LINE CONSTRUCTION OF CDAWGS 46

is scanned, the time requirement of the while loop of canonize in separate node is

bounded by the total length of the input string.

As a result of the above discussion, we can finally conclude that the first and second

components take overall linear time. �

Chapter 5

CDAWGs for Sets of Strings

5.1 Construction of CDAWGs for Sets of Strings

In the previous chapter we discussed on-line construction of index structures for a single

string w ∈ Σ∗. On the other hand, we now consider such case that we are given a set S

of strings as an input. The suffix trie, suffix tree, DAWG, and CDAWG for S can all be

well-defined. Any index structure for S must represent all strings in Substr(S).

Blumer et al. [10] introduced DAWGs for sets of strings, and presented an algorithm

that builds DAWG(S) in O(‖S‖) time. They also introduced CDAWGs for sets of strings.

Their algorithm for construction of CDAWG(S) runs in linear time in the input size

(namely, in O(‖S‖) time), but not in time linear in the output size because it first builds

DAWG(S) and then converts it to CDAWG(S) by deleting internal nodes of out-degree

one and concatenating their edges accordingly. Kosaraju [46] introduced the suffix tree for

set S of strings, often referred to the generalized suffix tree for S. A slight modification

of Ukkonen’s algorithm recalled in Section 4.2 is capable of constructing STree ′(S) in

O(‖S‖) time.

In this section, we give the first algorithm which builds CDAWG ′(S) in O(‖S‖) time,

and directly. Let S = {w1, w2, . . . , wk}, where k = |S|. Then we consider set S ′ = {wi$i |
wi ∈ S and $i /∈ Substr(S) for 1 ≤ i ≤ |S|}. Notice that S ′ has the prefix property, and

thus, CDAWG ′(S ′) = CDAWG(S ′) for any S. CDAWG ′(S ′) can be constructed by a

slight modification of the algorithm proposed in the previous section. We use a global

variable ei for each string in S ′, where 1 ≤ i ≤ |S|, which indicates the ending position

of open edges for each string. We treat S ′ like a single sequence t = w1$1w2$2 · · ·wk$k.

Whenever we encounter an end-marker $i, we stop increasing the value of ei. Then we

create the new (i+1)-th sink node, and start increasing the value of ei+1 each time a new

47

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 48

Σ

o
c

o

c

o

a

a

a

$1

$1

$1

$1

cocoa$1

o

o

a

a

a

$1

$1

$1

$1

Σ

c

o

c

cocoa$1,c

Σ

o
c

o

c

o

a

a

a

$1

$1

$1

$1

cocoa$1,co

cocoa$1,col

Σ

o
c

o

c

o

a

a

a

$1

$1

$1

$1
l

l

cocoa$1,cola

Σ

o
c

o

c

o

a

a

a

$1

$1

$1

$1
l

l

a

a

cocoa$1,cola$2

Σ

o
c

o

c

o
a

a

a

$1

$1

$1

$1

l

l

a

a

$2

$2

$2

$2

Figure 5.1: Construction of CDAWG ′(S ′) for S ′ = {cocoa$1, cola$2}.

character is scanned. Thereby we have the following.

Theorem 8 Assume Σ is a fixed alphabet. For any set S of strings, the proposed algo-

rithm constructs CDAWG ′(S ′) on-line and in O(‖S ′‖) time, using O(‖S ′‖) space.

Figure 5.1 shows construction of CDAWG ′(S ′), where S ′ = {cocoa$1, cola$2}.

Remark. As a secondary effect of the end-markers $i, we obtain a good feature on

CDAWG ′(S ′). For S = {cocoa, cola}, CDAWG(S) is shown in Figure 5.2. One can

see there are three sink nodes though S contains only two strings in it. Because a is a

substring of both strings in S, it cannot belong to only one of another two sink nodes

which individually correspond to cocoa and cola. This case, we cannot readily specify

what string(s) in S the string a is a substring of. However, there is no difficulty to specify

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 49

c

o

a
a

a

l

l

a

a

c
o

o

c
o
a a

a

l

l

a

a

c
o o

$1 $1

$1
$2

$2

$2

$2$1

Figure 5.2: For set S = {cocoa, cola}, CDAWG(S) is shown on the left. For
set S ′ = {cocoa$1, cola$2}, CDAWG ′(S ′) is displayed on the right.

it in CDAWG ′(S ′), since there exactly exist |S ′| = |S| sink nodes in it (see the right of

Figure 5.2).

5.2 Constructing the CDAWG for a Trie

In this chapter, we consider the case that the set S is given in the form of a trie (see

Section 2.3.1). Namely, our input is Trie(S) and output is CDAWG ′(S). Let ‖S‖ = �.

Since the trie shares common prefixes of strings in Substr(S), in general the number N

of nodes of the trie is less than �. We show a non-trivial extension of the algorithm of the

previous section, which constructs the CDAWG for a trie in O(N) time and space.

Some related work can be seen in literature: Kosaraju [46] introduced the suffix tree

for a reversed trie, where common suffixes of strings in Substr(S) are merged together.

We denote it by Trierev(S). Let M be the number of nodes in Trierev(S). Kosaraju

showed an algorithm to construct STree(S) in O(M log M) time. Later on, Breslauer [11]

improved the time complexity to O(M).

On the other hand, our algorithm constructs a CDAWG for a (normal) trie. We believe

our assumption that a set S of strings is given as Trie(S) is more natural than given as

Trierev(S).

This result was originally published in [36].

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 50

5.2.1 Trie and Reversed Trie

We define the reversed trie for a set S of strings as a reverse-directed tree. We denote it by

Trierev(S). The root node of Trierev(S) is out-degree zero and any leaf node is in-degree

zero. Formally, Trierev(S) is defined as follows.

Definition 20 Trierev(S) is the tree (V, E) such that

V = {x | x ∈ Suffix (S)},
E = {(xa, a, x) | x, xa ∈ Suffix (S) and a ∈ Σ}.

We define a counterpart of the prefix property for a set of strings.

Definition 21 Let S = {w1, . . . , wk} where wi ∈ Σ∗ for 1 ≤ i ≤ k and k ≥ 1. We say

that S has the suffix property iff wi /∈Suffix (wj) for any 1≤ i �=j≤ k.

Then, the following obvious proposition holds.

Proposition 8 Any string in Prefix (S) can be spelled out from a leaf node in Trierev(S)

iff a set S of strings has the suffix property.

It directly follows from the contraposition of the above proposition that, if S does

not have the suffix property, we cannot spell out every string in Prefix (S). Since Bres-

lauer’s algorithm [11] traverses a given reversed trie from a leaf node, it is not eligible for

constructing the suffix tree for a set of strings that does not have the suffix property.

Proposition 9 Given a set S = {w1, . . . , wk} such that wi /∈Suffix (wj) for any 1 ≤ i �=
j ≤ k, let S ′′ = {w1$, . . . , wk$}. Then, Trierev(S ′′) has at most ‖S ′′‖− |S ′′|+2 = ‖S‖+2

nodes.

The input of Breslauer’s algorithm is Trierev(S ′′). If strings in S ′′ have long and many

common suffixes, the number of nodes in Trierev(S ′′) is by far smaller than the upper

bound ‖S ′′‖−|S ′′|+2.

Trierev(S ′′) for S ′′ = {aaab$, aac$, aa$, abc$, bab$, ba$} is shown in Fig. 5.3.

Theorem 9 (Breslauer [11]) If S ′′ has the suffix property, STree(S ′′) can be constructed

in O(N) time, where N is the number of nodes in Trierev(S ′′).

On the other hand, given a set S = {w1, . . . , wk}, we consider set S ′ = {w1$1, . . . , wk$k}
where $i denotes the unique end-marker for wi (1 ≤ i ≤ k).

Proposition 10 Given a set S = {w1, . . . , wk} with k ≥ 1, let S ′ = {w1$1, . . . , wk$k}.
Then, Trie(S ′) has at most ‖S ′‖+ 1 = ‖S‖+ |S|+ 1 nodes.

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 51

$

a

a

aa

a a a

a

b

b

b

b c
01

2

3

4

6
78

9
101112

13

5

14

Figure 5.3: Trierev(S ′′) for S ′′ = {aaab$, aac$, aa$, abc$, bab$, ba$}.

a

a

a
a

b

b
b

b

c

c

$1

$2

$3

$4

$5

$6

0
1

2

3 4 5

6 7

8
9 10 11

12
13

14 15

16

Figure 5.4: Trie(S ′) for S ′ = {aaab$1, aac$2, aa$3, abc$4, bab$5, ba$6}.

Figure 5.4 shows Trie(S ′) with S ′ = {aaab$1, aac$2, aa$3, abc$4, bab$5, ba$6}. Even if set

S does not have the prefix property, every string x ∈ S ′ corresponds to a leaf node. In

fact, although a string aa is a prefix of a string aaab, the path spelling out aa$3 ends at

leaf node 8 in Fig. 5.4.

Trie(S ′) is the input of our algorithm to be introduced in the next section.

5.2.2 The Algorithm

We firstly note that the CDAWG for Trie(S ′) is the same as the CDAWG of S ′, except

the following point. The label of an edge in CDAWG(S ′) is implemented by a triple of

integers (h, i, j) representing the starting position i and ending position j of the label in

the h-th string in S. Meanwhile, the corresponding edge of the CDAWG for Trie(S ′)

refers to a pair of nodes in Trie(S ′), between which the string corresponding to the label

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 52

is lying.

The basic action of the algorithm is to update the CDAWG incrementally, synchronized

with the depth-first traversal over Trie(S ′). The key idea to achieve the linear time

construction is as follows.

(1) Keep track of the advanced point q in the CDAWG so that the path from the root

node to q coincides with the path from the root node to node v, where v is the node

currently visited in the trie.

(2) Create a new node in the CDAWG where the advanced point q is, before stepping

into the first branch at each branching node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes with

scanning α ∈ Prefix (S ′) in Trie(S ′), the algorithm encounters a node v having k (≥ 2)

branches in Trie(S ′). Moreover suppose that it then chooses an edge from which to a

leaf node a string β ∈ Suffix (S ′) is spelled out. After updating the CDAWG with string

αβ, the algorithm has to update it with the other strings represented in Trie(S ′). Notice

that the current CDAWG already has the path representing α from the source node,

which corresponds to prefixes of at least k strings in S. Thus the algorithm has to restart

updating the CDAWG from the location to which α corresponds, and has to continue

traversing Trie(S ′) from the node v. For that purpose, we trace the advanced point q

mentioned in (1) above.

Let us now clarify the aim of (2). The aim is to make the advanced point q be an

explicit node whenever the algorithm encounters a branching node in Trie(S ′). That is,

the reference pair of q should then become of the form (s, ε) for some node s. What is

the matter if the advanced point q is not explicit before stepping into the first branch?

Assume that the advanced point q was referred to as (u, γ) with some node u and string

γ �= ε when the algorithm encountered the node v corresponding to α in Trie(S ′). After

finishing updating the CDAWG with αβ, the algorithm focuses back on v and q=(u, γ).

The matter is that the reference (u, γ) might not be canonical any longer: the path

spelling out γ may contain extra nodes. Namely, the path spelling out γ may have been

split while the algorithm updated the CDAWG with string β. A concrete example is

shown in Figure 5.2.2.

If the algorithm scans such extra nodes, its time complexity can become quadratic

with respect to the number of nodes in Trie(S ′). In order to avoid this matter, the

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 53

a ab bc $1

$2

0 1 2 5 643 a

98b

a

b
b

c

S

F1

$1

a
b b

S

cc
c

$1

F1

3

2

1

a
b

a
b
a

$1

$1

c
a

b
a

$1

7

7

input trie

Figure 5.5: Trie(S ′) for S = {abcaab$1, abcb$2} is shown left. When the algo-

rithm focuses on node 3 in Trie(S ′), it needs to memorize the lo-
cation in the CDAWG corresponding to abc. Since there is no node
but F1 at the location, it is memorized by a reference pair (0, abc).

After having visited node 7 in Trie(S ′), the algorithm updates the

CDAWG from (0, abc), and with node 3 in the trie. However, since
the path spelling abc dose not consist of an edge any more, the algo-
rithm has to find the nearest node from the location the path ends
on, that is, node 2. We have to avoid this, because traversing the
path spelling abc in the CDAWG just deserves traversing Trie(S ′)
from node 0 to 3 .

algorithm creates a new node s so that the active point is guaranteed to be on an explicit

node. However, the algorithm dose not merge any other edges because at the moment it

is unknown how many edges shall be merged into the new node s. Of course, if γ = ε,

there is no need to create any new node.

The algorithm is described is Figure 5.6. The variable current node indicates the node

on which the algorithm currently focuses in Trie(S ′). The variable advanced point is of

the form of a reference pair (u, β), where u is the parent node nearest to advanced point.

As mentioned above, the string β is actually implemented by a pair of nodes in Trie(S ′).

In the procedure traverse and update, function update CDAWG updates the CDAWG

with a letter c. function update CDAWG is essencially the same as the one for con-

struction of the CDAWG for a set of strings directly, previously introduced in Section 5.1,

excepting that update CDAWG creates a new edge stemming from the node latest created

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 54

Algorithm to construct the CDAWG for Trie(S′) /* The input is Trie(S′) */
1 current node := root ; /* the root node of Trie(S′) */
2 active point := (source , ε);
3 advanced point := (source , ε);
4 traverse and update(current node, active point, advanced point);

procedure traverse and update(current node, active point, advanced point)
1 Let label set be the set of labels of the outgoing edges of current node;
2 if |label set| = 0 then return;
3 else if |label set| ≥ 2 then create node(advanced point);
4 for each c ∈ label set do
5 new active point := update CDAWG(c, active point);
6 Let new advanced point be the location where active point advances with c;
7 Let v be the node to which the edge labeled c points;
8 traverse and update(v,new active point,new advanced point);

Figure 5.6: Algorithm to construct the CDAWG for a trie.

by function create node.

An example of the construction of the CDAWG for a trie is shown in Figure 5.2.2.

Finally, we have the following theorem.

Theorem 10 CDAWG ′(S ′) can be constructed in O(N) time, where N is the number of

nodes in Trie(S ′).

Proof. We first explain that the modification of function update CDAWG and func-

tion create node itself do not affect the linearity of the algorithm.

Suppose that an input trie has n nodes. It is clear that the number of nodes visited

by advanced point in the CDAWG is at most n. Hence it takes O(n) time to calcu-

late advanced point all through the construction. Furthermore suppose that m nodes in

Trie(S ′) are branching. It is clear that m < n, because any trie has at least one leaf node.

Therefore, function create node creates at most m nodes in the CDAWG, and it implies

that the time complexity of create node is O(m). This implies the modification, creating

new edges due to the nodes made by function create node, takes O(m) time as well.

We from now on verify the overall linearity of the proposed algorithm. The matter we

have to clarify is the upper bound of the number of nodes active point visits throughout

the construction. Assume that a node v in the trie has k branches and there is a path

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 55

spelling α between the root node and v. When current node arrives at node v in the

trie for the first time, function create node creates a new node u where advanced point

is in the CDAWG. Then active point may traverse at most k|α| nodes from p to the

initial node via suffix links until finding the location it can stop on. However, k ≤ |Σ|.
Therefore, for a trie with n nodes, the number of nodes active point visits throughout the

construction is O(|Σ|n). Thus, if Σ is a fixed alphabet, the proposed algorithm constructs

the CDAWG for a trie in O(n) time and space. �

CHAPTER 5. CDAWGS FOR SETS OF STRINGS 56

0

a ab b
c

$1

$20 71 2 5 6

43
input trie :

0 1

0

a

2

a
b b

0

4

a
b

b
c

c
$1

1

0

F1

$1

$1

c

2 5

a

6 7

a
b b

c

$11

0

F1

$1

c
ab

F2

$2

$2

3

a
b

b

0

1 c

c

c
$1

a
b

b
c

c
$1

1

0

F1

$1

$1

c $1

a
b b

c
$1

1

0

F1

$1

c $1

a

a
b b

c
$1

1

0

F1

$1

c $1

b

$1$2

current_node

F1
1

F1

F1

F2

F2

Figure 5.7: Construction of the CDAWG for Trie(S ′), where S ′ =
{abc$1, abab$2}. The gray starred point represents active point, and
the black dotted point represents advanced point. For simplicity,
the bottom node is omitted. As node 2 in the trie is branching,

a new node 1 is created in the CDAWG when current node ar-
rives at node 2 for the first time. After current node visits node
4, the algorithm updates the CDAWG with current node = 2 and
advanced point = 1.

Chapter 6

CDAWGs for a Sliding Window

In such a situation that only a limited amount of memory is available to us, such as when

processing an on-line data stream, the sliding window mechanism is very useful and often

applied actually. There we construct and maintain an index structure for a window of

width M that slides over w. This case, therefore, we have to update the index structure

dynamically.

Another application of the sliding window mechanism is the prediction by partial

matching (PPM) style statistical data compression model [14, 57]. PPM∗ [13] is an im-

provement that allows unbounded context length. PPM∗ employs a tree structure called

the context trie, which supports indices of the whole input string. The drawback of PPM∗

is, however, its too much computational resources in both time and space, which weakens

its practical usefulness. In particular, the context trie occupies major part of the space re-

quirement, since it inherently has the same structure as the suffix trie requiring quadratic

space. Since PPM is known to be the best text compression scheme from the viewpoint

of compression ratio, it is quite important and meaningful to reduce space requirement of

PPM.

Larsson’s suffix tree for a sliding window offered a variant of PPM∗, feasible in practice

since its space requirement is linear in the window size M and the running time is linear in

the length of the input string w [49]. Assume that the window is now covers a substring

u of w such that |u| = M ≥ 1. That is, we now have STree ′(u). We then slide the

window from left to right. To do so, we first need to add a ∈ Σ to the right of u, where

a is the character immediately following u in the current position of the window over w.

It implies we have to update STree ′(u) to STree ′(ua), and it can be done by Ukkonen’s

57

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 58

on-line algorithm [73]. Thus, the key is how to convert STree ′(ua) into STree ′(va), where

v ∈ Σ∗ and bv = u with some b ∈ Σ. Larsson showed how to manage the above operation

in amortized constant time.

In this chapter, we take another approach to reduce the space requirement in PPM∗-

style statistical compression. We propose an algorithm to maintain CDAWGs for a sliding

window, which performs in O(|w|) time using O(M) space. Recall CDAWGs require less

space than suffix trees in both theory and practice [10, 18]. In Chapter 4, we presented

an on-line algorithm that constructs CDAWGs in linear time and space. Moving the

rightmost position of a sliding window can be accomplished by this algorithm adding new

forthcoming characters to the right of the current string as well as the case of suffix trees.

Hence, again the key point of the algorithm is how to move the left most position of the

sliding window.

In case of a suffix tree, it is also rather straightforward to advance the leftmost position

of a sliding window: basically we have only to remove the leaf node and its in-coming edge

corresponding to the longest suffix. However, since a CDAWG is a graph, the matter is

much more complex and technically difficult. Thus more detailed and precise discussions

are necessary. In addition, we have to ensure that no edge labels refer to positions outside

a sliding window. To guarantee it, Larsson utilized the technique of credit issuing first

introduced in [22], which takes amortized constant time. We introduce an extended

version of credit issuing that is modified to be suitable for treating CDAWGs for a sliding

window.

The result was presented originally in [41].

6.1 Suffix Trees for a Sliding Window

Larsson [49] introduced an algorithm for maintaining suffix trees for a sliding window,

whose width is M ≥ 1. Let i (resp. j) be the leftmost (resp. rightmost) position of the

window sliding over w, that is, j − i + 1 = M . To move the sliding window ahead, we

need to increment i and j. Incrementing j can be accomplished by Ukkonen’s on-line

algorithm. On the other hand, incrementing i means to delete the leftmost character of

the currently scanned string, that is, to convert STree ′(bu) into STree ′(u) with some b ∈ Σ

and u, bu ∈ Substr(w). We focus on the path of STree ′(bu) which spells out bu from the

root node. This path is called the backbone of STree ′(bu). Let x be the longest string in

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 59

Prefix (bu) − {bu} such that
bu−→x = x. The locus of x in STree ′(bu) is called the deletion

point and denoted by DelPoint(bu). On the other hand, let z be the longest string in

Prefix (bu)− {bu} such that
bu

=⇒
z = z. The string z is called the last node in the backbone

and denoted by LastNode(bu).

When DelPoint(bu) = LastNode(bu), there is an explicit node representing the string

x in STree ′(bu). Then there exists an edge (
bu

=⇒
x , y,

bu
=⇒
bu) in STree ′(bu) where xy = bu. Only

by removing this edge, we can obtain STree ′(u).

When DelPoint(bu) �= LastNode(bu), it follows from Proposition 3 that x ∈ Suffix (bu).

Moreover, x = LRS (bu), as to be proven by Lemma 10 in Section 6.2.1. Namely, the

active point is on the locus for x in STree ′(bu). Let (
bu

=⇒
s , y,

bu
=⇒
bu) be the edge on which x is

represented. Let
bu

=⇒
s · t = x, where t ∈ Prefix (y). We shorten the edge to (

u
=⇒
s , t,

u
=⇒
x), and

move the active point to the locus for the one-character shorter suffix of x.

Theorem 11 ([49]) Let w ∈ Σ∗ and M be the window size. Larsson’s algorithm runs in

O(|w|) time using O(M) space.

6.2 CDAWGs for a Sliding Window

In this section, we consider maintaining a CDAWG for a sliding window. Advancing

the rightmost position of the window can be done by the on-line algorithm proposed in

Chapter 4. Thus the matter is to move ahead the leftmost position of the window.

6.2.1 Edge Deletion

Given CDAWG ′(w), we also focus on its backbone, the path spelling out w from the

source node. Let x = DelPoint(w). If DelPoint(w) = LastNode(w), we remove the edge

([
w

=⇒
x]R

w
, y, [

w
=⇒
w]R

w
) such that xy = w. However, notice that this method might remove other

suffixes of w from the CDAWG. More precise arguments follow.

Lemma 8 Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x = z. Let

s be any string in [
w

=⇒
x]R

w
= [

w
=⇒
z]R

w
. Then there uniquely exists a string y ∈ Σ+ such that

sy ∈ Suffix (w).

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 60

Proof. Since x = DelPoint(w), there uniquely exists a character a ∈ Σ such that

xa ∈ Substr(w) and
w−→xa = w. Let y be the string such that xy = w with y ∈ Σ+, where

the first character of y is a. Let s be an arbitrary element in [x]R
w
. Since x ∈ Prefix (w),

w←−x = x. Thus s ∈ Suffix(x), which implies sy ∈ Suffix (w). �

For the case that DelPoint(w) �= LastNode(w), we have the following.

Lemma 9 Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x �= z. Let s

be any string in [
w

=⇒
z]R

w
. Then there uniquely exist strings t, u ∈ Σ+ such that st ∈ Suffix (x)

and stu ∈ Suffix (w).

Proof. Since
w

=⇒
z = z,

w−→z = z. By the assumption that z �= x, we have z ∈ Prefix (x).

Since x = DelPoint(w), there uniquely exists a character a ∈ Σ such that
w−→za = x. Thus

there is a unique string t ∈ Σ+ such that zt = x. Since z ∈ Prefix (w), z =
w←−z . Therefore,

for any string s ∈ [z]R
w

it holds that st ∈ Suffix (x). Moreover, there uniquely exists a

character b ∈ Σ such that
w−→
xb = w. Let u ∈ Σ+ be the string satisfying

w−→
xb = xu. Now we

have ztu = w, and for any s ∈ [z]Rw, it holds that stu ∈ Suffix (w). �

Lemma 10 Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x �= z. Then

x = LRS (w).

Proof. Since x �= z,
w

=⇒
x �=

w−→x . Hence
w−→x = x ∈ Suffix(w) by Proposition 3. It is

not difficult to show that x occurs in w just twice. Let y = ax with a ∈ Σ, such that

y ∈ Suffix (w). Assume, for a contradiction, y = LRS (w). On the assumption, y appears

in w at least twice. If y /∈ Prefix (w), y must also occur in w as neither a prefix nor a suffix

of w. It turns out that x appears three times in w: a contradiction. If y ∈ Prefix (w),

x is of the form a�. Then y = DelPoint(w), which contradicts the assumption that

x = DelPoint(w). Consequently, x = LRS (w). �

According to the above three lemmas, we obtain the following theorem.

Theorem 12 Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Let k = |[
w

=⇒
z]R

w
|.

Suppose u1, u2, . . . , uk be the suffixes of w arranged in decreasing order of their length,

where u1 = w.

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 61

1. When x = z: Let xy = w. Assume that the edge ([
w

=⇒
x]Rw, y, [

w
=⇒
w]Rw) is deleted from

CDAWG ′(w).

2. When x �= z: Let zt = x and ztu = w. Assume that the edge ([
w

=⇒
z]Rw, tu, [

w
=⇒
w]Rw) of

CDAWG ′(w) is shortened into the edge ([
w

=⇒
z]R

w
, t, [

w
=⇒
x]R

w
).

In both cases, the suffixes u1, . . . , uk are removed from the CDAWG.

What the above theorem implies is that after deleting or shortening the last edge in the

backbone of CDAWG ′(w), the leftmost position of a sliding window “skips” k characters

at once. Let DelSize(w) = k. The next question is the exact upper bound of DelSize(w).

Fortunately, we achieve a reasonable result such that DelSize(w) is at most about half of

|w|. A more precise evaluation will be performed in Section 6.2.4.

Can’t we delete only the leftmost character of w in (amortized) constant time?

We strongly believe the answer is “No”. The reason is as follows. Let |w| = n where

w ∈ Σ∗. Let u1, u2, . . . , un+1 be all the suffixes of w arranged in decreasing order of their

length. It will be proven in Chapter 12 that the total number of nodes necessary to keep

CDAWG ′(ui) for every 1 ≤ i ≤ n + 1 is Θ(n2), even if we minimize the CDAWGs so to

share as many nodes and edges as possible. Therefore, the amortized time complexity to

delete the leftmost character of w would be proportional to n.

6.2.2 Maintaining the Structure of CDAWG

Suppose the last edge of the backbone of CDAWG ′(w) is deleted or shortened right now.

Let k = DelSize(w). Let u = w[k + 1 : n] where n = |w|. We sometimes need to

modify the structure of the current graph, so that it exactly becomes CDAWG ′(u). The

out-degree of a node v is denoted by OutDeg(v). Let x = DelPoint(w) of CDAWG ′(w).

Firstly, we consider when OutDeg([
w

=⇒
x]Rw) ≥ 3 in the first cast of Theorem 12. In this

case,
u

=⇒
x = x and OutDeg([

u
=⇒
x]R

u
) ≥ 2. It does not contradict Definition 13, and thus no

more maintenance is required. An example of the case is shown in Figure 6.1.

Secondly, we consider when OutDeg([
w

=⇒
x]R

w
) = 2 in the first case of Theorem 12. Let

([
w

=⇒
r]Rw, s, [

w
=⇒
x]Rw) be an arbitrary in-coming edge of the node [

w
=⇒
x]Rw in CDAWG ′(w). Assume

w
=⇒
r = r, that is, rs ∈ Suffix (x). Let ([

w
=⇒
x]R

w
, t, [

w
=⇒
w]R

w
) be the edge which is to be the sole

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 62

cocoacob coacob

oc
o

c
o
a

a

a

c
o
b

c
o
b

b

c
o
b

b

oc
o

a

a

c
o
b

b

c
o
b

b

Figure 6.1: On the left, CDAWG ′(cocoacob) is shown. The thick edge is to be
deleted. The resulting structure is CDAWG ′(coacob), shown on the
right. The gray star indicates the active point for each.

remaining out-going edge of the node [
u

=⇒
x]R

u
after the deletion. Notice that, however,

u
=⇒
x = u. Thus the edge ([

w
=⇒
r]Rw, s, [

w
=⇒
x]Rw) is modified to ([

u
=⇒
r]Ru , st, [

u
=⇒
u]Ru). The total time

required in the operations is proportional to the number of in-coming edges of the node

[
w

=⇒
x]Rw in CDAWG ′(w). It is bounded by DelSize(w).

Moreover, we might need a maintenance of the active point. Let v = LRS (w). Suppos-

ing that v ∈ Prefix (xt), v is represented on the edge ([
w

=⇒
x]R

w
, t, [

w
=⇒
w]R

w
) in CDAWG ′(w). The

active point is actually referred to as the pair ([
w

=⇒
x]R

w
, p), where p ∈ Prefix (t) and xp = v.

The reference pair is modified to ([
u

=⇒
r]R

u
, sp) in CDAWG ′(u). Note that

u←−r · sp = v. An

example of the case is shown in Figure 6.2.

Thirdly, we consider the second case in Theorem 12. In this case, the last edge in

the backbone, ([
w

=⇒
z]R

w
, tu, [

w
=⇒
w]R

w
), is shortened into ([

u
=⇒
z]R

u
, t, [

u
=⇒
x]R

u
) = ([

u
=⇒
z]R

u
, t, [

u
=⇒
u]R

u
) in

CDAWG ′(u). It implies that x �= LRS (u), although x = LRS (w). The active point of

CDAWG ′(w) is represented by ([
w

=⇒
z]R

w
, t), since zt = x (by Lemma 10). Let suf ([

w
=⇒
z]R

w
) =

[
w

=⇒
s]Rw. Assuming

w
=⇒
s = s, s is the longest string such that s ∈ Suffix (z) and s /∈ [

w
=⇒
z]Rw.

Notice that LRS (u) = st. Hereby, the reference pair of the active point is changed to

([
u

=⇒
s]R

u
, t). If [

u
=⇒
s]R

u
is the explicit parent node nearest the locus of st, we are done. If not,

the reference pair is canonized to ([
u

=⇒
r]Ru , p) such that s ∈ Prefix (

u
=⇒
r), st =

u
=⇒
r · p, and |p|

is minimum. An example of the case is shown in Figure 6.3.

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 63

cocoacoa

oc
o

c
o
a

a

a

c
o
a

c
o
a

c
o
a

oc
o

a
a

c
o
b

c
o
b

coacoa

o
c
o a a

c
o
b

c
o
b

a
c
o
b

Figure 6.2: On the left, CDAWG ′(cocoacoa) is shown, where the thick edge is to
be deleted. The center is the intermediate structure in which the edge
is deleted. After the modifications, we obtain CDAWG ′(coacoa),
shown on the right. The gray star indicates the active point for
each.

6.2.3 Detecting DelPoint(u)

Suppose that after the edge deletion or shortening of CDAWG(w), we got CDAWG(u),

where u ∈ Suffix (w). The problem is how to locate DelPoint(u) in CDAWG(u). A naive

solution is to traverse the backbone of CDAWG(u) from the source node. However, it

takes O(|u|) time, which leads to quadratic time complexity in total.

Our approach is to keep track of the advanced point that corresponds to the locus of

w[1 : n − 1], where n = |w|. Let x = LastNode(w) and xy = w, that is, ([
w

=⇒
x]R

w
, y, [

w
=⇒
w]R

w
)

is the edge for deletion or shortening. The canonical reference pair for the advanced

point is ([
w

=⇒
x]R

w
, t), where t ∈ Prefix (y) and

w
=⇒
x · t = w[1 : n − 1]. We move to node

[
w

=⇒
s]Rw = suf ([

w
=⇒
x]Rw). Suppose CDAWG(w) has already been converted to CDAWG(u).

Assume [
u

=⇒
s]R

u
= [

w
=⇒
s]R

w
. Since

u
=⇒
s · t = u[1 : m − 1] where m = |u|, ([

u
=⇒
s]R

u
, t) is a

reference pair of the next advanced point, and then it is canonized. Let ([

u
=⇒
s′]Ru , t′) be the

canonical reference pair of the advanced point. Then

u
=⇒
s′ = LastNode(u). If LastNode(u) /∈

Prefix (LRS (u)), that is, if the active point is not on the longest out-going edge from the

node [

u
=⇒
s′]Ru , DelPoint(u) = LastNode(u). Otherwise, DelPoint(u) = LRS (u). In the case

that [
u

=⇒
s]R

u
�= [

w
=⇒
s]R

w
, we perform the same procedure from its closest parent node (see

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 64

cocoacoc

oc
o

c
o
a

a

a

c
o
c

c
o
c

c
o
c

coacoc

oc
o

c
a

a

c
o
c

c
o
c

Figure 6.3: On the left, CDAWG ′(cocoacoc) is shown. The thick edge is to be
shortened. The resulting structure is CDAWG ′(coacoc), shown on
the right. The gray star indicates the active point for each.

Figure 6.2). If Σ is fixed, the cost of canonizing the reference pair is only proportional

to the number of nodes included in the path. The amortized number of such nodes is

constant.

6.2.4 On Buffer Size

The main theorem of this section shows an exact estimation of the upperbound of DelSize(w).

For an alphabet Σ and an integer n, we define MaxDelΣ(n) = max{DelSize(w) | w ∈
Σ∗, |w| = n}.

Theorem 13 If |Σ| ≥ 3, MaxDelΣ(n) = �n
2
� − 1.

By this theorem, edge deletion or edge shortening can shrink the window size upto the

half of the original size. Therefore, in order to keep the window size at least M , a buffer

of size 2M + 1 is necessary and sufficient.

We will prove the above theorem in the sequel.

Lemma 11 Let w ∈ Σ∗. For any string x ∈ Substr(w), let suf ([
w

=⇒
x]R

w
) = [

w
=⇒
s]R

w
. Then

|[
w

=⇒
x]R

w
| = |

w
=⇒
x | − |

w
=⇒
s |.

Proof. |[
w

=⇒
x]Rw| = |Suffix (

w
=⇒
x)| − |Suffix (

w
=⇒
s)| = (|

w
=⇒
x |+ 1)− (|

w
=⇒
s |+ 1) = |

w
=⇒
x | − |

w
=⇒
s |. �

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 65

w
x

y
x

i j n1

Figure 6.4: The case j > n
2
. x occurs at least twice in w, and the overlap y is in

fact both a prefix and suffix of x.

Lemma 12 Let w ∈ Σ∗ and n = |w|. For any x ∈ Prefix (w) − {w} with
w

=⇒
x = x,

|[
w

=⇒
x]R

w
| ≤ �n

2
� − 1.

Proof. Let j = |x| = |
w

=⇒
x |. Let suf ([

w
=⇒
x]R

w
) = [

w
=⇒
s]R

w
. We have the following three cases.

(1) When j < n
2
: Since j is an integer, j ≤ �n

2
�− 1, and |[

w
=⇒
x]Rw| = |

w
=⇒
x | − |

w
=⇒
s | ≤ �n

2
�− 1

by Lemma 11.

(2) When j > n
2
: (See Figure 6.4.) The equivalences x = w[1 : j] and

w
=⇒
x = x imply that

x = w[i : i+j−1] for some i ≥ 2 and i+j−1 ≤ n. Then i−j ≤ n−2j+1 < 1, that is,

i ≤ j. Let y = w[i : j]. Its length is |y| = j − i + 1 ≥ 1, and y = x[i : j] ∈ Suffix (x).

Since
w

=⇒
x = x and y ∈ Suffix (x),

w
=⇒
y = y. On the other hand, y = w[i : j] = x[1 :

j− i+1] = w[1 : j− i+1] ∈ Prefix (w), which implies
w←−y = y. Thus y is the longest

element of [
w

=⇒
y]Rw. Since |x| > |y|, x �∈ [

w
=⇒
y]Rw. Therefore |

w
=⇒
s | ≥ |y|, which yields

|[
w

=⇒
x]R

w
| = |

w
=⇒
x | − |

w
=⇒
s | ≤ |x| − |y| = j− (j− i+1) = i− 1 ≤ n− j < n− n

2
= n

2
. Thus

|[
w

=⇒
x]R

w
| ≤ �n

2
� − 1.

(3) When j = n
2
: Since

w
=⇒
x = x, x occurs in w at least twice. If x = w[i : i + j − 1]

for some i with 2 ≤ i ≤ j, we can show the inequality holds in the same way as

(2). Otherwise, x = w[j + 1 : 2j] = w[j + 1 : n] = w[1 : j], that is w = xx. Then
w

=⇒
x = w �= x, which does not satisfy the precondition of the lemma.

In any cases, we have got the result. �

We are ready to prove the upperbound of MaxDelΣ(n).

Lemma 13 MaxDelΣ(n) ≤ �n
2
� − 1 for any Σ and any n ≥ 3.

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 66

Proof. Let x = DelPoint(w) and z = LastNode(w). First we consider the case x = z.

Since
w−→x = x and x ∈ Prefix (w) − {w}, DelSize(w) = |[

w
=⇒
z]Rw| = |[

w
=⇒
x]Rw| ≤ �n

2
� − 1 by

Lemma 12.

We now assume x �= z. Then z ∈ Prefix (x), and x = DelPoint(w) implies that

x ∈ Prefix (w)−{w}, which yields z ∈ Prefix (w)−{w}. Thus by Lemma 12, DelSize(w) =

|[
w

=⇒
z]R

w
| ≤ �n

2
� − 1. �

On the other hand, the lowerbound is given by the following lemma.

Lemma 14 If |Σ| ≥ 3, MaxDelΣ(n) ≥ �n
2
� − 1 for any n ≥ 1.

Proof. For each 1 ≤ n ≤ 4, the inequality trivially holds since �n
2
� − 1 ≤ 1. Let a, b, c

be distinct symbols in Σ. For each odd n ≥ 5, let wn = akbakbc, where k = n−3
2

. Remark

that DelPoint(wn) = akb. Let x = akb. We can see that any suffix of x except ε belongs to

[
w

=⇒
x]R

w
, so that suf (x) = ε. Thus DelSize(wn) = |x|−|ε| = |akb|−0 = k+1 = n−1

2
= �n

2
�−1,

since n is odd. For each even n ≥ 6, let w′
n = ak−1bakbc, where k = n

2
− 1, and we can

verify that DelSize(w′
n) = �n

2
� − 1 similarly. �

Consequently, Theorem 13 is proved by Lemma 13 and Lemma 14. We note that for

a binary alphabet Σ = {a, b}, two series of the strings akbakbab and ak−1bakbab give the

lowerbound MaxDelΣ(n) ≥ �n−3
2
�.

On the on-line algorithm of Chapter 4, each node [
w

=⇒
x]R

w
of CDAWG ′(w) stores the value

of |
w

=⇒
x |. By Lemma 11, it is guaranteed that we can calculate DelSize(w) in constant time

with no additional information.

6.2.5 Keeping Edge Labels Valid

As mentioned previously, an edge label is actually represented by a pair of integers indi-

cating its beginning and ending positions in input string w, respectively. We must ensure

that no edge label becomes “out of date” after the window slides, e.g., that no integer

refers to a position outside the sliding window. In case of a suffix tree, when a new

edge is created, we can guarantee the above regulation by traversing from the leaf node

toward the root node while updating all edge labels encountered. However, this would

yield quadratic time complexity in the aggregate. Larsson [49, 50] utilized credit issuing,

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 67

an update-number-restriction technique, originally proposed in [22], which takes in total

O(|w|) time and space. In the following, we introduce an extended credit issuing tech-

nique for CDAWGs. Our basic strategy is to show that we can handle the credit issuing

as well as in case of suffix trees.

We assign each internal node s of CDAWG ′(w) a binary counter called credit, denoted

by Cred(s). This credit counter is initially set to zero when s is created. When a node s

receives a credit, we update the labels of in-coming edges of s. Then, if Cred(s) = 0, we

set it to one, and stop. If Cred(s) = 1, after setting it to zero, we let the node s issue a

credit to its parent nodes.

When s is newly created, Cred(s) = 0. The creation of the new node s implies that a

new edge is to be inserted from s to the sink node. When the new edge is created leading

to the sink node, the sink node issues a credit to the parent node s. Assume the new edge

is labeled by pair (i, j) where i, j are some integers with i < j. Let � be the length of the

label of the in-coming edge of s. After s received a credit from the sink node, we reset its

in-coming edge label to (i − �, i − 1). Remember the edge redirection happening in the

construction of a CDAWG (see Section 4.3.1). If some edge is actually redirected to node

s, its label is updated as well. Note that we need not change the value of Cred(s) again.

Suppose a node r has right now received a credit from one of its child nodes. Assume

Cred(r) is currently one. We need to update all in-coming edge labels of r. We store a list

in r to maintain its in-coming edges arranged in the order of the length of the path they

correspond to. The maintenence of the list is an easy matter, since the on-line algorithm

of Chapter 4 inserts edges to r in such order. Let t be an arbitrary parent node of r.

Let k be the number of the in-coming edges of r connected from t. One might wonder

that r must issue k credits to t, but there is the following time-efficient method. In case

k is even, Cred(t) need not to be changed because it is a binary counter. Contrarily, in

case k is odd, we always change the value of Cred(t). If Cred(t) was one, we also have

to update the in-coming edge of t. To do it, we focus on the shortest in-coming edge of

r connected from t, which is in turn the shortest out-going edge of t leading to r. In

updating the in-coming edges of t, we should utilize the label of the shortest edge, since

the label corresponds to the possibly newest occurrence of the substrings represented in

node t. We continue updating edge labels by traversing the reversed graph rooted at r in

width-first manner while issuing credits.

Recall the node separation in constructing a CDAWG (see Section 4.3.1). Assume a

CHAPTER 6. CDAWGS FOR A SLIDING WINDOW 68

node r has right now been created owing to the separation of a node s. The subgraph

rooted at r is currently the same as the one rooted at s, since r was created as a clone of

s. Thus we simply set Cred(r) = Cred(s).

Now consider a node u to be deleted, corresponding to the second case of Section 6.2.2.

It might have received a credit from its newest child node (that is not deleted), which has

not been issued to its parent node yet. Therefore, when a node u is scheduled for deletion

and Cred(u) = 1, node u issues credits to its parent nodes. However, this complicates the

update of edge labels: several waiting credits may aggregate, causing nodes upper in the

CDAWG to receive a credit older than the one it has already received from its another

child node. Therefor, before updating an edge label, we compare its previous value against

the one associated with the received credit, and refer to the newer one. As well as the

case of edge insertion mentioned in the above paragraph, we traverse the reversed graph

rooted at u in width-first fashion to update edge labels. In the worst case, the updating

cost is proportional to the number of paths from the source node to node u. Nevertheless,

it is bounded by DelSize(w).

By analogous arguments to [22, 49, 50], we can establish the following lemma.

Lemma 15 All edge labels of a CDAWG can be kept valid in a sliding window, in linear

time and space with respect to the length of an input string.

As a conclusion of Section 6.2, we finally obtain the following.

Theorem 14 Let w ∈ Σ∗ and M be the window size. The proposed algorithm runs in

O(|w|) time using O(M) space.

Chapter 7

On-Line Construction of Symmetric

CDAWGs

As seen in literature [77, 55, 9, 10, 73, 18] and the previous chapters, suffix links are often

used, and essential, for time-efficient constructions of index structures such as suffix tries,

suffix trees, DAWGs, and CDAWGs. An interesting fact is that, for any string w ∈ Σ∗,

the suffix links of STrie(w) exactly form the edges of STrie(wrev) [24]. DAWGs also have

a similar property, that is, the suffix links of the DAWG(w) compose STree(wrev) [12].

However, this duality is damaged in case of suffix trees. Namely, the suffix links of

STree(w) do not always form a structure supporting indexes of wrev. Still, the set of

suffix links of STree(w) is a subset of the set of edges of DAWG(wrev) [16].

In order to obtain the complete duality on suffix trees, Stoye [66, 67] introduced affix

trees. Affix trees are the modification of suffix trees so that the suffix links of ATree(w)

form ATree(wrev) (see Figure 7.3). Stoye could not prove his on-line algorithm for con-

structing affix trees runs in linear time, but Maaß [51] later on gave an improved version

of the algorithm which runs in linear time. Meanwhile, Blumer et al. [10] showed that

the nodes of a CDAWG are invariant under reversal: there is a one-to-one correspondence

between the nodes of CDAWG(w) and those ofCDAWG(wrev). The structure with those

two kinds of edges is called the symmetric compact directed acyclic word graph (SCDAWG)

of w (see Figure 7.2, right).

Ukkonen [73] gave two intuitive and excellent on-line algorithms for constructing

STrie(w) and STree ′(w), respectively, as recalled in Chapter 4. Since the suffix links of

STrie(w) are equal to the edges of STrie(wrev), it turns out that STrie(w) and STrie(wrev)

69

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 70

sharing the same nodes can be simultaneously built on-line, scanning w from left to right.

Also, since the algorithm of [9] constructs DAWGs on-line, it can be regarded as an algo-

rithm which builds DAWG(w) and STree(wrev) at the same time, in on-line (left to right)

fashion. Moreover, the fact is that the algorithm by Weiner [77] that constructs suffix

trees becomes more interesting when considered as an on-line algorithm. His algorithm

builds STree(w) by appending the suffixes of w to the current suffix tree in increasing

order. In other words, his algorithm builds STree(w) on-line, right to left. In addition

to that, his algorithm can be modified so as to create the edges of DAWG(wrev) at the

same time [18]. It implies that his algorithm also simultaneously constructs DAWG(w)

together with STree(wrev) on-line, left to right.

In this chapter, we first give an algorithm that simultaneously builds STree ′(w) with

DAWG(wrev) on-line, left to right. This algorithm constructs STree(w) in the same way

as Ukkonen’s algorithm, while computing the shortest extension links (sext links) that

correspond to the edges of DAWG(wrev) at the same time. Moreover, we show an algo-

rithm that directly constructs SCDAWG(w) on-line, left to right. It builds CDAWG ′(w)

similarly to the algorithm we introduced in Chapter 4, and computes the sext links that

are actually the edges of CDAWG ′(wrev).

From a practical point of view, SCDAWGs and affix trees have essentially the same

range of applications. However, the number of nodes in SCDAWG(w) is much smaller

than that of ATree(w), although both are linear with respect to |w|. In fact, the following

inequality comparing the number of nodes

|SCDAWG(w)|
≤ min{|STree(w)|, |STree(wrev)|}
≤ max{|STree(w)|, |STree(wrev)|}
≤ |ATree(w)|

holds for any string w ∈ Σ∗. This is because, intuitively, the set of nodes of SCDAWG(w)

is the intersection of those of STrie(w) and STrie(wrev), while the set of nodes in ATree(w)

is the union of them. Therefore, SCDAWGs considerably save memory space, compared

to affix trees. Moreover, not only SCDAWGs are attractive as index structure, but also

the underlying equivalence relation is useful in data mining or machine discovery from

textual databases. Actually, the equivalence relation plays a central role in supporting

human experts who are involved in evaluation/interpretation task for mined expressions

from anthologies of classical Japanese poems [68].

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 71

The result in this chapter was originally published in [37].

7.1 Bidirectional Index Structures

If an index structure represents all strings not only in Substr(w) but also in Substr(wrev),

let us call it a bidirectional index structure for string w. We define such a structure as a

graph with two kinds of edges; ones for w, and the others for wrev.

Giegerich and Kurtz [24] observed that STrie(w) and STrie(wrev) are dual in the sense

that they share the same nodes. We refer this bidirectional index structure as “STrie(w)

with STrie(wrev)”. A formal definition follows.

Definition 22 STrie(w) with STrie(wrev) is the bidirectional tree (V, EL→R, ER→L) such

that

V = {x | x ∈ Substr(w)},
EL→R = {(x, a, xa) | x, xa ∈ Substr(w) and a ∈ Σ},
ER→L = {(x, a, ax) | x, ax ∈ Substr(w) and a ∈ Σ}.

It is obvious that there is a trivial one-to-one correspondence between ER→L and F for

the suffix links of STrie(w) in Definition 8.

The duality of STree(w) and DAWG(wrev), which was pointed out in [12, 16], is shown

in Definition 23.

Definition 23 STree(w) with DAWG(wrev) is the bidirectional dag (V, EL→R, ER→L)

such that

V = {
w−→x | x ∈ Substr(w)},

EL→R = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

ER→L = {(
w−→x , a,

w−→ax) | x, ax ∈ Substr(w) and a ∈ Σ}.

Let V ′ = {[x]L
w
| x ∈ Substr(w)}. It is easy to see that there is a trivial one-to-one cor-

respondence between the node set V of Definition 23 and V ′. Using this correspondence,

we can identify ER→L of Definition 23 with

{([x]Lw, a, [ax]Lw) | x, ax ∈ Substr(w) and a ∈ Σ}
= {([y]Rwrev , a, [ya]Rwrev) | y, ya ∈ Substr(wrev) and a ∈ Σ},

which is equivalent to the definition of DAWG(wrev).

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 72

b

a

g

g

gg

g

g

g

a

aa

a

e

ee

e
e

g

a

g

g

ab

a

g

g

g

a

e

e g

a

e

g

a

g

gg a

a

ab

b

g
b

b

b

b

ba

g

g
g

g
g

g

a

a

a
e

e

e

ab

g

g

g
a

e
g

a

g

g

a

g

g
a

e

e
e

b

a

b

g
g

Figure 7.1: STrie(w) with STrie(wrev) on the left, and STree(w) with
DAWG(wrev) on the right, where w = baggage. The thick solid
lines represent the edges of STrie(w) and STree(w), while the thin
break lines do the ones of STrie(wrev) and DAWG(wrev), respectively.
Since baggage ends with a unique character e, the end-marker $ is
omitted.

The edges ER→L of Definition 23 are the so-called shortest extension links (sext links)

of STree(w) [16]. Moreover, a part of the reversed sext links are known as suffix links.

Recalling the definition, the suffix links are the set

{(
w−→ax,

w−→x) | x, ax ∈ Substr(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

The reversal of the suffix links with labels are called reversed suffix link, defined by

{(
w−→x , a,

w−→ax) | x, ax ∈ Substr(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

It can be observed that the suffix link set is a subset of the sext link set, under the

‘
w−→ax = a ·

w−→x ’-condition.

In Figure 7.1 we illustrate STrie(w) with STrie(wrev) and STree(w) with DAWG(wrev),

where w = baggage.

By the duality, we omit the definition of the bidirectional index structure DAWG(w)

with STree(wrev).

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 73

Now we pay our attention to CDAWG(w). Definition 13 can be transformed as follows:

V � {
w←→x | x ∈ Substr(w)},

E � {(
w←→x , aβ,

w←→xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

F � {(
w←→ax ,

w←→x) | x, ax ∈ Substr(w), a ∈ Σ, and
w←→x �=

w←→ax},

In Definition 24, we show the definition of the symmetric CDAWG (SCDAWG) of a

string w, denoted by SCDAWG(w).

Definition 24 SCDAWG(w) is the bidirectional dag (V, EL→R, ER→L) such that

V = {
w←→x | x ∈ Substr(w)},

EL→R = {(
w←→x , aβ,

w←→xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

ER→L = {(
w←→x , γa,

w←→ax) | x, ax ∈ Substr(w), a ∈ Σ, γ ∈ Σ∗,
w←−ax = γax, and

w←−x �=
w←−ax}.

The edges ER→L are called the sext links of CDAWG(w), as well. The reversed suffix

links of CDAWG(w) are the set

{(
w←→x , γa,

w←→ax) | x, ax ∈ Substr(w), a ∈ Σ, γ ∈ Σ∗,
w←−ax = γax,

w←→x �=
w←→ax , and

w←→ax = a ·
w←→x }.

The suffix link set is a subset of the sext link set, under the ‘
w←→ax = a ·

w←→x ’-condition.

We illustrate DAWG(w) with STree(wrev), and SCDAWG(w) in Figure 7.2, where

w = baggage.

Another symmetric bidirectional index structure, called affix trees, was introduced by

Stoye [66]. ATree(w) and ATree(wrev) for w = baggage are shown in Figure 7.3 without a

formal definition for comparison. Intuitively, the set of the nodes in SCDAWG(w) is the

intersection of those in STree(w) and STree(wrev), while the set of the nodes in ATree(w)

is the union of them.

7.2 On-Line Construction of STree(w) with DAWG(wrev)

In this section, we give an algorithm that constructs STree(w) with DAWG(wrev) for a

string w ∈ Σ∗, on-line and in linear time with respect to |w|.

7.2.1 “STree(w) with DAWG(wrev)” Redefined

Our algorithm constructs STree ′(w) in the same fashion as the Ukkonen algorithm, and

therefore the DAWG(wrev) being constructed at the same time is incomplete in the sense

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 74

a

b

g

g
g
a

a

e

g

a

a
g

g

e

e

e

g

g

b

a

a

g
e

g
g

b

g

g

g

e

g

g

a

b

a
g

g

g

a

a

a

b

g

b

b

b

a

g

g

e

ee

g

g

b

a

a

g
e

g
g

b

g
a

e
g
a

e
g
a

e

a
a

b
a

g
g

b

b

b
a

g
g

Figure 7.2: DAWG(w) with STree(wrev) on the left, and SCDAWG(w) on the
right, for string w = baggage.

b

a
g

g

g

g

g

aa

a

e

e

e
e

g

a

g

g

ab

a

g

g
g

a
e

e
g

a
e

g

a

g

g

a

b

b

b

b

g
ab

g

g
a

e

gab

b

a

g

g

g

a

e

b

a

g
g

g

a
b

a

g
gg

ab
a

b

b

be

b

ag

a

g

g
a

g
e

g

e

ag
ge

e

ag
ge

age

Figure 7.3: ATree(w) on the left and ATree(wrev) on the right, where w =
baggage.

that it lacks the nodes corresponding to the non-branching internal nodes of STree ′(w)

and the sext links from/to them. However, the finally obtained structure for input w$ is

exactly the same as STree(w$) with DAWG($wrev).

Definition 25 “STree(w) with sext links” is the bidirectional dag (V, EL→R, ER→L) such

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 75

that

V = {
w

=⇒
x | x ∈ Substr(w)},

EL→R = {(
w

=⇒
x , aβ,

w
=⇒
xa) | x, xa ∈ Substr(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ, and

w
=⇒
x �=

w
=⇒
xa},

ER→L = {(
w

=⇒
x , a,

w
=⇒
ax) | x, ax ∈ Substr(w) and a ∈ Σ}.

Since
w$
=⇒
x =

w$−→x , this structure is identical to that defined in Definition 23 for input

string w$.

7.2.2 Main Idea of the Algorithm

As for STree ′(w) for a string w ∈ Σ∗, our algorithm creates it in entirely the same way as

Ukkonen’s algorithm (see Section 4.2 or [73]). Every time a new node is created during

the construction of STree ′(w), the sext links of the new node, which correspond to certain

edges of DAWG(wrev), are computed. Ukkonen’s algorithm creates no leaf node for the use

of so-called ‘∞-trick’ that enables his algorithm to achieve an O(|w|)-time construction

of STree ′(w), and an edge directed to a ‘transparent’ leaf node is called an open edge.

However, we modify it so as to create every leaf node not only because

(i) we need a leaf node in order to define its sext links, but also

(ii) the sext link of a leaf node is to be a clue to define the sext links of a node to be

created just above the leaf node.

First of all, one may wonder that if creating leaf nodes, the time complexity of the

construction of STree ′(w) can be quadratic due to a series of updating the open edges.

However, recall the fact that label α of an edge of STree ′(w) is usually implemented with

a pair of integers (i, j) such that α = w[i : j]. Furthermore, note that the second value

of the label of any open edge in STree ′(w[1 : h]) is h for 1 ≤ h ≤ n. Therefore, if we

implement the second value with a global variable, we can update all the open edges in

constant time with an increment of the variable h.

Let us pay our attention back to the two reasons (i) and (ii). We have an obvious

proposition about (i).

Proposition 11 Suppose that in STree ′(w) the reversed suffix link of a leaf node x, which

is labeled a, points to a node y. Then node y is also a leaf node in STree ′(w).

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 76

Proof. From the definition the reversed suffix link of node x is a triple (
w

=⇒
x , a,

w
=⇒
ax) such

that
w

=⇒
ax = a ·

w
=⇒
x . String x is a suffix of w because x is represented by a leaf in STree ′(w).

Hence
w

=⇒
x = x. Consequently,

w
=⇒
ax = a ·

w
=⇒
x = ax = y. This means that y is also a suffix of

w and is represented by a leaf node in STree ′(w). �

The above proposition tells us that, in a suffix tree, the reversed suffix link of the newest

leaf node points to the last created leaf node. Conversely, the suffix link of the last created

leaf node is pointing to the leaf node which will be created next.

In the sequel, we shall clarify what the reason (ii) implies.

On the construction of “STree ′(w) with sext links”, we use a two dimensional table

sext. The description “sext [x, a] = y” means “the sext link of node x labeled with a points

to node y.” Similarly, we use tables suf and rsuf which correspond to the suffix link and

the reversed suffix link, respectively.

7.2.3 How to Maintain Sext Links

Here, we explain how the sext links of a new node are computed during the Ukkonen-type

construction of STree ′(w). See Figure 7.5 that shows each phase of the construction of

STree ′(#abab$). The starred point in Figure 7.5 is called the active point. For a string

w ∈ Σ∗, at the beginning of each phase w[1 : i] (i = 0, 1, . . . , |w| − 1), the active point

stays at which the algorithm should start to update STree ′(w[1 : i]) to STree ′(w[1 : i+1]).

Let act i denote the active point in phase w[1 : i]. In phase w[1 : i + 1], act i+1 moves until

it can stop with spelling out w[i + 1].

If it is possible for act i+1 to move ahead from the current location while spelling out

w[i+1] (say case (a)), it moves and stops there, and then becomes act i+2. Notice that no

new node is created in case (a), as seen in phase #aba and phase #abab in Figure 7.5.

Otherwise (say case (b)), a new edge labeled with w[i+1] has to be created from where

act i+1 currently stays. Case (b) is divided into two sub-cases:

• act i+1 is on a node u (case (b1)).

• act i+1 is on an edge (case (b2)).

In case (b1), the algorithm just creates a new edge labeled by w[i+1] with a new leaf node

v (see Figure 7.4, left). Only v is the newly created node in case (b1). Concrete examples

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 77

uu

v

ss

v

u

(b2)(b1)

Figure 7.4: The two cases of the position of the active point, which is denoted
by a gray star. Since the active point is on a node u in case (b1)
displayed on the left, only leaf node v is newly created. On the other
hand, in case (b2) on the right, internal node u is also created where
the active point is at present, in the middle of an edge.

can be seen in phases #, #a, #ab, and the third step of phase #abab$ in Figure 7.5. As

for case (b2), the algorithm needs to create a new node u where act i+1 stays now, in the

middle of the edge, to insert a new edge labeled with w[i+1] from there (see Figure 7.4,

right). Concrete examples of case (b2) can bee seen at the first and second steps in phase

#abab$ in Figure 7.5. After having making node u, it creates a new edge together with

a new leaf node v. These nodes u and v are all the nodes newly created in case (b2).

Sext Link of a Leaf Node

In both cases (b1) and (b2), it follows from Proposition 11 that the reversed suffix link

of a new leaf node v points to the last created leaf node v′. Suppose v is the jth created

leaf node and v′ is (j−1)th one during the construction of STree ′(w), where 2 ≤ j ≤ |w|.
Then the reversed suffix link of node v pointing to v′ is labeled by w[j−1], in formula,

rsuf [v, w[j−1]] = v′. We have the following proposition which concerns with the sext link

of v.

Proposition 12 Suppose that v and v′ are jth and (j−1)th created leaf nodes of STree ′(w),

respectively, where 1 ≤ j ≤ |w|. Then sext [v, w[j−1]] = v′ is the sole sext link of leaf node

v.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 78

a

#

a
a

#

#

#a:

#
#

#:

a

#

bbb
a#

#

#ab:

a

a

b aa

a
#

bbb
a#

#

#aba:

a

a

b
a

#abab:

a
a

a
#

bb
b

b
a#

#

a

a

b
a

b
b

#abab$:

a

a

a
bb

b
b
a#

#

#

a

a

ba

b

$

$

$

$
b

b

b

a

a

a
#

b
b

b
b
a#

#

#

a

a

b

a

b

$

$

$
$

b

b

b

$
a

a

$

a

a

a
#

b
b

b
b
a#

#

#

a

a

b

a

b

$

$

$
$

b

b

b

$
a

a

b

$

Figure 7.5: The on-line construction of STree ′(#abab$) with the sext links rep-
resented by the broken arrows. At the third step of phase #abab$,
the sext links form DAWG($baba#).

Proof. Since v is a leaf node, v is a substring which has occurred only once in w, as

a suffix. Because v is the jth suffix, it is preceded by w[j − 1] and w[j − 1] · v = v′.

Therefore, for any c ∈ Σ such that c �= w[j − 1], the string cv is not in Substr(w). �

For example, leaf node b is created in phase #ab of Figure 7.5, and it is the third one.

Therefore, rsuf [b, a] = sext [b, a] = ab, where a is the second character in string #abab$.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 79

Sext Links of an Internal Node

Since the leaf node v is the only node newly created in case (b1), the algorithm then

has only to do the above maintenance for node v. Meanwhile, because the node u is also

newly created in case (b2), we have to determine the sext links of u. Assume that in phase

w[1 : i] the internal node u is created in the middle of an edge between node s and node

r. It then results in that u has two children, r and v. If there exists a node u′ such that

suf [u′] = u, then let a be the character such that rsuf [u, a] = u′. Suppose there is a node

r′ such that sext [r, b] = r′ with b �= a. Then sext [u, b] is set to point to r′ as well, since

r′ =

w[1:i]
=⇒
bu in this case (remember the definition of sext links). For instance, at the first step

of phase #abab$ in Figure 7.5, u = ab, r = abab$ and r′ = sext [abab$, #] = #abab$.

Since rsuf [ab,#] is undefined, we define sext [ab,#] = #abab$. If b = a, then sext [u, b]

stays pointing to node u′, because obviously u′ =

w[1:i]
=⇒
bu =

w[1:i]
=⇒
au . For example, at the second

step of phase #abab$ in Figure 7.5, sext [bab$, a] = abab$. However, since rsuf [b, a] = ab,

sext [b, a] = ab. As previously remarked in the reason (ii) in Section 7.2.2, we also refers

to the sext link of leaf node v in order to determine the sext links of node u, in the same

way as mentioned above about the sext links of r. Formally, we have the following lemma.

Lemma 16 When an internal node u is newly created in phase w[1 : i] during the con-

struction of STree ′(w) with sext links, let r be the existing child node of u and v be the

new leaf node which is also a child of u. Then, sext [u, c] is created for each character c

such that either sext [r, c] or sext [v, c] was present at the beginning of the phase.

Proof. It follows from the definition that a node x has a sext link labeled by a character

c if and only if an occurrence of the string x is preceded by c. Note that the string u is

a suffix of the string w[1 : i], and that each of the occurrences of u within w[1 : i − 1] is

followed by the string α such that uα = r. Therefore, if there is an occurrence of u within

w[1 : i− 1] which is preceded by c, then the node r has a sext link labeled by c. On the

other hand, if c is the preceding character of the occurrence of u within w[1 : i] that ends

at the last character of w[1 : i], then the node v has a sext link labeled by c. �

On the other hand, if the active point arrives at a node when case (a) is applied, a

new sext link of the node is created. Suppose that, just after a leaf node v had been

created, the active point stopped on a node in phase w[1 : i] during the construction of

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 80

STree ′(w), where 1 ≤ i ≤ |w|. In addition, assume that v is the jth created leaf node,

where 1 ≤ j ≤ |w|. That is to say, v = w[j : i]. Notice that j ≤ i. After that, if the

active point stops on a node p with case (a) in the next phase, phase w[1 : i + 1], then a

sext link of node p which is labeled w[j] is created and set to point to node v, where v

now represents w[j : i + 1]. Let us clarify the reason for the above. Let u and u′ be the

parent nodes of v and p, respectively. Notice that then u · w[i : i + 1] = v = w[j : i + 1].

Furthermore, u′ ·w[i+1 : i+1] = u′ ·w[i+1] = w[j +1 : i+1] since suf [u] = u′. Namely,

node v currently represents w[j : i+1] and node p corresponds to w[j +1 : i+1]. That is

why sext [p, w[j]] = v. If the active point again stops on a node until the algorithm faces

case (b), the sext link of the node whose label is w[j] is created and set to point to the

leaf node v as well. A concrete example is shown in Figure 7.6.

Sext Links Pointing to a New Node

The only thing we have not accounted for yet is to change the sext links that point to the

newly created nodes u and v. Let us first mention the case of v, a new leaf node. The

following remark about a new leaf node v is common to case (b1) and case (b2). Whenever

a character w[i] appears in string w[1 : i] for the first time, a new edge labeled with w[i] is

created from the root node, and v is associated with w[i]. Then, sext [ε, w[i]] = v, because

the root node corresponds to the empty string ε. This can be seen in phases #, #a, #ab,

and #abab$ in Figure 7.5. If the character w[i] has already appeared in string w[1 : i−1],

then leaf node v should be pointed to by the leaf node which will be created next.

We now treat how to decide what sext link of STree ′(w[1 : i]) should be modified so

as to point to a newly created internal node u, in case (b2). Recall that node u has two

children r and v. Let us suppose that node r is pointed to by a c-labeled sext link of a

node p in STree ′(w[1 : j]) where j = i− 1, that is, sext [p, c] = r. In other words,
w[1:j]
=⇒
cp = r.

If |u| > |p|, then the sext link of p is modified so as to point to u (sext [p, c] = u), because
w[1:i]
=⇒
cp = u. A concrete example can be seen between phase #abab and phase #abab$ in

Figure 7.5. sext [ε, a] = abab in phase #abab is modified as sext [ε, a] = ab at the first

step of phase #abab$, where node ab is the internal node newly created in phase #abab$.

In another case (if |u| ≤ |p|), the sext link of node p remains pointing to node r, since
w[1:i]
=⇒
cp = r in this case. Similar discussion holds for the sext links pointing to node v, another

child of node u.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 81

a

a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaab:

a

a

b

a

a

a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaaba:

a
a

a

a

a

b

a

b

a

a

a
a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaabaa:

a
a

a

a

a

b

a

b

a

a

a

a

b

Figure 7.6: STree ′(#aaab) with the sext links is shown on the left. Node b is
the last created leaf node in that phase. Scanning a new character
a, the active point moves to node a, as seen in the center figure
STree ′(#aaaba). Then, sext [a, b] is set to point to the last created
leaf node ba. Also in the right figure representing STree ′(#aaabaa),
sext [aa, b] = baa, because the active point has arrived at node aa.

7.2.4 Correctness and Complexity of the Algorithm

The algorithm is summarized as Figure 7.7. If we compute the sext links of the nodes in

“STree ′(w) with sext links” according to the algorithm, we have the following:

Theorem 15 For any string w ∈ Σ∗, STree ′(w) with sext links can be constructed on-line

and in linear time and space with respect to |w|.

Proof. Since it has been proven in [73] that STree ′(w) can be obtained on-line and in

O(|w|) time, all we have to clarify are the correctness and complexity of the construction

of sext links. The data structure we newly add to the Ukkonen algorithm are the table

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 82

Algorithm Construction of STree ′(w$) with sext links
in alphabet Σ = {w[−1], . . . , w[−m]}.
1 create nodes root and ⊥;
2 for j := 1 to m do create a new edge (⊥, (−j,−j), root);
3 suf[root] := ⊥;
4 length(root) := 0; length(⊥) := −1;
5 (s, k) := (root , 1); i := 0;
6 lastleaf := nil; n := 0; /* lastleaf is the last (n-th) created leaf node */
7 repeat
8 i := i + 1;
9 (s, k, lastleaf, n) := update(s, (k, i), lastleaf, n);

10 until w[i] = $;

function update(s, (k, p), lastleaf, n):
1 oldr := nil; s′ := nil;
2 while not check end point(s, (k, p− 1), w[p]) do
3 if k ≤ p− 1 then /* implicit */
4 s′ := extension(s, (k, p− 1));
5 r := split edge(s, (k, p − 1));
6 else r := s; /* explicit */
7 create a new leaf node v and a new edge (r, (p, e), v);
8 /* e is the global variable representing the scanned length of the input string. */
9 let length(v) be e− n;

10 if oldr �= nil then set suffix link(oldr, r);
11 if lastleaf �= nil then set suffix link(lastleaf, v);
12 if r �= s then /* maintenance of sext links */
13 c := w[n];
14 if rsuf[r, c] = nil then sext[r, c] := sext[v, c];
15 for each character a such that sext[s′, a] �= nil do
16 if rsuf[r, a] = nil then sext[r, a] := sext[s′, a];
17 for each sext link sext[x, a] = s′ do /* modify sext links pointing to s′ */
18 if length(r) > length(x) then sext[x, a] := r;
19 oldr := r; lastleaf := v; n := n + 1;
20 (s, k) := canonize(suf[s], (k, p − 1));
21 if oldr �= nil then set suffix link(oldr, s);
22 (s, k) := canonize(s, (k, p));
23 if k > p then sext[s, w[n]] := lastleaf;
24 return (s, k, lastleaf, n);

procedure set suffix link(s, t):
1 let c be the first character of the string represented by s;
2 suf[s] := t; rsuf[t, c] := s; sext[t, c] := s;

Figure 7.7: The algorithm to construct “STree ′(w) with sext links”.
check end point , extension, canonize, and split edge are iden-
tical to those used in Chapter 4.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 83

sext and rsuf. It is clear that they require O(|Σ|·|w|) space. Therefore, if Σ is a fixed

alphabet, the space complexity of our algorithm is linear.

We have assumed that a string w ends with a unique end-marker $. After $ is scanned,

a new edge labeled with $ is absolutely created from the root node, and the corresponding

new leaf node is also created. After that, the sext link of the root node, which is labeled

$, is set to point to the new leaf node. Then, the chain formed by the sext links of all

the leaf nodes in STree ′(w) exactly spells wrev, i.e., the path of DAWG(wrev) which corre-

sponds to string wrev is then completed. This guarantees that the paths of DAWG(wrev)

corresponding to the suffixes of wrev are also created as the sext links of the internal nodes

of STree ′(w). This algorithm constructs DAWG(wrev) on-line, because new sext links are

computed each time a new node is created.

From here on, we establish the sext links can be computed in linear time with respect

to |w|. It is obvious that to decide the sext link of any new leaf node takes only constant

time. When we determine the sext links of a newly created internal node, we copy the

sext links of the two children of the new node. It takes O(|Σ|) time, since each of the two

children has at most |Σ| sext links. Therefore, if Σ is a fixed alphabet, it takes constant

time. The matter is the change of sext links due to a new-created internal node. Suppose

that, in phase w[1 : i], act i stays somewhere depth m in STree ′(w[1 : i]). At the beginning

of phase w[1 : i + 1], the algorithm begins to seek for the location where the active point

can stop. Then, at most m sext links are changed until the active point stops. This

implies that the overall complexity of the change of sext links due to new internal nodes

takes O(|w|) time. �

7.3 On-Line Construction of SCDAWGs

In this section, we propose how to construct SCDAWG for a string w, on-line in O(|w|)
time. Define CDAWG ′(w) and SCDAWG ′(w) in a similar way to the definition of

STree ′(w). Our on-line algorithm builds CDAWG ′(w) in the same way as in [39], and

builds certain edges of CDAWG(wrev) as the sext links of the nodes of CDAWG ′(w).

We stress that the algorithm of [39] is based on the Ukkonen suffix tree construction

algorithm. This implies, if we add the functions “redirect” and “separate node” in [39]

to the pseudo-code of the algorithm in Section 7.2, we obtain CDAWG ′(w). The mat-

ter is how to build the edges of CDAWG(wrev), the sext links of CDAWG(w), of course.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 84

However, we fortunately have the fact that CDAWGs can have “the same amount of infor-

mation” as suffix trees. The loss of information comes from the property that CDAWGs

have a node having two or more incoming edges, which correspond to two or more nodes

connected by suffix links in suffix trees. Namely, the lost information is strings obtained

by concatenating labels of some suffix links. One hint has been given in [26] as an exercise.

Furthermore, the CDAWG construction algorithm in [39] is capable of storing the “lost”

information as integers in nodes. Notice that if we can treat CDAWGs like suffix trees, it

means we can obtain the sext links of CDAWGs.

In the following subsections, we show how the algorithm of Section 7.2 should be

changed when constructing CDAWGs, by using examples. If again turning our attention

to the pseudo-code of Figure 7.7, the 7th line of update function is changed to as “create

a new edge (r, (p, e), sink);” and labels of reversed suffix links and sext links can be of

strings, not a character.

7.3.1 Sext Link Corresponding to a Newly Created Edge

A sequence of snapshots on the on-line construction of SCDAWG ′(#abab$) is shown

in Figure 7.8. Since character a has appeared in string #a, the edge labeled with a

is created and directed to the final node in phase #a. After that, the sext link of the

initial node labeled with a# is set to point to the final node. Comparing it with the

corresponding phase in Figure 7.5, one can see that character # in the label a# of the

CDAWG corresponds to the label # of the sext link from the leaf node a to node #a

of the suffix tree in the phase #a. In general, in phase w[1 : i] of the construction of

CDAWG ′(w), the representative of the final node is w[1 : i]. Assume that an edge is then

created from a node u and it is the jth edge entering to the final node, where 1 ≤ j ≤ i.

Then, the jth edge is associated with w[j : i]. There then exists a “gap” w[1 : j − 1]

between the representative w[1 : i] and w[j : i]. Notice that this “gap” corresponds to the

reversal of the concatenation of the labels of the sext links between leaf node w[j : i] and

leaf node w[1 : i] in STree(w[1 : i]). On the grounds of this gap w[1 :j − 1], a new sext link

of node u is set to point to the final node with label (w[1 :j])rev.

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 85

$$ $b
a

a
b

b
a

a

b

#

#

#

b

b b
a
#

a a

b
a

a
bb

a

a b
a
#

a
#

#

b

b
a

b

#abab:

a

a
bb

a

a b
a
#

a
#

#
b

a

#aba:

$
$

$$b
a

a
b

b
a

a
b
a
#

a

#

#

b

b
a

b
b
a
#

#abab$:

a
bb

a b
a
#

a#
b

#ab:

aa
a##
#

#a:

##

#:

a
b

bba a

$
$

$

$b
a

b
a

a

b
a
#

#

#

#

b b
a
#

b
a

$

Figure 7.8: The on-line construction of SCDAWG ′(w), where w = #abab$. The
solid arrows represent the edges of CDAWG ′(w), whereas the broken
arrows represent the sext links of the nodes of CDAWG ′(w), that are
equivalent to the edges of CDAWG(wrev).

7.3.2 Change of Sext Links

See phases #abab and #abab$ in Figure 7.8. The active point stays on the middle of

the edge labeled abab in phase #abab, and the edge is split into two edges due to the

creation of the new edge labeled $. Notice that the sext link labeled with a# is also cut

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 86

b

a
bb

a

a

b

a
#

a#
#

b

b

b

#abba:

b

a
b

b
a b

a
#

a
#

#
b
b

b

#abb:

a aa b
a
#

Figure 7.9: CDAWG ′(#abb) and CDAWG ′(#abba) with their sext links. The
sext link sext [ε, ba#] is cut into two sext links sext [ε, b] and
sext [b, a#].

into two. One labeled with a is set to point to the new node ab, and the other labeled

is set from node ab. It is because
w[1:6]
=⇒
εa = ab and

w[1:6]
=⇒
#ab = #abab$ in this time, where

w[1 : 6] = #abab$.

What if a sext link, whose label is of length more than 1, is cut? See Figure 7.9

that displays CDAWG ′(#abb) and CDAWG ′(#abba). There is a sext link of the initial

node pointing to the final node, which is labeled with ba# in CDAWG ′(#abb). At the

beginning of the conversion to CDAWG ′(#abba), a new node b is created where the active

point currently stays. Then, the sext link labeled ba# is cut and its former part is set

to point to the new node b, labeled with b. In general, if a new node is created in the

middle of an edge, the sext link corresponding to the edge is cut into two, and its former

part is labeled with the single initial character of the label of the cut sext link. It does

not depend on the length of the label of the sext link to be cut.

To realize the operation above mentioned, we need to associate the sext link labeled

ba# with string bb in the final node, where bb is not the representative of the final node.

This is because if we associate that just with the representative, like sext [ε, ba#] = #abb,

we cannot recognize which sext link pointing to the final node should be cut owing to the

newly created node (notice there exist other sext links from the initial node to the final

node). Therefore, we make a sext link point to a string represented in a certain node, not

to the representative. For example, on CDAWG ′(#abb) in Figure 7.9, sext [ε, #] = #abb,

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 87

a
b bba

a

cc
cc

b

b
a

b
a

a

b
a
#

#

#

#

b

b b
a
#

b
a

c

a
b

bba a

cc

c

cb
a

b
a

a

b
a
#

#

#

#

b b
a
#

b
a

c

#ababcb:#ababc:

c
b
a

b b
b

c
b

Figure 7.10: CDAWG ′(#ababc) and CDAWG ′(#ababcb) with their sext links.

sext [ε, a#] = abb, sext [ε, ba#] = bb.

As seen in phase #abab$ of Figure 7.8, the edge labeled with bab$ is merged into

the node ab and its label is modified to b. According to it, sext [ε, ba#] = bab$ becomes

sext [ε, ba] = b. The character a at the tail of label ba of the sext link corresponds to the

label of the sext link from node b to ab in STree(#abab$) in Figure 7.5.

Figure 7.10 displays a node separation that can happen during the construction of

CDAWGs. In Figure 7.10, as the active point arrives at node ab via the edge labeled b

which belongs to a non-longest path from the initial node to the node ab, the node is

cloned as seen in the CDAWG ′(#ababcb). Then, sext [ε, ba] = b in CDAWG ′(#ababc) is

cut into two, one of which is sext [b, a] = ab and the other sext [ε, b] = b.

7.3.3 Implementation of Substrings Represented in a Node

As is mentioned above, a sext link in CDAWG ′(w) is set to point to a certain substring of

w represented in a node. However, if we actually implement all of such strings naively, the

space requirement can be quadratic. Therefore, we implement them with integers referring

to the positions in the input string w. Suppose that the representative of a node p is α in

CDAWG ′(w[1 : i]) for 1 ≤ i ≤ |w|. Then, node p has integers j and k (1 ≤ j ≤ k ≤ i) such

that α = w[j : k] where j represents the beginning position of the left most occurrence

CHAPTER 7. ON-LINE CONSTRUCTION OF SYMMETRIC CDAWGS 88

of α in w[1 : i]. In addition to it, each edge entering node p has an integer representing

the entrance order to node p. See the left figure in Figure 7.10, CDAWG ′(#ababc). For

example, the edge labeled ab is the first one and the edge labeled b is the second one

entering to node ab. Note that, in CDAWG ′(#ababc), the edge labeled abc entering to

the final node represents two substrings ababc and babc, which are the second and the

third members of the final node, respectively. Thus the edge labeled abc is associated

with the set {2, 3}. In this way, the edges entering to the final node are associated with

the sets {1}, {2, 3}, {4, 5}, {6} from left to right. In general, an edge in a node may

correspond to more than two strings represented in the node. However, the truth is that

such strings always occur sequentially in string w, for any w. Therefore, even if an edge

corresponds to more than two strings, we can represent all of them with a pair of integers,

the minimum and the maximum elements in the set associated with. As a result of the

above discussions, we now have:

Theorem 16 For any string w ∈ Σ∗, SCDAWG for w can be constructed on-line in

linear time and space with respect to |w|.

Chapter 8

Bidirectional Construction of Suffix

Trees

Among the index structures we have mentioned so far, suffix trees are for sure most

widely-known and extensively-studied [16, 26], perhaps because there are a ‘myriad’ of

applications for them [4]. Construction of suffix trees has been studied in various contexts:

Weiner [77] invented the first algorithm that constructs suffix trees in linear time; Mc-

Creight [55] proposed a more space-economical algorithm; Chen and Seiferas [12] showed

an efficient modification of Weiner’s; Ukkonen [73] introduced an on-line algorithm to

construct suffix trees, which Giegerich and Kurtz [24] regarded as “the most elegant”;

Farach [21] considered optimal construction of suffix trees with large alphabets; Bres-

lauer [11] gave a linear-time algorithm for building the suffix tree of a given trie that

stores a set of strings; Shibuya [62] considered construction of the suffix tree for a trie

with a large alphabet; Kurtz [47] pursued reducing space requirement of suffix trees.

In this paper we explore bidirectional construction of suffix trees. Namely, the al-

gorithm we propose allows us to update STree ′(w) to STree ′(xwy) with any strings

x, y, w ∈ Σ∗. We also show that our algorithm runs in linear time and space with re-

spect to the length of a given string.

Bidirectional construction of suffix trees was first considered by Stoye [66, 67]. His

strategy was to modify the definition and structure of suffix trees so that they become more

“adequate” in terms of bidirectional construction, and the resulting modified structure

was named affix trees. His original algorithm to construct affix trees does not perform in

linear time, unfortunately, but Maaß [51] later on improved the algorithm so as to run

in linear time. Another good feature of affix trees is that the affix tree of any string w

89

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 90

also supports the indices of wrev, the reversal of w. On the other hand, it is a well-known

and beautiful property that the suffix tree of any string w and the DAWG of wrev can

share the same nodes, as well. We will show that the combination of this work and the

algorithm given in Chapter 7 enables us to construct and update both structures in a

bidirectional manner.

The size of affix trees is, of course, linear. However, for any string w the number of

nodes in the suffix tree for w is less than or equal to that of the affix tree. Namely, this

work contributes to reducing space requirements necessary for bidirectional construction

of a data structure that supports dual indices of a given string.

This result primarily appeared in [34].

8.1 Bidirectional Construction of Suffix Trees

8.1.1 Right Extension

Assume that we have STree ′(w) with some w ∈ Σ∗. Now we consider updating it into

STree ′(wa) with a ∈ Σ, by inserting the suffixes of wa into STree ′(w). By Theorem 6

it is clear that, for any a ∈ Σ and w ∈ Σ∗, STree ′(w) can be updated to STree ′(wa) in

amortized constant time. See Figure 4.2 that shows the construction of STree ′(cocoa)

with right extension.

Here we only recall essence of Ukkonen’s algorithm together with some supporting

lemmas and propositions. Recall Definition 19 for LRS (w) with w ∈ Σ∗.

Lemma 17 Let a ∈ Σ and w ∈ Σ∗. Let y = LRS (w). For any string x ∈ Suffix (w) −
Suffix (y),

wa
=⇒
x =

w
=⇒
x · a.

Proof. Since y = LRS (w), any string x ∈ Suffix(w)− Suffix (y) appears only once in w

as a suffix of w, and is therefore
w

=⇒
x = x. Also, x is followed only by a in wa, and thus

wa
=⇒
x = xa. �

The above lemma implies that a leaf node of STree ′(w) is also a leaf node in STree ′(wa).

Thus we need no explicit maintenance for leaf nodes. Namely, we can insert all strings of

Suffix (w)−Suffix(y) into STree ′(w) automatically (for more detail, see Section 4.2). Now

we can focus only on the suffixes of LRS (wa).

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 91

Proposition 13 Let a ∈ Σ and w ∈ Σ∗. Let y = LRS (w) and z = LRS (wa). For any

string x ∈ Suffix (y)− Suffix(z)a−1,
wa
=⇒
x = x.

Proof. Since x ∈ Suffix (y), x has appeared at least twice in w. Because x /∈
Suffix (z)a−1, xa /∈ Suffix (z). These facts imply the existence of b ∈ Σ such that

xb ∈ Substr(w) and b �= a. Consequently, we have
wa
=⇒
x = x. �

The above proposition implies that if x ∈ Suffix (y),
w

=⇒
x �= x (

w
=⇒
x is implicit in STree ′(w)),

and
wa
=⇒
x = x (

wa
=⇒
x will be explicit in STree ′(wa)), a new explicit node

wa
=⇒
x = x has to be

created in the update of STree ′(w) to STree ′(wa). Plus, a new leaf node
wa
=⇒
xa = xa is

created with the new edge (
wa
=⇒
x , a,

wa
=⇒
xa). Owing to the eliminator symbol ξ of Definition 18,

we can establish the following lemma.

Lemma 18 Let a ∈ Σ and w ∈ Σ∗. Let y = LRS (w) and z = LRS (wa). Assume

x ∈ Suffix (y)−Suffix (z)a−1. Suppose t is the longest string in Prefix (x) such that

w
=⇒
t = t.

Let x′ = Suffix (x) with |x′|+ 1 = |x|, and t′ = Suffix (t) with |t′|+ 1 = |t|. For the string

α ∈ Σ∗ such that tα = x, t′α = x′.

Notice that we can reach string x′ via the suffix link of the node for t in STree ′(w) and

along the path spelling out α from the node for t′ (recall Definition 16). For instance,

see the 1st and 2nd phases for cocoa in Figure 4.2. After creating new explicit nodes
w

=⇒
co and

w
=⇒
coa, the star mark goes backward to the parent node of

w
=⇒
co, which is the root

node
w

=⇒
ε . Then it moves to ⊥ node via the suffix link of

w
=⇒
ε , and goes down along edges

with spelling out co. The star mark is now on the location for o, where a new explicit

node will be created in the next phase. This operation is continued until the star mark

reaches LRS (cocoa). Ukkonen [73] proved that the amortized cost of this operation is

constant, on the assumption that every edge label α of STree ′(w) is actually implemented

by a pair (i, j) of integers such that the substring of w beginning at position i and ending

at position j is α.

8.1.2 Left Extension

Weiner [77] proposed an algorithm to construct STree(aw) by updating STree(w) with

a ∈ Σ in amortized constant time. On the other hand, what we treat here is the conversion

of STree ′(w) into STree ′(aw). From here on we delve in what happens to STree ′(w) when

updated to STree ′(aw).

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 92

Lemma 19 Let a ∈ Σ and w ∈ Σ∗. For any string x ∈ Substr(w)−Prefix (aw),
w

=⇒
x =

aw
=⇒
x .

Proof. Since x /∈ Prefix (aw), there is no new occurrence of x in aw. Thus we have

[x]′L
w

= [x]′L
aw

. �

The above lemma ensures that any implicit node of STree ′(w) does not become explicit

in STree ′(aw) if it is not associated with any prefix of aw.

Now we turn our attention to the strings in Prefix (aw). Basically, we have to insert

prefixes of aw into STree ′(w) in order to obtain STree ′(aw). However, no strings in set

Substr(w) ∩ Prefix (aw) need to be newly inserted since they are already in STree ′(w).

Definition 26 Let a ∈ Σ and w ∈ Σ∗. The longest repeated prefix (LRP) of aw is the

longest element of set Substr(w) ∩ Prefix (aw).

The LRP of aw is denoted by LRP(aw). In updating STree ′(w) to STree ′(aw), we have

to insert all prefixes of aw that are longer than LRP(aw), into STree ′(w).

Lemma 20 Let a ∈ Σ and w ∈ Σ∗. For any x = Prefix (aw)− Substr(w),
aw
=⇒
x = aw.

Proof. String x is a prefix of aw which is longer than LRP(aw). This implies that

there is no occurrence of x in w. Therefore x appears in aw exactly once as a prefix of

aw, meaning there exists a unique character that follows x in aw. Hence
aw
=⇒
x = aw. �

The above lemma means that, simply by adding the new leaf node
aw
=⇒
aw = aw to STree ′(w),

we can obtain STree ′(aw). Moreover, the in-coming edge of the leaf node
aw
=⇒
aw will be

inserted from the node that corresponds to LRP(aw). We now clarify what happens to

LRP(aw) when the new prefixes of aw are inserted to STree ′(w).

Proposition 14 Let a ∈ Σ and w ∈ Σ∗. Let x = LRP(aw) and y = LRS (w). If

x /∈ Suffix (w)− Suffix (y), then
aw
=⇒
x = x. Otherwise,

aw
=⇒
x = aw.

Proof. We first consider the case that x /∈ Suffix (w)− Suffix (y). Recall that x is the

longest string in Substr(w) ∩ Prefix (aw). Moreover, x /∈ Suffix(w) − Suffix (y). Hence,

there exist two characters b, c ∈ Σ such that xb, xc ∈ Substr(aw) and b �= c. Thus we

have
aw
=⇒
x = x.

Now we consider the second case, x ∈ Suffix (w)− Suffix (y). Here, x occurs only once

in w as its suffix. Thus
w

=⇒
x = x. On the other hand, by the definition of LRP(aw), we

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 93

obtain x ∈ Prefix (aw)− {aw}. Therefore, there uniquely exists a character d ∈ Σ which

follows x in aw. Hence we have
aw
=⇒
x = aw. �

The above proposition implies that if LRP(aw) does not correspond to a leaf node of

STree ′(w), it will be represented by an explicit node in STree ′(aw), and otherwise, it

becomes implicit in STree ′(aw) (see the 3rd and 4th steps of Figure 8.3 to be shown

later on). We stress that this characterizes a difference between STree ′(w) and STree(w).

More concretely, Weiner’s original algorithm constructs STree(aw) on the basis of the

next proposition.

Proposition 15 For any a ∈ Σ and w ∈ Σ∗, if x = LRP(aw), then
aw−→x = x.

Now the next question is how to locate LRP(aw) in STree ′(w). Our idea is similar

to Weiner’s strategy for constructing STree(w). Let y be the longest element in set

Prefix (w) ∪ {ξ} such that ay ∈ Substr(w). Then y is called the base of aw and denoted

by Base(aw).

Lemma 21 (Weiner [77]) Let a ∈ Σ and w ∈ Σ∗. If y = Base(aw), then ay =

LRP(aw).

Proof. Assume contrarily that y′ is the string such that ay′ = LRP(aw) and |y′| > |y|.
By the definition of LRP(aw), we have ay′ ∈ Prefix (aw), which yields y′ ∈ Prefix (w). It,

however, contradicts the precondition that y = Base(aw) since |y′| > |y|. �

According to the above lemma, Base(aw) can be a clue to locating LRP(aw) in STree ′(w).

Let z be the longest element in set Prefix (w) ∪ {ξ} such that
w

=⇒
az = az. Then z is

called the bridge of aw and denoted by Bridge(aw).

Lemma 22 Let a ∈ Σ and w ∈ Σ∗. If x = LRP(w), y = Base(aw) and z = Bridge(aw),

then y ∈ Prefix (x) and z ∈ Prefix (y).

Proof. By Lemma 21 we have ay = LRP(aw). It is easy to see that |LRP(aw)| ≤
|LRP(w)| + 1, which implies |y| ≤ |x|. Now we obtain y ∈ Prefix (x). It can be readily

shown that az ∈ Prefix (ay), since ay = LRP(aw). Thus we have z ∈ Prefix (y). �

Let y = Base(aw) and z = Bridge(aw). Assume γ ∈ Σ∗ is the string satisfying zγ = y.

Then, we have azγ = LRP(aw) by Lemma 21 and Lemma 22.

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 94

α

β

γ

x = LRP(w)

y = Base(aw)

z = Bridge(aw) a az

γ

β
α

w

LRP(aw) = azγ = ay

aw

ε

Figure 8.1: In STree ′(w) we start from LRP(w) and go up until Bridge(w). Then
we move to az and go down along the path spelling out γ. We are
now on the location for LRP(aw), and from there we insert a new
edge labeled with βα. Now all prefixes of aw are inserted, we have
STree ′(aw).

The detection of LRP(aw) in STree ′(w) is illustrated in Figure 8.1. We start from

LRP(w) and then go up the path backward until encountering Bridge(aw). We move to

the node for az and go down the path spelling out γ, and now we are at the location for

LRP(aw). Finally we insert a new edge labeled with βα from the location for LRP(aw)

due to Lemma 20, and the resulting structure is STree ′(aw). The dashed arrow from

Bridge(aw) = z to az is the labeled reversed suffix link of z. The set F ′ of the links of

STree ′(w) is defined as follows.

F ′ = {(
w

=⇒
x , a,

w
=⇒
ax) | x, ax ∈ Substr(w), a ∈ Σ, and

w
=⇒
ax = a ·

w
=⇒
x }.

Observe that there is a one-to-one correspondence between F and F ′ for STree ′(w) (see

Definition 9).

In order that we can find Base(aw) efficiently, we maintain a table for each explicit

node, as well as Weiner’s algorithm. For every explicit node this table can be computed

in constant time and space for any fixed alphabet. Note that, however, Base(w) can

sometimes be associated with an implicit node in STree ′(w). The following lemma shows

a property of Base(w) when it is implicit in STree ′(w).

Lemma 23 Let a ∈ Σ and w ∈ Σ∗. Let y = Base(aw). If y �=
w

=⇒
y , then y = LRS (w).

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 95

Proof. Since ay = LRP(aw), y appears at least twice in w. We now consider the

following three cases.

1. All occurrences of y in w are followed by same character b. In this case, string yb

turns out to be a prefix of w that is longer than y and appears more than once in

w. It means that y �= Base(w), which is a contradiction.

2. There exist at least two distinct characters b, c such that yb, yc ∈ Substr(w). In this

case,
w

=⇒
y = y, a contradiction.

3. One occurrence of y in w is followed by no character. This implies that y is a suffix

of w.

Therefore only the third case is possible. This case, we have y ∈ Suffix (w) and y ∈
Prefix (w), which implies that y is the longest string satisfying the condition. Therefore,

y = LRS (w). �

Since y = LRS (w), it is guaranteed that
w

=⇒
ay = ay. We hereby regard y as Bridge(w) and

maintain the labeled reversed suffix link of LRS (w), which is always associated with the

shortest leaf node of STree ′(w).

By a similar argument to [77], it can be established that the amortized amount of time

needed for the detection of LRP(aw) in STree ′(w) is constant, again on the assumption

that every edge label is implemented by a pair of integers.

We now have the following theorem.

Theorem 17 For any a ∈ Σ and w ∈ Σ∗, STree ′(w) can be updated to STree ′(aw) in

amortized constant time.

Figure 8.2 shows the construction of STree ′(cocoa) with left extension.

8.1.3 Mutual Influences

Here, we consider mutual influences between right extension and left extension of suffix

trees. The next lemma shows what happens to LRP(w) when STree ′(w) is updated to

STree ′(wa).

Lemma 24 Let a ∈ Σ and w ∈ Σ∗. Assume LRP(w) = LRS (w). Let x = LRS (w). If

xa ∈ Prefix (w), then LRP(wa) = xa.

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 96

o

a

o

o

Σ

a
o

c
o

c

c

o

o

a

a
a

a

Σ
ocoa

Σ Σ

o

a
c
o
a

a

o

a
c
o
a

o

o

cocoa

c

c

Σ

ε
Σ Σ

a

Σ

a

a

Σ Σ

a

o
a o

oa

a

aa

Σ

c
o
a

Σ

a

o
a o

coa

a

a

Figure 8.2: The construction of STree ′(w) with left extension, where w = cocoa.
The triangle mark represents the longest repeated prefix of each suffix
tree. The ⊥ node corresponds to the eliminator symbol ξ. The Σ
symbol represents any character in the alphabet.

Proof. Since xa ∈ Prefix (w), LRS (wa) = xa. Thus xa = LRP(wa). �

This lemma shows when and where LRP(wa) moves from the location of LRP(w) ac-

cording to the character a newly added to the right of w (see the 5th step in Figure 8.3).

Examining the precondition, “if xa ∈ Prefix (w)”, is feasible in O(|Σ|) time, which is

regarded as O(1) if Σ is a fixed alphabet.

The following lemma stands in contrast to Lemma 24.

Lemma 25 Let a ∈ Σ and w ∈ Σ∗. Assume LRP(w) = LRS (w). Let x = LRP(w). If

ax ∈ Suffix (w), then LRS (aw) = ax.

This lemma shows when and where LRS (aw) moves from the location of LRS (w) ac-

cording to the character a newly added to the left of w. Examining the precondition, “if

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 97

ax ∈ Suffix (w)”, is also possible in O(|Σ|) time, and moving from LRS (w) to LRS (aw)

is possible in constant time by the use of the labeled reversed suffix link of LRS (w) (see

the 3rd and 4th steps of Figure 8.3).

As a result of discussion, we finally obtain the following:

Theorem 18 For any string w ∈ Σ∗, STree ′(w) can be constructed in bidirectional man-

ner and in O(|w|) time.

A bidirectional construction of STree ′(w) with w = ababac is displayed in Figure 8.3.

8.2 Concluding Remarks

We introduced an algorithm for bidirectional construction of suffix trees, which performs

in linear time. This is a counterpart of the algorithm of Stoye [66] for bidirectional

construction of affix trees. We stress that our new algorithm requires less space than

Stoye’s.

An interesting fact is that the tables for finding Base(w) used in Weiner’s algo-

rithm [77] correspond to the edges of DAWG(wrev) [16]. This implies that our algorithm

is also able to update a DAWG to the right direction. On the other hand, Chapter 7 pre-

sented a linear-time algorithm that constructs not only STree ′(w) but also DAWG(wrev)

in a left-to-right on-line manner, which is based on the algorithm by Ukkonen [73]. This

algorithm enables us to update a DAWG to the left direction. Therefore, the algorithm

of this paper turns out to be adaptive to bidirectional construction of DAWGs.

An interesting open problem is whether or not linear-time bidirectional construction of

CDAWGs is possible. It can be done in amortized constant time to convert CDAWG(w)

into CDAWG(wa) by the use of the algorithm of Chapter 4. However, we conjecture

that the conversion of CDAWG(w) to CDAWG(aw) would not be possible in (amortized)

constant time (also see Chapter 11). Still, there might remain a possibility to construct

CDAWGs in a right-to-left on-line manner. That is, a chunk of characters x (namely

a string x) are at once appended to the left of the current string w, so that updating

CDAWG(w) to CDAWG(xw) can be done in amortized constant time (this case we would

not obtain CDAWG(vw) for every proper suffix v of x excepting v = ε). However, we are

at the moment unsure if such convenient selection of the length of x is really possible or

not.

CHAPTER 8. BIDIRECTIONAL CONSTRUCTION OF SUFFIX TREES 98

abab

b

Σ
Σ

a
b

a
b

b

a

a
b

ababa

b

Σ
Σ

a
b

a
b

b

a

a

b
a

a

ababac

b

Σ
Σ

a

b

a

b

b

a

a

b
a

a

c

c c

c c

c

a

b

a

c

a

b

a

ε

Σ
Σ

a

Σ
Σ

a
a

ab

b
b

Σ
Σ

a
b

a

b

bab

Σ
Σ

a
b

a

a
b

b

Figure 8.3: A bidirectional construction of STree ′(w) with w = ababac. Solid
arrows represent edges, and dotted arrows denote labeled reversed
suffix links. On Right Extension, the labeled reversed suffix links
are used for another direction, that is, as “normal” suffix links. In
each suffix tree, the triangle (resp. star) indicates the location of the
longest repeated prefix (resp. suffix). The character newly added in
each step is underlined.

Chapter 9

Generic Construction of Index

Structures

When constructing an index structure for a given text string w, what is required primarily

is to build it in time linear in the length of w. To do so, much attention and effort has

been paid so far [77, 55, 12, 73, 9, 10, 18]. From viewpoints of practice and algorithmics,

it is also very important to construct an index structure in on-line manner, where, for

example, we can obtain STree ′(wa) only with small change of appending new character

a to STree ′(w). If it is off-line, we have to construct STree ′(wa) from scratch, even

if we had STree ′(w) beforehand. Therefore, an on-line algorithm constructs an index

structure very efficiently, and it allows us to update the input string. Another important

factor in constructing an index structure is to build it for a set of strings efficiently. Once

constructing index structures for all strings in the set, by merging them it may be possible

to obtain an index structure for the set. However, the method is rather straightforward

and inefficient, and takes us considerably much time and space. Hence an algorithm that

can directly build an index structure for a set of strings is truly helpful.

Each index structure is suitable to solve particular problems. For example, STree(w)

is optimal to find all occurrences of a given pattern p in a text w [26], DAWGs are a good

structure to find the longest common substring of two strings [15], CDAWGs are ideal

when we want to save memory space, since its space complexity is strictly smaller than

those of the other index structures [10]. Therefore, we should need every index structure

in order that we can deal with various sorts of problems. The matter is, however, that

we then have to implement at least four different algorithms, as there exist four index

structures.

99

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 100

We are thereby been motivated to get rid of this trouble, and finally succeed unifying

the four distinct algorithms, each of which constructs suffix tries, suffix trees, DAWGs,

and CDAWGs, respectively. That is, we produce a generic algorithm that is capable of

constructing any of them. The algorithm is endowed with all the desired properties: it

runs on-line and in linear time, and can apply to a set of strings. However, as an exception

construction of suffix tries cannot always be done in linear time since they can require

quadratic space.

A complete pseudo-code of our algorithm is shown in Figure 9.1, Figure 9.2, Figure 9.3

and Figure 9.4. We have marked each line with four symbols: there, ♣ (♠, ♥ and ♦,

resp.) indicates the lines that can be executed when suffix tries (suffix trees, DAWGs,

and CDAWGs, reps.) are constructed. It has succeeded revealing the essential common

points and separating the small differences among the typical algorithms [73, 9, 39]. In

fact, all the control blocks are exactly the same and all differences can be packed into the

only one procedure in Figure 9.2 that creates a new edge. This means that we can choose

which index structure to build, only by ‘switching’ the procedure.

Furthermore, by comparing the definitions of index structures given in Chapter 3 with

the algorithm proposed here, some correspondence between them are revealed. Thus, in

a sense we provide an algorithmic unified view for the index structures.

This result was also reported in [38].

Our algorithm to be shown later on constructs STree ′(S) and CDAWG ′(S) rather

than STree(S) and CDAWG(S), since it processes input strings in on-line manner. In

the following, we explain the algorithm starting with the common part to every index

structure, and then we separately give an exposition for the different part.

9.1 Construction of an Index Structure for a Single

String

We firstly consider the case that the input of the algorithm is a single string w ∈ Σ∗.

Let Index (w[1 : i]) be an arbitrary index structure of string w[1 : i] for 1 ≤ i ≤ |w|.
Our algorithm updates Index (w[1 : i]) to Index (w[1 : i + 1]) by inserting the suffixes of

w[1 : i + 1] into Index (w[1 : i]). Recall Definition 19 of the LRS, given in Section 4.1.

Remember the suffixes of w[1 : i + 1] can be divided into the following two groups, by

LRS (w[1 : i + 1]).

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 101

♣♠♥♦ Algorithm Construction of an index structure on Σ = {w[−1], . . . , w[−m]}.
♣♠♥♦ 1 create nodes root and ⊥;
♣♠♥♦ 2 for j := 1 to m do create a new edge (⊥, (−j,−j), root);
♣♠♥♦ 3 suf (root) := ⊥; suf (⊥) := nil /* suffix link */
♣♠♥♦ 4 length(root) := 0; length(⊥) := −1;
♣♠♥♦ 5 (s, k) := (root , 1); i := 0; h := 1; (t, q) := (root , 1);
♣♠♥♦ 6 repeat
♣♠♥♦ 7 i := i + 1;
♣♠♥♦ 8 ((s, k), (t, q)) := update((s, k), (t, q), i);
♣♠♥♦ 9 if w[i] = endmarker then
♣♠♥♦ 10 h := h + 1;
♣♠♥♦ 11 (t, q) := (root , i + 1);
♣♠♥♦ 12 until w[i] = EOF;

Figure 9.1: Main routine of our algorithm. ♣ (♠, ♥ and ♦, resp.) indicates the
lines that can be executed when suffix tries (suffix trees, DAWGs,
and CDAWGs, reps.) are constructed.

(1) Suffixes w[h : i + 1] for 1 ≤ h ≤ j where w[j + 1 : i + 1] = LRS (w[1 : i + 1]).

(2) Suffixes w[l : i + 1] for j + 1 ≤ l ≤ i + 2.

The group (2) is empty in such case that LRS (w[1 : i+1]) = ε, that is, in case j+1 = i+2.

Notice that we need not newly insert any suffixes in case (2), simply because they

have already been represented in Index (w[1 : i]). Meanwhile, we insert each suffix of case

(1) into Index(w[1 : i]), from w[1 : i + 1] to w[j : i + 1]. Let us call the start point of

Index (w[1 : i + 1]) the location where LRS (w[1 : i]) is represented in Index (w[1 : i + 1]),

and call the end point of Index (w[1 : i + 1]) the location where LRS (w[1 : i + 1]) is

represented in Index (w[1 : i + 1]). The suffixes of case (1) can moreover be divided into

the following two sub-cases by integer j′.

(1-a) Suffixes w[h′ : i + 1] for 1 ≤ h′ ≤ j′ where LRS (w[j′ + 1 : i]) = w[1 : i].

(1-b) Suffixes w[h′′ : i + 1] for j′ + 1 ≤ h′′ ≤ j.

The main routine of our algorithm is shown in Figure 9.1. In the algorithm, an edge

(u, α, v) is represented by (u, (k, p), v) such that k (resp. p) represents a beginning position

(resp. an ending position) of the label in the input string w. The main routine calls

function update , shown in Figure 9.2, each time a new character is scanned. function

update plays the main role to update the index structure with a newly scanned character.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 102

In update the suffixes of case (1) are inserted, while it is checked whether or not

the suffix currently focused on is LRS (w[1 : i + 1]). This is examined by function

check end point , in the 2nd line of function update. In the 12th line a new edge is

created for each of the suffixes in case (1), and the way to do it depends on which index

structure we are constructing, as shown in the lower part of Figure 9.2. The detail of

the dependence will be mentioned in the sequel. The location from which the algorithm

should insert each suffix of case (1) is called the active point for the suffix. Where the

active point should start on updating the structure also depends on which index structure

we are constructing.

Now suppose that we have just before finished inserting a suffix w[h : i + 1] where

j′ + 1 ≤ h ≤ j − 1, which is in case (1-a). Then, in the 15th line of function update the

active point is moved to the location where the string w[h + 1 : i + 1] is associated, via

the suffix link. The reference pair for w[h + 1 : i + 1] is then canonized by the function

canonize. This operation is continued until LRS (w[1 : i+1]), i.e. the end point, is found.

What we mentioned above are common to all the four index structures. From now on,

let us treat the differences, CreateNewEdge .

9.1.1 CreateNewEdge in Case of Constructing Suffix Tries

Assume that we now have STrie(w[1 : i]). First, we insert the suffixes of case (1-a) into

the suffix trie. Definition 8 tells that every edge of a suffix trie must be labeled with a

single character. Therefore, from each leaf node of STrie(w[1 : i]) a new edge labeled by

w[i + 1 : i + 1] is created together with a new leaf node. This way the suffixes of case

(1-a) are inserted. The update of STrie(w[1 : i]) to STrie(w[1 : i+1]) should begin at the

node w[1 : i]. We call this location the advanced point of STrie(w[1 : i]). The active point

was reset to node w[1 : i] after the construction of STrie(w[1 : i]) had been finished, and

this was done in the 19th line of update. Second, we insert the suffixes of case (1-b). By

creating new edges labeled by w[i + 1 : i + 1] from nodes w[h : i] where j′ + 1 ≤ h ≤ j,

they are inserted.

9.1.2 CreateNewEdge in Case of Constructing Suffix Trees

Assume that we now have STree ′(w[1 : i]). Recall Definition 9. A careful consideration

reveals the fact that any leaf node of STree ′(w[1 : i]) will also be a leaf node in STree ′(w[1 :

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 103

k]) for any k where i + 1 ≤ k ≤ |w|. Hence we refer the second value of the label of an

edge directing a leaf node of STree ′(w[1 : i]) to “∞”, as in Ukkonen’s algorithm [73],

and the length of the leaf node to “∞” as well. This way is so ingenious that we need

not explicitly insert any suffix in case (1-a). In addition, it inherently corresponds to the

“compaction” from a suffix trie to a suffix tree, shown in Figure 1.1. Then all we have to

do is to insert the suffixes of case (1-b) into the suffix tree. That is why the active point

should be on the start point of STree ′(w[1 : i]) at the beginning of the update. Consider

the case that the active point is on an edge (on an implicit node) and corresponds to

string w[h : i] for some j′+1 ≤ h ≤ j. Since w[h : i+1] is not LRS (w[h : i+1]), naturally

it has to be inserted into the suffix tree. To do it, a new node is created where the active

point is. In other words, the implicit node becomes explicit. This is done by function

split edge called in the 10th line of function update.

9.1.3 CreateNewEdge in Case of Constructing DAWGs

Assume that we now have DAWG(w[1 : i]). Definition 10 tells that only strings ending

at the same position in w must be represented in the same node. String w[h : i + 1]

belongs to [w[1 : i + 1]]R
w[1:i+1]

for any h with 1 ≤ h ≤ j′, which is a suffix in case (1-a).

These result in the fact that an edge labeled by w[i + 1 : i + 1] with the new sink node

should be created from the last sink node [w[1 : i]]R
w[1:i+1]

, and by this procedure all the

suffixes of case (1-a) are inserted. Therefore, as in case of suffix tries, in the 19th line of

function update the active point was moved to the advanced point of DAWG(w[1 : i])

after its construction had been completed. To insert a suffix w[h : i + 1] in case (1-b) for

j′ +1 ≤ h ≤ j, a new edge labeled with w[i+1 : i+1] is created from node [w[h : i]]R
w[1:i+1]

to the new sink node [w[1 : i + 1]]R
w[1:i+1]

. It corresponds to the “minimization” from suffix

tries to DAWGs. Suppose that the end point has already found, that is, the insertion

of all suffixes of w[1 : i + 1] has been finished, and focus on the LRS w[j + 1 : i + 1]

of w[1 : i + 1]. In the 17th line of function update , function separate node is called,

which examines whether or not w[j + 1 : i + 1] = u, where u =

w[1:i+1]←−−−−−−−−−−
w[j + 1 : i + 1]. If not,

w[j + 1 : i + 1] cannot any longer be represented in the same node as u. Therefore, the

node is separated into two nodes, [u]Rw[1:i+1] and [w[j + 1 : i + 1]]Rw[1:i+1].

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 104

9.1.4 CreateNewEdge in Case of Constructing CDAWGs

Assume that we now have CDAWG ′(w[1 : i]). The way to update CDAWG ′(w[1 : i])

is like a combination of those to update STree ′(w[1 : i]) and DAWG(w[1 : i]). Let us

call the terminal edges the edges directing the sink node of a CDAWG. It follows from

Definition 13 that any terminal edge of CDAWG ′(w[1 : i]) will also be a terminal edge of

CDAWG ′(w[1 : k]) for any k where i + 1 ≤ k ≤ |w|. Hence we refer the second value of

any terminal edge to “∞”, like the case of suffix trees. This way every suffix of case (1-a)

is implicitly inserted to the CDAWG, therefore the active point starts at the start point

of CDAWG ′(w[1 : i]). Suppose the active point is on an edge (on an implicit node) right

before inserting w[j′ + 1 : i + 1]. Then the edge is split into two, due to the creation of

the node from which an edge with label w[i + 1 : ∞] is created. This way to label the

edge corresponds to the “compaction” of DAWGs to CDAWGs. The new edge is directed

to the sink node. It corresponds to the “minimization” of suffix trees to CDAWGs. To

insert w[j′ + 2 : i + 1], the active point is moved to the location with which w[j′ + 2 : i]

is associated. If it is an implicit node, in the 4th line of function update it is examined

if w[j′ + 2 : i + 1] is to belong to [w[j′ + 1 : i]]Rw[1:i+1]. If so, the edge is redirected to the

node last created, [w[j′ + 1 : i]]R
w[1:i+1]

, and its label is modified accordingly. function

redirect edge accomplishes the operation above. If not, a new node for [w[j′ + 2 : i]]R
w[1:i]

is newly created, so that a new edge labeled with w[j + 1 :∞] can be created from it to

the sink node.

9.2 Extension to a Set of Strings

Given a set S = {w1, w2, . . . , wk}, we regard it as a sequence t = w1$1w2$2 · · ·wk$k, where

$h is the end-marker of wh for 1 ≤ h ≤ k. This way we can treat S like one string. In the

9th line of the main routine in Figure 9.1, if t[i] is an end-marker, integer h counting the

number of the input strings is increased one, and the advanced point is reset to the root

node preparing for the next string. The active point is also to be on the root node, since

any end-marker never appears in any string in S. Consequently, the algorithm builds

STrie(S), STree ′(S), DAWG(S), and CDAWG ′(S), for a given set S of strings.

As a result of the discussion, we have the following.

Theorem 19 For any set S of strings, the proposed algorithm constructs STrie(S),

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 105

STree ′(S), DAWG(S), and CDAWG ′(S) on-line, with changing the 12th line of func-

tion update accordingly. STree ′(w), DAWG(w), and CDAWG(w) are all constructed in

O(‖S‖) time.

For comparison, for S = {abab, abb}, the on-line constructions of STrie(S), STree ′(S),

DAWG(S), and CDAWG ′(S) are shown in respectively Figure 9.5, Figure 9.6, Figure 9.7,

and Figure 9.8.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 106

♣♠♥♦ function update((s, k), (t, q), p): pairs of node and integer;
♣♠♥♦ /* (t, (q, p − 1)) is the canonical reference pair for the advanced point. */
♣♠♥♦ 1 c := w[p]; oldr := nil; s′ := nil;
♣♠♥♦ 2 while not check end point(s, (k, p − 1), c) do
♣♠♥♦ 3 if k ≤ p− 1 then /* implicit */
♠ ♦ 4 if s′ = extension(s, (k, p− 1)) then
♦ 5 redirect edge(s, (k, p− 1), r);
♦ 6 (s, k) := canonize(suf (s), (k, p− 1));
♦ 7 continue;

♠ ♦ 8 else
♠ ♦ 9 s′ := extension(s, (k, p− 1));
♠ ♦ 10 r := split edge(s, (k, p − 1));
♣♠♥♦ 11 else r := s; /* explicit */
♣♠♥♦ 12 CreateNewEdge /* Change only this line */
♣♠♥♦ 13 if oldr �= nil then suf (oldr) := r;
♣♠♥♦ 14 oldr := r;
♣♠♥♦ 15 (s, k) := canonize(suf (s), (k, p − 1));
♣♠♥♦ 16 if oldr �= nil then suf (oldr) := s;
♣♠♥♦ 17 (s, k) := separate node(s, (k, p));
♣♠♥♦ 18 (t, q) := canonize(t, (q, p));
♣♠♥♦ 19 if q > p then (s, k) := (t, q); /* the advanced point is explicit */
♣♠♥♦ 20 return ((s, k), (t, q));

CreateNewEdge should be replaced as follows respectively.

For Suffix Tries
create a new node v;
length(v) := length(r) + 1;
create a new edge (r, (p, p), v);

For Suffix Trees
create a new node v;
length(v) :=∞;
create a new edge (r, (p,∞), v);

For DAWGs
if v has not been defined yet

create a new node v;
length(v) := length(r) + 1;

create a new edge (r, (p, p), v);

For CDAWGs
if sh has not been defined yet

create a sink node sh; /* sh is a global variable */
length(sh) :=∞;

create a new edge (r, (p,∞), sh);

Figure 9.2: Function update . ♣ (♠, ♥ and ♦, resp.) indicates the lines that can
be executed when suffix tries (suffix trees, DAWGs, and CDAWGs,
reps.) are constructed.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 107

♣♠♥♦ function check end point(s, (k, p), c): boolean;
♣♠♥♦ 1 if k ≤ p then /* implicit */
♠ ♦ 2 let (s, (k′, p′), s′) be the w[k]-edge from s;
♠ ♦ 3 return (c = w[k′ + p− k + 1]);
♣♠♥♦ 4 else /* explicit */
♣♠♥♦ 5 return (there is a c-edge from s);

♣♠♥♦ function extension(s, (k, p)): node;
♣♠♥♦ /* (s, (k, p)) is a canonical reference pair. */
♣♠♥♦ 1 if k > p then return s; /* explicit */
♠ ♦ 2 find the w[k]-edge (s, (k′, p′), s′) from s; return s′; /* implicit */

♦ function redirect edge(s, (k, p), r);
♦ 1 let (s, (k′, p′), s′) be the w[k]-edge from s;
♦ 2 replace this edge by edge (s, (k′, k′ + p− k), r);

♣♠♥♦ function canonize(s, (k, p)): pair of integers;
♣♠♥♦ 1 if k > p then return (s, k); /* explicit */
♠ ♦ /* (s, (k, p)) is an implicit node. */
♠ ♦ 2 find the w[k]-edge (s, (k′, p′), s′) from s;
♠ ♦ 3 while p′ − k′ ≤ p− k do
♠ ♦ 4 k := k + p′ − k′ + 1; s := s′;
♠ ♦ 5 if k ≤ p then find the w[k]-edge (s, (k′, p′), s′) from s;
♠ ♦ 6 return (s, k);

Figure 9.3: Functions check end point , extension, and canonize. ♣ (♠, ♥ and
♦, resp.) indicates the lines that can be executed when suffix tries
(suffix trees, DAWGs, and CDAWGs, reps.) are constructed.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 108

♠ ♢ function split edge(s, (k, p)): node;
♠ ♢ 1 let (s, (k′, p′), s′) be the w[k]-edge from s;
♠ ♢ 2 replace the edge by edges (s, (k′, k′+p−k), r) and (r, (k′+p−k+1, p′), s′)
♠ ♢ where r is a new node;
♠ ♢ 3 length(r) := length(s) + (p− k + 1);
♠ ♢ 4 return r;

♣♠♡♢ function separate node(s, (k, p)): pair of node integer;
♣♠♡♢ 1 (s′, k′) := canonize(s, (k, p));
♣♠♡♢ 2 if k′ ≤ p then return (s′, k′); /* implicit */
♣♠♡♢ /* (s′, (k′, p)) is an explicit node. */
♣♠♡♢ 3 if length(s′) = length(s) + p− k + 1 then return (s′, k′); /* solid */
♡♢ /* non-solid case */
♡♢ 4 create a new node r′ as a duplication of s′;
♡♢ 5 suf (r′) := suf (s′); suf (s′) := r′;
♡♢ 6 length(r′) := length(s) + (p− k + 1);
♡♢ 7 repeat
♡♢ 8 replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
♡♢ 9 (s, k) := canonize(suf (s), (k, p− 1));
♡♢ 10 until (s′, k′) ̸= canonize(s, (k, p));
♡♢ 11 return (r′, p+ 1);

Figure 9.4: Other functions. ♣ (♠, ♡ and ♢, resp.) indicates the lines that can
be executed when suffix tries (suffix trees, DAWGs, and CDAWGs,
reps.) are constructed.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 109

b
$1

b

a

a

b
b

b

a

$1

$1

$1

$1

bb

$1

b

a

a

b
b

b

a

$1

$1

$1

$1

$1

b

a

a

b
b

b

a

$1

$1

$1

$1

$1

b

a

a

b
b

b

a

$1

$1

$1

$1

$1

b

a

a

b
b

b

a

$1

$1

$1

$1

b

a

a

b
b

b

aa

a

b
b

aa

b
b

a

b

$2

$2

$2

ε abababaaba

abab$1 ababab$1 aabab$1

abab$1 abb$2abab$1 abb

$2

Figure 9.5: A snapshot of the on-line construction of STrie(S) where S =
{abab, abb}. The gray star and the triangle represent the active
point and the advanced point of each step, respectively. The broken
lines are suffix links.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 110

b b$1

b
a

a
b b

b
a$1

$1

$1

$1

b

$1

b
a

a

b b

b
a$1

$1

$1

$1

$1

b
a

a
b b

b
a$1

$1

$1

$1

$1

b
a

a
b b

b
a$1

$1

$1

$1

b
a

a
b

b

b
a

a

a
b b

a
a

b b

a

b
$2

$2

ε abababaaba

abab$1 ababab$1 aabab$1

abab$1 abb$2abab$1 abb

$2

$1

b
a

a
b b

b
a$1

$1

$1

$1

$2

Figure 9.6: A snapshot of the on-line construction of STree ′(S) where S =
{abab, abb}. The gray star and the triangle represent the active
point and the advanced point of each step, respectively. The broken
line are suffix links.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 111

$1

a

b

a

b

$1

$1

b

b

b

$1

a

b b

a

b

$1

$1

a

b b

a

a

b b

$1

b

a

aa

b b

$2

ε abababaaba

abab$1 ababab$1 aabab$1

abab$1 abb$2abab$1 abb

a

b b

a

b

$1

$1

$1

a

b b

a

b

$1

$1

$1

a

b

a

b

$1

$1

b

b

b

$2

$2a

$1

a

$1

Figure 9.7: A snapshot of the on-line construction of DAWG(S) where S =
{abab, abb}. The gray star and the triangle represent the active
point and the advanced point of each step, respectively. The broken
lines are suffix links.

CHAPTER 9. GENERIC CONSTRUCTION OF INDEX STRUCTURES 112

b

b

b$1

a
b

a
b

$1

$1

$1

ab

$1

$1

a
b

b

a
b

$1

$1

$1

a

b
b

a
b

$1

$1

a
b

b
a

a
b

b

$1

b
a

a
a

b
b

$2

ε abababaaba

abab$1 ababab$1 aabab$1

abab$1 abb$2abab$1 abb

a
b

b

a
b

$1

$1

b

b

b
$2

$2

a

a
a

b

$1

a
b

a
b

$1

$1

$1

ab

$1

$2

Figure 9.8: A snapshot of the on-line construction of CDAWG ′(S) where S =
{abab, abb}. The gray star and the triangle represent the active
point and the advanced point of each step, respectively. The broken
lines are suffix links.

Chapter 10

Other Pattern Matching Problems

We have discussed substring pattern matching problems in the previous chapters. This

chapter introduces more advanced and difficult pattern matching problems.

10.1 Subsequence Pattern Matching

String p ∈ Σ∗ is said to be a subsequence of string w ∈ Σ∗ if p can be obtained by

removing zero or more characters from w. For instance, let w = abba. Then p = aba is a

subsequence of w.

Definition 27 (Subsequence Pattern Matching Problem)

Instance: text w ∈ Σ∗ and pattern p ∈ Σ∗.

Determine: whether p is a subsequence of w.

Obviously, this is a generalization of the substring pattern matching problem of Defini-

tion 7. It is almost trivial to show that the above problem is O(|w| + |p|)-time solvable

by the use of a DFA which accepts all strings which contain p as a subsequence [69]. On

the other hand, an index structure for the subsequence pattern matching problem was

proposed by Baeza-Yates [5], which is called directed acyclic subsequence graphs (DASGs).

The DASG of w, denoted by DASG(w), is the smallest DFA that accepts all subsequences

of w, and thus, it enables us to solve the above problem in O(|p|) time. DASG(w) has

|w|+ 1 nodes, and all of them are accepting nodes.

DASG(w) with w = abba is shown in Figure 10.1.

Theorem 20 (Baeza-Yates [5]) For any w ∈ Σ∗, DASG(w) can be constructed in

O(|Σ| · |w|) time.

113

CHAPTER 10. OTHER PATTERN MATCHING PROBLEMS 114

bb aa

b a

a

Figure 10.1: DASG(w), where w = abba.

Baeza-Yates presented a linear-time algorithm for construction of DASGs, which processes

a given string from right to left. On the other hand, Trońıček and Melichar [71] introduced

a left-to-right algorithm for building DASGs in linear time. Construction of DASGs for

sets of strings was also considered in [5, 31, 17]

10.2 Episode Pattern Matching

An episode pattern consists of a pair 〈p, k〉, where p ∈ Σ∗ and k ∈ N . Episode pattern

〈p, k〉 is said to match w ∈ Σ∗ if p is a subsequence of some substring u of w and |u| ≤ k [54].

For instance, let w = abba. Then 〈aa, 4〉 matches w, but 〈aa, 3〉 not.

Definition 28 (Episode Pattern Matching Problem)

Instance: text w ∈ Σ∗ and episode pattern 〈p, k〉 ∈ Σ∗ ×N .

Determine: whether 〈p, k〉 matches w.

Note that the episode pattern matching problem with 〈p, |p|〉 is the same as the substring

pattern matching problem with p. Also, the episode pattern matching problem with

〈p,∞〉 is the same as the subsequence pattern matching problem with p.

Mannila et al. [54] gave an algorithm that solves the above problem in O(|w| · |p|)
time. An index structure for efficiently solving the episode pattern matching problem

was proposed by Trońıček [70], which is called episode directed acyclic subsequence graphs

(EDASGs). The EDASG of w, denoted by EDASG(w) has two kinds of edges, forward

edges and backward edges. The forward edges correspond to the edges of DASG(w),

the backward edges DASG(wrev). Each node of EDASG(w) is designated by an integer

0 ≤ i ≤ |w| representing the node number.

Theorem 21 (Trońıček [70]) For any w ∈ Σ∗, EDASG(w) can be constructed in O(|Σ|·
|w|) time.

CHAPTER 10. OTHER PATTERN MATCHING PROBLEMS 115

9876543210 a a b a a b a b b

b b
b

b ba a

a
b

aba a
b

Figure 10.2: EDASG(w), where w = aabaababb. Solid arrows denote the for-
ward edges, and broken arrows denote the backward edges.

EDASG(w) with w = aabaababb is shown in Figure 10.2. In order to examine if

episode pattern 〈abb, 4〉 matches w = aabaababb or not, we begin with the initial node 0

and then arrive at node 6, by traversing the forward edges spelling out abb. It means that

the shortest substring of w beginning at position 1 and containing abb as a subsequences is

w[1 : 6] = aabaab. Moreover, the number obtained by summing the node numbers 6 and

0 corresponds to the length of the matched substring aabaab, that is, 6 − 0 = |aabaab|.
Notice that the obtained number 6 does not always represent the length of the shortest

substring of w that ends at position 6 and contains abb as a subsequence. In fact, string

abaab, which is a suffix of aabaab, is the one. To find the string abbab, we move from

node 6 with the backward edges spelling out bba, the reversal of the given pattern string,

and then reach node 1. As a result, the suffix of aabaab of length 6−1 = 5 is the shortest

substring containing abb in the range from position 1 to position 6 in w. Still, since 5 > 4,

we have to examine other ranges. To do so, we continue the same traversal starting from

node 2, that is the next node of node 1. By the forward traversal spelling out abb, we

reach node 8, and then the backward traversal spelling out bba takes us to node 4. This

time, the found substring abab contains the subsequence abb, and the length 8 − 4 = 4

does not exceed the threshold value given. This way, we get to know the episode pattern

〈abb, 4〉 matches aabaababb.

It is quite obvious that the examination of whether a given episode pattern 〈p, k〉
matches w with EDASG(w) still takes O(|w| · |p|) time, but it seems to be practically

faster than a naive method with the use of the standard edit distance table.

CHAPTER 10. OTHER PATTERN MATCHING PROBLEMS 116

10.3 VLDC Pattern Matching

Let � be a wildcard that matches any string in Σ∗. The wildcard � is also called the

variable-length-don’t-care symbol. Let Π = (Σ ∪ {�})∗. An element q ∈ Π is called a

variable-length-don’t-care pattern (VLDC pattern). It is also called a regular pattern in

the context of machine learning, such as in [65]. A VLDC pattern q is said to match string

w ∈ Σ∗ if w is obtained by replacing �’s in q with some strings in Σ∗. Assume a, b ∈ Σ.

Then ab � bb � ba is an example of a VLDC pattern and, for instance, matches string

abbbbaaaba with the first and second �’s replaced by b and aaa, respectively.

Definition 29 (VLDC Pattern Matching Problem)

Instance: text w ∈ Σ∗ and VLDC pattern q ∈ Π.

Determine: whether q matches w.

Note that this is a generalization of the substring pattern matching problem of Defini-

tion 7. For instance, consider a pattern string abc ∈ Σ∗. The substring matching problem

with abc exactly corresponds to the VLDC pattern matching with �abc�. Also, VLDC

pattern �a � b � c� leads to the subsequence pattern matching problem with abc.

Our first idea for efficient solution of the VLDC pattern matching is to use a DFA for

a given VLDC pattern q ∈ Π. We construct a DFA that accepts all strings q matches,

and run it over a given text string w ∈ Σ∗. It is not difficult to see that such a DFA can

be constructed in O(|q|) time, and the running time is O(|w|).
To solve the above problem efficiently in case that w is fixed and q is flexible, we

introduce an index structure called wildcard directed acyclic word graphs (WDAWGs).

The WDAWG of w, denoted by WDAWG(w), is the smallest automaton that recognizes

all VLDC patterns which match w. Therefore, using WDAWG(w) enables us to solve

the VLDC pattern matching problem in O(|q|) time. As for the size and construction of

WDAWGs, we have the following theorems.

Theorem 22 When |Σ| ≥ 2, the number of nodes of WDAWG(w) for a string w is

Θ(|w|2). It is Θ(|w|) for a unary alphabet.

Theorem 23 For any string w ∈ Σ∗, WDAWG(w) can be constructed in time linear in

its size.

WDAWG(w) with w = abbab is shown in Figure 10.3.

We remark that WDAWGs are inherently the same as minimum all-suffixes directed

acyclic word graphs (MASDAWG) that will be introduced in Chapter 11.

CHAPTER 10. OTHER PATTERN MATCHING PROBLEMS 117

a b

b

b

b

b

b

a

a
a

a

a
a

b

b
b

b
a b

Figure 10.3: WDAWG(w) with w = abbab.

10.4 VLDC Pattern Matching within a Window

We here consider a natural extension of the VLDC pattern matching problem with the

introduction of an integer k called the window size. Let q ∈ Π and q[i], q[j] be the first

and last characters in q that are not �, respectively, where 1 ≤ i ≤ j ≤ |q|. If q matches

w ∈ Σ∗, let w[i′], w[j′] be the characters to which q[i] and q[j] correspond, respectively,

where 1 ≤ i′ ≤ j′ ≤ |w|. (Note that we might have more than one combination of i′ and

j′.) If there exists a pair of i′ and j′ that satisfies j′ − i′ + 1 ≤ k, we say that q occurs in

w within a window of size k. Then the pair 〈q, k〉 is said to match w. For instance, pair

〈�ab � ab�, 6〉 matches string babbbabb, but pair 〈�ab � ab�, 5〉 does not match the string.

Definition 30 (VLDC Pattern Matching Problem in Window)

Instance: text w ∈ Σ∗ and VLDC pattern with window size 〈q, k〉 ∈ Π×N .

Determine: whether 〈q, k〉 matches w.

We here show our three approaches to efficiently solve the above problem. The first is

to adopt the standard dynamic programming method. For a string w ∈ Σ∗ and a pattern

q ∈ Π with, let dij be the length of the shortest suffix of w[1 : j] that q[1 : i] matches,

where 0 ≤ i ≤ |q| and 0 ≤ j ≤ |w|. Computation of all dij ’s can be done in O(|w| · |q|)

CHAPTER 10. OTHER PATTERN MATCHING PROBLEMS 118

time, based on the following recurrences: d00 = 0,

d0j =

0 if q[1] = �

∞ otherwise
for j ≥ 1,

di0 =

di−1,0 if q[1] = �

∞ otherwise
for i ≥ 1, and

dij =

min{di−1,j−1 + 1, di,j−1 + 1, di−1,j} if q[i] = �

di−1,j−1 + 1 if q[i] = w[j]

∞ otherwise

for i ≥ 1 and j ≥ 1.

Then θw,q =

min1≤j≤n{dmj} if q[m] = �

dmn otherwise.

The second approach is to preprocess a given VLDC pattern q ∈ Π. We construct a

DFA accepting all strings q matches, and another DFA accepting all strings qrev matches.

We run these DFA over a given string w ∈ Σ∗. If q[1] �= � (q[m] �= �, respectively), we

have only to compute the shortest prefix (suffix, respectively) of w that q matches and

return its length �. If � ≤ k, the pair 〈q, k〉 matches w, and otherwise, not. We now

consider the case q[1] = q[m] = �. Firstly, we run the DFA for q over w. Suppose that q

is recognized between positions i and j in w, where 1 ≤ i < j ≤ |w| and j − i > |q|. A

delicate point is that it is unsure whether w[i : j] corresponds to the shortest occurrence

of q ending at position j. How can we find the shortest one? It can be found by running

the DFA for qrev backward, over w from position j. Assume that qrev is recognized at

position h, where i ≤ h < j− |q|. Then w[h : j] corresponds to the shortest occurrence of

q ending at position j. If j−h+1 ≤ k, we stop here and know that the pair 〈q, k〉 matches

w. Otherwise, we resume the running of the DFA for q from position h + 1, and continue

the above procedure until either finding an occurrence of q short enough, or encountering

the last node |w| without finding any appropriate occurrence. This approach is feasible

in O(|w| · |q|) time.

The third approach is to preprocess a text string w ∈ Σ∗, i.e., we construct WDAWG(w)

and WDAWG(wrev). For any w ∈ Σ∗, each and every node of WDAWG(w) can be desig-

nated by a position in w. Thus we can perform a procedure similar to the second approach

above. It also takes O(|w|·|q|) time in total.

Chapter 11

Minimum All-Suffixes DAWGs

This chapter presents a new kind of index structure called minimum all-suffixes directed

acyclic word graphs (MASDAWGs). We begin this chapter with introducing two new

string matching problems that are efficiently solvable by the use of MASDAWGs.

We define a beginning-sensitive pattern (BS-pattern) to consist of a pair 〈p, i〉 such

that p ∈ Σ∗ and i ∈ N .

Definition 31 (BS-Pattern Matching Problem)

Instance: text w ∈ Σ∗ and BS-pattern 〈p, i〉 ∈ Σ∗ ×N .

Determine: whether p is a substring of w[i :].

This is a natural extension of the substring pattern matching problem with i = 1. The

BS-pattern matching problem is solvable in O(|p|) time for an arbitrary pair 〈p, i〉 by using

the DAWGs for all suffixes of w. If i > |w|, the BS-pattern never matches w. Otherwise,

we begin with the source node of DAWG(w[i :]) and start the matching of p. If p is

recognized, the BS-pattern is said to match w, and otherwise, not. It is clear that this

way the above problem is solved in O(|p|) time.

A region-sensitive pattern (RS-pattern) consists of a triple 〈p, (i, j)〉 where p ∈ Σ∗ and

i, j ∈ N .

Definition 32 (RS-Pattern Matching Problem)

Instance: text w ∈ Σ∗ and RS-pattern 〈p, (i, j)〉 ∈ Σ∗ ×N ×N .

Determine: whether p is a substring of w[i : j].

This is a natural extension of the BS-pattern matching problem in which j = |w|. To solve

this problem, we again use the DAWGs of all suffixes of w. For every 0 ≤ h ≤ |w|, each

node [x]R
w

of DAWG(w[h :]) is assigned with the position of the right most occurrence

119

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 120

of x in w[h :]. For RS-pattern 〈p, (i, j)〉, if i > |w|, the RS-pattern never matches w.

Otherwise, we start with the source node of DAWG(w[i :]) and examine whether or not

p is recognized. If it is recognized, we compare j with the number k stored in the node

at which p finally arrived. If j ≤ k, the RS-pattern matches w, and otherwise, not.

Obviously, the problem can be solved in O(|p|) time.

Now we are motivated to solve these two pattern matching problems using only one

structure, with as little computational space as possible. We will indeed introduce such

data structures in the following sections, called minimum all-suffixes directed acyclic word

graphs (MASDAWGs).

The result was originally presented in [43].

11.1 All-Suffixes Directed Acyclic Word Graphs

Definition 33 ASDAWG(w) is a kind of deterministic automaton with |w| + 1 initial

nodes, designated by integers 0, 1, . . . , |w|, in which the subgraph consisting of the nodes

reachable from an initial node k and of their outgoing edges is DAWG(w[k + 1 :]).

The simple collection of DAWG(w[1 :]), DAWG(w[2 :]),. . . , DAWG(w[n]), DAWG(w[n+

1 :]) (n = |w|) is an example of ASDAWG(w), which is what we call the naive ASDAWG(w).

The number of nodes of the naive ASDAWG(w) is Θ(|w|2), simply because the size

of DAWG(w) is O(|w|) (see Theorem 3). What we obtain by minimizing the naive

ASDAWG(w) is called the minimum ASDAWG(w), denoted by MASDAWG(w). The

naive ASDAWG(abba) and MASDAWG(abba) are shown in Figure 11.1. It is empha-

sized that MASDAWG(w) is the minimum index structure to solve in O(|p|) time the two

pattern matching problems proposed above. Moreover, WDAWG(w) introduced in Chap-

ter 10 can be easily constructed from MASDAWG(w), and thus, MASDAWGs contribute

to an efficient solution to the VLDC pattern matching problem as well.

The minimization of the naive ASDAWG(w) is performed based on the equivalence

relation defined as follows. Let denote a node [x]R
u

of DAWG(u) by an ordered pair

〈u, [x]R
u
〉. Every node of the naive ASDAWG(w) can be represented by a pair 〈u, [x]R

u
〉

with u ∈ Suffix(w) and x ∈ Substr(u). The equivalence relation, denoted by ∼w, is

defined by

〈u, [x]Ru 〉 ∼w 〈v, [y]Rv 〉 ⇔ x−1Suffix (u) = y−1Suffix (v).

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 121

MASDAWG(abba)

a b

b

b

b

b

b

a

aa

a

0

1

2

3

a

DAWG(abba)

a b

b

b

b

a

a

b b a

a
a

DAWG(bba)

b

a

a

a

DAWG(ba)

DAWG(a)

DAWG(ε)

4

Figure 11.1: On the left, DAWG(x) for x ∈ Suffix(abba) are shown, and the
collection of those DAWGs is the naive ASDAWG(w). On the right
MASDAWG(abba) is displayed. While there are 16 nodes and 16
edges in the former in total, there are 9 nodes and 12 edges in
the latter. For example, the nodes 〈abba, [b]〉 and 〈bba, [b]〉 are
equivalent due to Case 1 and merged into one. Also, 〈abba, [abb]〉,
〈bba, [bb]〉, and 〈ba, [b]〉 are merged into one node, where the first
two are equivalent due to Case 2 and the last two are equivalent
due to Case 3. The upper four sink nodes are equivalent due to
Case 2 and the lowest one is equivalent to them (see Lemma 27),
and therefore the five are merged into one sink node.

A node of MASDAWG(w) corresponds to an equivalence class under ∼w. We write

〈u, [x]R
u
〉 simply as 〈u, [x]〉 if no confusion occurs.

Proposition 16 Let u ∈ Suffix (w). Let x be a non-empty substring of u. We factorize

u as u = hxt and assume h is the shortest such string. Then, 〈hxt, [x]〉 is equivalent to

〈sxt, [x]〉 for every suffix s of h. (NOTE: The string x is not necessarily the representative

of [x]Ru .)

Let h0, h1, . . . , hr be the suffixes of the string h arranged in the decreasing order of

their length. The above proposition implies an existence of the chain of equivalent nodes

〈h0xt, [x]〉, 〈h1xt, [x]〉, . . . , 〈hrxt, [x]〉.

In case more than one string exist in [x]Ru , the chain length r is maximized by choosing the

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 122

shortest one as x. The chain, however, does not necessarily break at the node 〈hrxt, [x]〉.
The shortest string in [x]R

u
is not necessarily the shortest in [x]R

hrxt
: Shorter one may exist.

Thus we need more precise discussion.

Lemma 26 Let h ∈ Σ+ and u, hu ∈ Suffix (w). If a node of DAWG(u) is equivalent to

some node of DAWG(hu), then it is also equivalent to some node of DAWG(au) where a

is the last character of the string h.

Proof. Let h = ta (t ∈ Σ∗). Assume t �= ε. Let x ∈ Substr(u) with x �= ε, and

y ∈ Substr(tau) with y �= ε. Assume x−1Suffix (u) = y−1Suffix (tau). We have two cases

to consider.

• x ≡R
u y. In this case, every occurrence of the string y within tau must be included

within the u part. Thus, we have x−1Suffix (u) = y−1Suffix (au).

• x �≡R
u y. In this case, (1) y is written as y = sx where s is a nonempty string, and

(2) there is an occurrence of y within tau that covers the boundary between a and

u but the x part of the occurrence of y = sx is contained in the u part of the string

tau. In this case, by truncating an appropriate length prefix of s we can obtain a

string z as a suffix of y = sx such that x−1Suffix(u) = z−1Suffix (au).

The proof is now complete. �

The above lemma guarantees that the DAWGs sharing one node of MASDAWG(w) are

‘consecutive.’ We therefore concentrate on the relation between two consecutive DAWGs.

First, we consider the equivalence of the initial node.

Lemma 27 Suppose b ∈ Σ and u, bu ∈ Suffix(w). Let y ∈ Substr(bu) and assume y is

the representative of [y]Rbu. Then, the node 〈u, [ε]〉 and 〈bu, [y]〉 are equivalent under ∼w if

and only if y = b and u is of the form b� with � ≥ 0.

See, for example, MASDAWG(bbbbb) shown in Figure 11.2.

As an extreme case of Lemma 27 where � = 0, the node [ε]Rε of DAWG(ε) is always

equivalent to the sink node [b]Rb of the previous DAWG(b).

Next, we consider the case of the nodes other than the initial node.

Lemma 28 Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Substr(u) with x �= ε. Let

y ∈ Substr(bu) with y �= ε. Assume x and y are the representatives of [x]R
u

and [y]R
bu
,

respectively. The equivalence 〈u, [x]〉 ∼w 〈bu, [y]〉 implies that if y ∈ Prefix (bu) then

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 123

b
0 1

b
2

b
3

b
4

b
5

Figure 11.2: MASDAWG(w) for w = b5. For every i = 0, 1, . . . , 4, the ini-
tial node [ε]R

bi
of DAWG(bi) is equivalent to the node [b]R

bi+1 of
DAWG(bi+1).

y = bx and x ∈ Prefix (u), and otherwise y = x. Moreover, 〈u, [x]〉 ∼w 〈bu, [y]〉 holds if

and only if either

(Case 1) x �∈ Prefix (bu) and y = x;

(Case 2) x ∈ Prefix (u), x ≡R
bu y, and y = bx; or

(Case 3) x = bi, y = bi+1, and u is of the form b�s such that i ≤ �, and s ∈ Σ∗ does not

begin with b and does not contain an occurrence of bi.

Proof. Suppose x−1Suffix (u) = y−1Suffix (bu). Let u[i+1 :] (0 < i ≤ |u|) be the longest

member of this set.

1. When y ∈ Prefix (bu). Then, i = |y| − 1 and y = by′ with y′ = u[1 : i]. Since

u[i + 1 :] ∈ Suffix (x), we have u = hxu[i + 1 :] for some h ∈ Σ∗. Namely, x is a

suffix of y′ = u[1 : i].

(a) When y′ �∈ Prefix (bu). We have y ≡R
bu y′ and

(y′)−1Suffix (u) = (y′)−1Suffix (bu) = y−1Suffix(bu) = x−1Suffix (u),

which implies x ≡R
u y′. Since y′ ∈ Prefix (u), y′ must be the representative of

[y′]R
u

= [x]R
u
, thus we have x = y′.

(b) When y′ ∈ Prefix (bu). String y′ is a prefix of y = by′, and therefore has a period

of 1. Hence we have y′ = bi and y = bi+1. Since x is a suffix of y′ = bi, x = bj for

some j with 0 < j ≤ i. If j < i, then u[j +1 :] ∈ x−1Suffix (u), a contradiction.

Thus we have j = i, i.e., x = bi. On the other hand, u[1 : i] = y′ = bi and thus

u is of the form b�s such that � ≥ i and s ∈ Σ∗ does not begin with b. We can

show that the string s cannot contain an occurrence of x = bi.

Note that we have x ∈ Prefix (u) in both the cases.

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 124

2. When y �∈ Prefix (bu). We have y−1Suffix(u) = y−1Suffix(bu) = x−1Suffix (u), which

implies x ≡R
u y. From the choice of x, y must be a suffix of x and x = δy with

δ ∈ Σ∗. Assume, for a contradiction, that x−1Suffix (bu) �= x−1Suffix (u). Then there

must be a suffix u[j + 1 :] of u such that j < i and bu = hxu[j + 1 :] with h ∈ Σ∗.

Since x = δy, we have bu = hδyu[j + 1 :], which implies u[j + 1 :] ∈ y−1Suffix(bu), a

contradiction. Hence we have x ≡R
bu y. From the choice of y, x must be a suffix of

y. Thus we have x = y.

It should be noted that Case 1 and Case 2 of Lemma 28 fit to Proposition 16, whereas

Case 3 is irregular in the sense that the two equivalence classes [x]Ru and [y]Rbu have no

common member despite 〈u, [x]〉 ∼w 〈bu, [y]〉. See Figure 11.1, which includes instances

of Case 1, Case 2, and Case 3.

The owner of a node of MASDAWG(w) is defined to be the DAWG(w[k :]) such that

k is the smallest integer for which DAWG(w[k :]) shares the node. We are now ready to

estimate the lower bound of the number of nodes of MASDAWG(w).

Theorem 24 When |Σ| ≥ 2, the number of nodes of MASDAWG(w) for a string w is

Θ(|w|2). It is Θ(|w|) for a unary alphabet.

Proof. The proof for the case of a unary alphabet Σ = {a} is not difficult. We can use

Lemma 27. We now prove the lower bound in the case of |Σ| ≥ 2. Let us consider a string

w = (ab)m(ba)m, where a, b are distinct characters from Σ. For each i = 2, . . . , m− 1, let

ui = (ab)i(ba)m. Let x = (ba)j with 0 < j < i. It is not difficult to show that x �≡R
ui

ax

and x �≡R
ui

b−1x, and therefore [x]R
ui

= {x}. Thus x is the representative of [x]R
ui

, and we

can use the above lemma. Since x ∈ Prefix (bui), x �∈ Prefix (ui), and the first character of

ui is not b, none of the three conditions is satisfied, and therefore DAWG(ui) is the owner

of the node corresponding to [x]Rui
. Thus, the nodes of MASDAWG(w) corresponding to

[(ba)1]Rui
, [(ba)2]Rui

, . . . , [(ba)i−1]Rui

are distinct and are owned by DAWG(ui). For each i with 1 < i < m, DAWG(ui) has at

least i− 1 own nodes. Thus, MASDAWG(w) has Ω(m2) = Ω(|w|2) nodes. �

11.2 On-Line Construction of MASDAWGs

Since the construction of the naive ASDAWG(w) takes O(|w|2) and the minimization

can be performed in linear time proportional to the number of the edges of the naive

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 125

ASDAWG(w) (see [60]), we can build MASDAWG(w) in O(|w|2) time. On the other hand,

we have shown that the number of nodes in MASDAWG(w) is Θ(|w|2). We are therefore

interested in on-line and direct construction of MASDAWG(w). We have obtained the

following result.

Theorem 25 MASDAWG(w) can be constructed directly and on-line in time linear with

respect to its size.

The algorithm for on-line construction of MASDAWG(w) basically simulates the on-

line constructions of the DAWGs for all suffixes of a string w. Figure 11.3 illustrates the

on-line construction of MASDAWG(abbab).

In the following sections, we present a basic idea of the algorithm together with several

lemmas which support it.

11.2.1 Suffix Links

In construction of MASDAWGs, the suffix links play a key role. One main difference

compared with constructing a single DAWG is that a node may have more than one

suffix link. This happens because MASDAWG(w) may contain two distinct, equivalent

nodes 〈u, [x]〉 and 〈v, [y]〉 such that the node to which the suffix link from 〈u, [x]〉 points

is not equivalent to the node to which the suffix link from 〈v, [y]〉 points. We update

MASDAWG(w) into MASDAWG(wa) as if the underlying DAWGs for w[1 :], w[2 :], . . .

were updated simultaneously, as follows. Conceptually, we reserve all suffix links of these

DAWGs, by associating each suffix link with the corresponding DAWG. Whenever two

or more suffix links are duplicated, the corresponding DAWGs are consecutive due to

Lemma 26, so that we can handle them at once. This is critical to the linearity of our

algorithm. We traverse the DAG induced by the suffix links rooted from the sink node, in

the order of the corresponding DAWGs, and process each encountered node appropriately

(creating a new edge to the new sink node, separating the node, or redirecting an edge to

the separated node).

11.2.2 Compact Representation of Node Length Information

Remember that, in on-line construction of the DAWG for a single string, there occurs an

event so-called node separation, as mentioned in Section 4.3. Let z = LRS (w). A node

separation happens iff z is not the representative of [z]Rw. The node [z]Rw can be detected

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 126

a a b

b
b

a ab

0 0

1

a b

b

b

b

b

abb
0

1
2

a b

b

b

b

b

b

a

aa

a

abba

0

1

2

3

a b

b

b

b

b

b

a

a

a

a

abbab

0

1

2

3

a
a

b

b

4

b

a

1 2 3

4 5

Figure 11.3: On-line construction of MASDAWG(w) for w = abbab. Each
initial node becomes independent whenever the newly appended
character violates the condition of Lemma 27. Node separation of
other type occurs only twice. One happens during the update of
MASDAWG(ab) to MASDAWG(abb). The sink node consisting of
〈abb, [ab]〉 and 〈b, [b]〉 is separated into two nodes. This is recog-
nized as a node separation in DAWG(abb). The other occurs during
the update of MASDAWG(abba) to MASDAWG(abbab). The node
consisting of 〈abba, [abb]〉, 〈bba, [bb]〉, and 〈ba, [b]〉 is separated into
two. This is a special case in the sense that no node separation oc-
curs inside any of DAWG(abba), DAWG(bba), and DAWG(ba).
(See the first case of Lemma 32.) (Note: Though each accept-
ing node is marked double-circled in any step in this figure, we do
not maintain it on-line. After the construction of MASDAWG(w)
is completed, we mark every node reached during the suffix-links-
traversal from the sink node.)

by traversing the suffix link chain from the sink in order to find its parent node [z′]Rw,

which is the first encountered node on the chain that has an out-going edge labelled by

a. Whenever the length of [z]R
w

is greater than that of its parent [z′]R
w

plus one, the node

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 127

[z]R
w

of DAWG(w) is separated into two nodes [x]R
wa

and [z]R
wa

of DAWG(wa), where x is

the representative of [z]R
w
.

Note that a node of MASDAWG(w) corresponds to an equivalence class under the

equivalence relation∼w, and thus two or more DAWGs may share a node of MASDAWG(w).

We need to know the length of the corresponding node of an arbitrary one among them.

Naive solution would be to store in a node of MASDAWG(w) a (|w|+1)-tuple of integers,

the ith value of which indicates the length of the corresponding node of the i-th DAWG,

where i = 0, 1, . . . , |w|. The space requirement is, however, proportional to |w|3. Below

we give an idea of compact representation of the tuple.

Lemma 29 Let 〈w[i + 1 :], [x1]〉, . . . , 〈w[i + � :], [x�]〉 be nodes of the naive ASDAWG(w)

which are merged into one node in MASDAWG(w), where 0 ≤ i and i + � ≤ |w|+ 1. We

assume each of the strings x1, . . . , x� is the representative of the equivalence class of it.

Then, there exists an integer k with 1 ≤ k ≤ � such that

xj =

{
xk, if 1 ≤ j ≤ k;

xk[j − k + 1 :], if k < j ≤ �.

(See Figure 11.4.)

Proof. By Lemma 28. �

For example, MASDAWG(abb) in Figure 11.3 has a node consisting of 〈abb, [b]〉 and

〈bb, [b]〉. Also, MASDAWG(abba) has a node consisting of 〈abba, [abb]〉, 〈bba, [bb]〉, and

〈ba, [b]〉.
It follows from the above lemma that the function that takes as input an integer s

and returns |xs| if 1 ≤ s ≤ � can be represented as a quartet (i, �, k, |xk|), which requires

only a constant space (or O(log |w|) space). The update procedure of the quartet for each

node is basically apparent, except for the nodes in which node separations occur.

11.2.3 Node Separation

Recall that two or more DAWGs can share one node of MASDAWG(w), and each of them

has a possibility of being separated into two nodes. This seems to complicate the update

of MASDAWG(w). However, we can readily show the following lemma.

Lemma 30 Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Substr(u) with x �= ε. Let

y ∈ Substr(bu) with y �= ε. Assume x and y are the representatives of [x]Ru and [y]Rbu,

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 128

i + 1: x1

x2

· · ·
· · ·
xk

xk+1

xk+2

· · ·
· · ·

x�

Figure 11.4: The representatives xj of [xj]
R
w[i+j:] such that the nodes

〈w[i + j :], [xj]〉 of the naive ASDAWG(w) are merged into one node
of MASDAWG(w).

respectively. Suppose 〈u, [x]〉 ∼w 〈bu, [y]〉. Let a ∈ Σ, and let z be the longest repeated

suffix of bua. Suppose z ∈ [y]R
bu
. If |z| < |y|, then z is also the longest repeated suffix of

ua, and z ∈ [x]R
u
. If |z| = |y|, then x is a repeated suffix of ua (not necessarily to be the

longest).

The next lemma characterizes the node separations that occur during the update of

MASDAWG(w) to MASDAWG(wa).

Lemma 31 Consider the node of MASDAWG(w) stated in Lemma 29 (see Figure 11.4).

Let z be the longest repeated suffix of w[i + j :]a. Suppose z ∈ [xj]
R
w[i+j:]

.

1. When |z| = |xk|: Node separation occurs in none of the DAWGs for the strings

w[i + j :], . . . , w[i + � :].

2. When |z| < |xk|: Let t be the maximum integer such that z is a proper suffix

of xt. Node separation occurs in each of the DAWGs for the strings w[i + j :

], . . . , w[i+ t :]. That is, for each j = 1, . . . , t, the node [xj]
R
w[i+j:]

of DAWG(w[i+ j :

]) is separated into [xj]
R
w[i+j:]a and [z]Rw[i+j:]a inside DAWG(w[i + j :]a). The nodes

〈w[i + j :]a, [x1]〉, . . . , 〈w[i + � :]a, [x�]〉 are equivalent under ∼wa, and the new nodes

〈w[i + j :]a, [z]〉, . . . , 〈w[i + t :], [z]〉 are also equivalent under ∼wa.

The node separations of DAWGs characterized in the above lemma lead to a node

separation in the update of MASDAWG(w) to MASDAWG(wa). It simultaneously per-

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 129

forms the node separations within each DAWG caused by the common z. (For the same

z, we can take j as small as possible.)

The remaining problem to overcome is that there is another kind of node separation

in the update of MASDAWG(w).

Lemma 32 In the update of MASDAWG(w) to MASDAWG(wa), node separation of the

following types may occur, where w ∈ Σ∗ and a ∈ Σ.

1. When w[i + 1 :] is of the form b�+1s such that w[i] �= b or i = 0, � ≥ 1, and s in Σ∗

does not begin with b or contain an occurrence of b�:

Let d be the largest integer such that s contains an occurrence of bd. MASDAWG(w)

has a node consisting of

〈w[i + j + 1 :], [bd+k]〉, 〈w[i + j + 2 :], [bd+k−1]〉, . . . , 〈w[i + j + k], [bd+1]〉,

where k = � − (d + j) + 1, for each j = 0, 1, . . . , d. If |s| > 0, s ends with bd, and

a = b, then the node is separated into two nodes, one of which consists of

〈w[i + j + 1 :]a, [bd+k]〉, 〈w[i + j + 2 :]a, [bd+k−1]〉, . . . , 〈w[i + j + k − 1]a, [bd+2]〉,

and the other consists only of 〈w[i + j + k :]a, [bd+1]〉.

2. When w[i + 1 :] is of the form b� with � ≥ 1 such that w[i] �= b or i = 0:

MASDAWG(w) has a node consisting of

〈b�, [bj]〉, 〈b�−1, [bj−1]〉, . . . , 〈b�−j , [ε]〉,

for each j = 1, . . . , �. Whenever b �= a, the node is separated into two nodes, one of

which consists of

〈b�a, [bj]〉, 〈b�−1a, [bj−1]〉, . . . , 〈b�−j+1a, [b]〉,

and the other consists only of 〈b�−ja, [ε]〉,

For a concrete example of the first case of the above lemma, consider the update of

MASDAWG(w) to MASDAWG(wa) with w = bbbbbab and a = b, which can be found

in Figure 11.5 and Figure 11.6.

It should be emphasized that in the node separation mentioned in the above lemma

no node separation occurs inside a DAWG. This kind of node separation can also be

performed during the suffix link traversal started at the sink node.

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 130

0

1

2

3

4

5

6

b b b b b a
aaaaa

b

b b b b a
aaaa

b

b b b a
aaa

b

b b a
aa

b

b a
a

b

a b
b

b

7

0

1

2

3

4

5

6

b b b b b a
aaaaa

b

b b b b a
aaaa

b

b b b a
aaa

b

b b a
aa

b

b a
a

b

a b

b

b

7

b

b

b

b

b

b

b

b

8

b

b

Figure 11.5: The naive ASDAWG(bbbbbab) on the left, and the naive
ASDAWG(bbbbbabb) on the right. The nodes connected by the
broken lines are equivalent due to Case 3. Recall the value of d
mentioned in Lemma 32. In string bbbbbab the value of d is 1,
whereas in string bbbbbabb d = 2 since the new b is added after-
ward.

CHAPTER 11. MINIMUM ALL-SUFFIXES DAWGS 131

3

0

b b b b b a
aaaaa

b

b
a

b

b

b a

a

a

b

a b a

a b

b

1

2

4

5

6

7

a b 3

0

b b b b b a
aaaaa

b

b

a b

b

a

a

a

b

a a

a b

1

2

4

5

6

8

a

b

b

a

b

b

a

b

a

b

b

b
b

7

a

Figure 11.6: MASDAWG(bbbbbab) is on the left, and MASDAWG(bbbbbabb)
is on the right. Compare the update of MASDAWG(bbbbbab) to
MASDAWG(bbbbbabb) with that of the naive ASDAWG(bbbbbab)
to the naive ASDAWG(bbbbbabb) shown in Figure 11.5.

Chapter 12

Space-Economical Construction of

MASDAWGs

Chapter 11 was devoted to the introduction of MASDAWGs that are highly useful for

several advanced pattern matching. On-line algorithm which, for any input string w ∈ Σ∗,

directly constructs MASDAWG(w) in time linear in the output size was also given in the

previous chapter. The linearity and efficiency of the algorithm are highly dependent on

the use of suffix links, kinds of failure transitions. Suffix links have been used for almost

all time-efficient algorithms constructing index structures (e.g., see [77, 55, 73, 9, 10, 18,

16, 26]). On the other hand, it is also the fact that the memory space required by the im-

plementation of suffix links is non-ignorable. Moreover, for each node of MASDAWG(w),

the algorithm of Chapter 11 additionally requires to keep the length of the longest string

that reaches to the node, in the construction phase (see Section 11.2.2). Once completing

the construction of MASDAWG(w), these values are no longer necessary since examining

whether or not a given pattern p occurs in the specified suffix of w can be done without

them. In the sense of saving memory space needed for building MASDAWGs, therefore,

the algorithm is not very efficient.

This chapter, on the other hand, presents a new algorithm to construct MASDAWGs

without suffix links nor length information, which thus permits us to save consider-

able amount of memory space. This new algorithm is best understood as one con-

structing MASDAWGs by reading given strings from right to left. Namely, it builds

MASDAWG(aw) by adding necessary nodes and edges to MASDAWG(w). Note that,

in the contrast with this, the algorithm we presented in the previous chapter updates

MASDAWG(w) to MASDAWG(wa).

132

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 133

a

b

a

a

b b a

a
a

a b

b

b

b

a

a

b

a

b

bb

a
b aa

b

a
a

0 1 2 3 4

Figure 12.1: The naive ASDAWG(w) on the left, where w = abba.
MASDAWG(w), on the right.

Furthermore, we reduce the space requirement by compacting the structure itself. We

focus on CDAWGs whose space requirement is strictly smaller than that of DAWGs, both

theoretically and practically [10, 18]. The all-suffixes version, named minimum all-suffixes

compact directed acyclic word graphs (MASCDAWGs), is proposed in this chapter as well.

We also present an algorithm that constructs MASCDAWG(w) in linear time with respect

to its size, without using suffix links nor length information. This algorithm also processes

w from right to left.

These results were primarily published in [42].

12.1 Space-Economical Construction of MASDAWGs

In this section we propose an algorithm for space-economical construction of MASDAWGs.

The algorithm is designed to process a given string w from right to left. We have shown

the naive ASDAWG(w) and MASDAWG(w) with w = abba in Figure 12.1, in which

the structures are drawn and arranged for ease of readers to see them in the context of

updating MASDAWG(u) to MASDAWG(au) with a ∈ Σ∗ and u, au ∈ Suffix (w).

Now we consider what happens in constructing MASDAWG(au) from MASDAWG(u).

Due to Lemma 26, we are able to focus only on investigating the relationship between

DAWG(au) and DAWG(u).

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 134

Lemma 33 Let a ∈ Σ and u ∈ Σ∗. For any string x ∈ Substr(u) − Prefix (au), it holds

that 〈au, [x]〉 ∼au 〈u, [x]〉.

Proof. x−1Suffix (au) = x−1({au}∪Suffix(u)) = x−1{au}∪x−1Suffix (u) = x−1Suffix (u),

because x−1{au} = ∅ for x �∈ Prefix (au). �

The above lemma implies that we have only to care about the prefixes of au in constructing

MASDAWG(au) from MASDAWG(u). We need not modify nor change the structure of

MASDAWG(u): it is kept static.

Lemma 34 Let a ∈ Σ and u ∈ Σ∗. For any x ∈ Prefix (u) and y ∈ Σ∗, if 〈au, [ax]〉 ∼au

〈u, [y]〉 then [x]R
u

= [y]R
u
.

Proof. Since x ∈ Prefix (u), there exists s ∈ Σ∗ such that u = xs. By the assumption,

(ax)−1Suffix (au) = y−1Suffix (u). Since s is included in the left set, s is also included in

the right set, i.e. s ∈ y−1Suffix (u), which implies ys ∈ Suffix (xs), thus y ∈ Suffix (x). We

have two cases according to x ∈ Prefix (au).

(Case 1) When x ∈ Prefix (au). Since x ∈ Prefix (axs), x = ai and y = aj for

some integers j ≤ i. Suppose j < i, and let k = i − j > 0. Then aks ∈
y−1Suffix (u) while aks �∈ (ax)−1Suffix (au), that contradicts with the assumption

that (ax)−1Suffix (au) = y−1Suffix (u). Thus j = i, which yields y = x = ai.

(Case 2) When x �∈ Prefix (au).

y−1Suffix (u) = (ax)−1Suffix(au) by the assumption

⊆ x−1Suffix (au) since x ∈ Suffix (ax)

= x−1Suffix (u) since x �∈ Prefix (au)

⊆ y−1Suffix (u) since y ∈ Suffix (x)

Thus we have x−1Suffix (u) = y−1Suffix (u), that is, [x]R
u

= [y]R
u
. �

The path in MASDAWG(u) spelling out u is called its ‘backbone’. The above lemma

shows that if a node 〈au, [ax]〉 on the ‘backbone’ of MASDAWG(au) is equivalent to a

node of MASDAWG(u), the node 〈au, [ax]〉 is also on the ‘backbone’ of MASDAWG(u).

This fact is crucial in order that our algorithm, which will be given in the sequel, performs

in time linear in the size of MASDAWG(u).

For the prefixes of string au, we have the following lemma.

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 135

Lemma 35 Let a ∈ Σ and u ∈ Σ∗. Let ax ∈ Prefix (au) be the shortest string which

satisfies 〈au, [ax]〉 ∼au 〈u, [x]〉. Then for any longer prefix axv ∈ Prefix (au), it holds that

〈au, [axv]〉 ∼au 〈u, [xv]〉.

Proof. Since 〈au, [ax]〉 ∼au 〈u, [x]〉, (ax)−1Suffix (au) = x−1Suffix (u). Therefore, we

have (axv)−1Suffix(au) = v−1((ax)−1Suffix (au)) = v−1(x−1Suffix (u)) = (xv)−1Suffix (u).

�

Remark that the node 〈u, [xv]〉 already exists in MASDAWG(u), since xv ∈ Prefix (u).

The above lemma guarantees that all nodes we have to newly create in MASDAWG(au)

are 〈au, [t]〉 for strings t ∈ Prefix (z), where z is the longest prefix of au which does not

satisfy 〈au, [ax]〉 ∼au 〈u, [x]〉.
Now the next question is how to efficiently check whether 〈au, [ax]〉 ∼au 〈u, [x]〉 or not

for each x ∈ Prefix (u). Our idea is to count the cardinality of the set x−1Suffix (u).

Lemma 36 Let a ∈ Σ and u ∈ Σ∗. For any x ∈ Substr(u), 〈au, [ax]〉 ∼au 〈u, [x]〉 if and

only if |(ax)−1Suffix (au)| = |x−1Suffix(u)|.

Proof. We first show that (ax)−1Suffix(au) ⊆ x−1Suffix (u). Let us choose s ∈
(ax)−1Suffix (au) arbitrarily. Then axs ∈ Suffix (au) = {au}∪Suffix(u). If axs = au, then

xs = u. Otherwise, axs ∈ Suffix (u). Since xs is a suffix of axs, we know that xs is also

a suffix of u. In both cases, we have xs ∈ Suffix(u), which implies that s ∈ x−1Suffix (u).

Thus (ax)−1Suffix (au) ⊆ x−1Suffix (u). It yields that (ax)−1Suffix(au) = x−1Suffix (u) if

and only if |(ax)−1Suffix (au)| = |x−1Suffix (u)|. By the definition of ∼au, we have proved

the lemma. �

We associate each node 〈u, [x]〉 with the cardinality of the set, |x−1Suffix(u)|, denoted

by #〈u, [x]〉. Note that #〈u, [u]〉 = 1 since u−1Suffix (u) = {ε}, and that #〈u, [ε]〉 = |u|+1

since ε−1Suffix (u) = Suffix (u).

Lemma 37 Let a ∈ Σ and u ∈ Σ∗. For any x ∈ Prefix (u), #〈au, [ax]〉 = #〈u, [ax]〉+ 1.

Proof. Since x ∈ Prefix (u), #〈au, [ax]〉 = |(ax)−1Suffix (au)| = |(ax)−1({au} ∪
Suffix (u))| = |(ax)−1{au} ∪ (ax)−1Suffix (u))| = #〈u, [ax]〉+ 1. �

The whole algorithm is shown in Figure 12.2. Since the algorithm manipulates an

input string w from right to left, we number the characters in w as w = wnwn−1 . . . w1.

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 136

Algorithm Construction of MASDAWG(w = wnwn−1 . . . w1).
1 create new nodes s0;
2 #(s0) := 1; #(nil) := 0;
3 initNode[0] := s0; node := s0;
4 for i := 1 to n do
5 s := Find(node, wi);
6 target := NewTargetNode(s, i− 1,node);
7 newNode := create a new node with copying all out-going edges of node;
8 add or overwrite edge (newNode, wi, target);
9 #(newNode) := i;

10 initNode[i] = newNode;
11 node = newNode;

function NewTargetNode(Node s, int j,Node backbone) : Node
1 nextNumSuf := #(s) + 1;
2 if nextNumSuf = #(backbone) then return backbone; /* redirection */
3 nextBackbone := Find(backbone, wj);
4 newNode := create a new node with copying all out-going edges of s;
5 s := Find(s,wj);
6 target := NewTargetNode(s, j − 1,nextBackbone);
7 add or overwrite edge (newNode, wj , target);
8 #(newNode) := nextNumSuf;
9 return newNode;

function Find(Node s, char c) : Node
1 if s has the c-edge then
2 let (s, c, r) be the c-edge from s;
3 return r;
4 else return nil;

Figure 12.2: The algorithm to construct MASDAWG(w).

When we read w from right to left, a substring wi . . . wj of w is represented by w[i:j]. Note

that i ≥ j in this case. An edge is represented by a triple (r, wi, s), where s, r are nodes

and wi is the character for the label of the edge.

Theorem 26 For any string w ∈ Σ∗, our algorithm constructs MASDAWG(w) in time

linear in its size.

Proof. In the i-th phase of the main routine, MASCDAWG(w[i:]) is incrementally

constructed based on MASCDAWG(w[i−1:]). Remark that in any call of the function

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 137

NewTargetNode, the following pre-conditions are satisfied.

backbone = 〈w[i−1:], [w[i−1:j]]〉,

s =

{
〈w[i−1:], [w[i:j]]〉 if w[i:j] ∈ Substr(w[i−1:]),

nil otherwise.

The variable backbone expresses the j-th node on the backbone of MASCDAWG(w[i−1:])

from the initial node. In line 12.1 in NewTargetNode, the function Find never re-

turns nil because backbone has wj-edge. On the other hand, the variable s represents

the node, called the referenced node, in MASCDAWG(w[i−1:]) which corresponds to the

prefix w[i:j] of the string w[i:]. The basic role of NewTargetNode is to create a new node

newNode, that is a copy of the referenced node s except the only one edge along the prefix

w[i:j]. Lemma 33 guarantees that other edges are unchanged. However, if a new node

becomes equivalent to an existing node in MASCDAWG(w[i−1:]), we have to redirect the

edge instead of creating it. Thanks to Lemma 34, we do not have to examine all nodes in

MASCDAWG(w[i−1:]). Candidates are always on the backbone of MASCDAWG(w[i−1:]),

and in fact the only possible candidate is pointed by the variable backbone. By Lemma 36,

checking the equivalence is performed by merely comparing the cardinality of the sets,

stored by #(·) in the pseudo-code. Moreover, the cardinality of a new node is simply

computed by #(s) + 1 due to Lemma 37. Once an equivalent node is found among the

existing nodes of MASCDAWG(w[i−1:]), we can immediately terminate the recursive calls,

since Lemma 35 guarantees that the rest of the new backbone will be equivalent to the

current one. Since #(nil) = 0 and #(s0) = 1, the recursive call never falls into infinite

loop.

At each call of NewTargetNode except the last one, a new node is created. Thus

the running time of the algorithm is linear with respect to the output size. �

The on-line (right-to-left) construction of MASDAWG(w) where w = abaa$ is dis-

played in Figure 12.3.

12.2 Minimum All-Suffixes Compact Directed Acyclic

Word Graphs

To achieve a more space-economical index structure for all suffixes of a string, we turn

our attention to compact directed acyclic word graphs (CDAWGs) and consider their

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 138

1 $ 11 $ 112 a
$

$ 112 a
$

a3

$

$ 112 a
$

a3

$

4
a

1

b

1a
a

$

$ 112 a
$

a3

$

4
a

1

b

1a
a

$

5

b
a

3

$

a
$

b

$: a$: aa$:ε:

baa$: abaa$:

Figure 12.3: Construction of MASDAWG(abaa$). Each node is marked by
#〈u, [x]〉 where u = abaa$ and x ∈ Substr(u).

all-suffixes version. Recall Definition 13 for CDAWG(w).

Lemma 38 Let x ∈ Substr(w). Assume
w−→x /∈ Suffix (w). Then, x occurs in w at least

twice.

Proof. For a contradiction, assume x occurs in w only once. We have |Prefix (w)x−1| = 1.

Let w = hxy. Since x occurs in w only once, |Prefix (w)x−1| = |Prefix (w)(xy)−1|. Thus

x ≡L
w xy and

w−→x = xy. However, xy ∈ Suffix (w), a contradiction. Consequently, x

appears in w at least twice. �

The following corollary derives from Lemma 38.

Corollary 5 Assume that w terminates with a unique symbol $. Then, for any string

x ∈ Substr(w)− Suffix (w), node [
w−→x]R

w
is of out-degree more than one.

Definition 34 ASCDAWG(w) is a kind of dag with |w|+ 1 initial nodes, designated by

0, 1, . . . , |w|, in which the subgraph consisting of the nodes reachable from the k-th initial

node and their out-going edges is CDAWG(w[k + 1 :]).

The simple collection of CDAWG(w[1 :]), CDAWG(w[2 :]),. . . , CDAWG(w[n]), CDAWG

(w[n + 1 :]) (n = |w|) is an example of ASCDAWG(w), which is referred to as the naive

ASCDAWG(w). The number of nodes of the naive ASCDAWG(w) is O(|w|2), simply

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 139

because the number of nodes of CDAWG(w) is O(|w|). We now introduce the min-

imized version of ASCDAWG(w), which is well defined similarly to MASDAWG(w).

Each node of ASCDAWG(w) can be represented by a pair 〈u, [
u−→x]R

u
〉 with u ∈ Suffix (w)

and x ∈ Substr(u). We write 〈u, [
u−→x]R

u
〉 simply as 〈u, [−→x]〉 when no confusion occurs. If

〈u, [
u−→x]R

u
〉 ∼w 〈v, [

v−→y]R
v
〉, we merge these nodes and the resulting structure is the minimum

ASCDAWG(w), denoted by MASCDAWG(w). Obviously, MASCDAWG(w) can be ob-

tained by the DAG-minimization algorithm [60] that runs in time linear in the number

of edges of the naive ASCDAWG(w). As for the size of MASCDAWGs, we have the

following:

Theorem 27 When |Σ| ≥ 2, the number of nodes in MASCDAWG(w) for a string w is

Θ(|w|2). It is Θ(|w|) for a unary alphabet.

In the following, we give some preliminaries for our algorithm for construction of

MASCDAWGs. The algorithm also processes a given string from right to left. That is, it

updates MASCDAWG(u) to MASCDAWG(au) with a ∈ Σ and u ∈ Σ∗. Here, we have

only to consider a string x ∈ Substr(w) such that
w−→x = x. Since Proposition 16 and

Lemma 26 hold for an arbitrary string in Substr(w), it is guaranteed that the CDAWGs

sharing a node in MASCDAWG(w) are also ‘consecutive’. Therefore, we only consider

the relationship between CDAWG(au) and CDAWG(u), two consecutive CDAWGs.

Lemma 39 Let a ∈ Σ and u ∈ Σ∗. For any string x ∈ Substr(u)−Prefix (au),
u−→x =

au−→x .

Proof. Since x /∈ Prefix (au), there is no new occurrence of x in au. It implies that

a(Prefix (u)x−1) = Prefix (au)x−1. Thus we have [x]L
u

= [x]L
au

. Consequently,
u−→x =

au−→x . �

The above lemma ensures that any implicit node of CDAWG(u) does not become explicit

in CDAWG(au) if it is not associated with a prefix of au. It follows from this lemma and

Lemma 33 that we do not need to modify nor change the structure of MASCDAWG(u)

when constructing MASCDAWG(au).

Lemma 40 Let a ∈ Σ and u ∈ Σ∗. For any x, z ∈ Substr(u), if
au−→ax = az then

u−→z = z.

Proof. Suppose contrarily that
u−→z �= z. That means there exists y ∈ Σ∗ such that

Prefix (u)y−1 = Prefix (u)z−1 and |y| > |z|. Then Prefix (au)(ay)−1 = (Prefix (au)y−1)a−1 =

(a(Prefix (u)y−1))a−1 = (a(Prefix (u)z−1))a−1 = Prefix (au)(az)−1 = Prefix (au)(ax)−1.

Thus ay ≡L
au ax and |ay| > |az|. It contradicts the assumption

au−→ax = az. �

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 140

Lemma 41 Let a ∈ Σ and u ∈ Σ∗. For any x ∈ Prefix (u) and y ∈ Σ∗ satisfying

〈au, [
au−→ax]R

au
〉 ∼au 〈u, [

u−→y]R
u
〉, there exists z ∈ Prefix (u) such that [

u−→z]R
u

= [
u−→y]R

u
.

Proof. Let z be the string with
au−→ax = az. Then we have

u−→z = z by Lemma 40. Moreover,

z ∈ Prefix (u) since x ∈ Prefix (u). Since 〈au, [az]R
au
〉 = 〈au, [

au−→ax]R
au
〉 ∼au 〈u, [

u−→y]R
u
〉, we have

[z]R
u

= [
u−→y]R

u
by Lemma 34. Thus [

u−→z]R
u

= [
u−→y]R

u
. �

Lemma 41 shows that if node 〈au, [
au−→ax]R

au
〉 on the ‘backbone’ of MASCDAWG(au) is

equivalent to a node of MASCDAWG(u), the node 〈au, [
au−→ax]R

au
〉 is also on the ‘backbone’

of MASCDAWG(u). It corresponds to Lemma 34.

We have the following lemma which corresponds to Lemma 35.

Lemma 42 Let a ∈ Σ and u ∈ Σ∗. Let ax ∈ Prefix (au). Let
au−→ax be the shortest string

for which there exists z ∈ Prefix (u) such that 〈au, [
au−→ax]R

au
〉 ∼au 〈u, [

u−→z]R
u
〉. Let

au−→ax =

ay. Then for any longer prefix ayv ∈ Prefix (au), there exists s ∈ Prefix (u) such that

〈au, [
au−→ayv]Rau〉 ∼au 〈u, [

u−→s]Ru 〉.

Proof. Let
au−→ayv = as. By Lemma 40,

u−→s = s. Since yv ∈ Prefix (u), s ∈ Prefix (u).

Let
u−→z = t. By the assumption 〈au, [

au−→ax]Rau〉 ∼au 〈u, [
u−→z]Ru 〉, we have 〈au, [ay]〉 ∼au 〈u, [t]〉.

Since y ∈ Prefix (u), 〈au, [ay]〉 ∼au 〈u, [y]〉 by Lemma 34. Note that y ∈ Prefix (s). Hence

we have 〈au, [as]〉 ∼au 〈u, [s]〉 by Lemma 35. Because as =
au−→ayv and s =

u−→s , it holds that

〈au, [
au−→ayv]Rau〉 ∼au 〈u, [

u−→s]Ru 〉. �

We remark that the equivalence 〈au, [
au−→ax]Rau〉 ∼au 〈u, [

u−→z]Ru 〉 can also be examined

by checking the cardinalities of the corresponding sets, as is the case of MASDAWGs.

Hereby we have shown that MASCDAWG(w) can be constructed in a similar way to

MASDAWG(w). The only thing not clarified yet is whether or not MASCDAWG(w)

can be built in time linear in its size. We establish the following lemmas to support the

linearity.

Lemma 43 Let a ∈ Σ and w ∈ Σ∗. For any x, z ∈ Substr(w), if
w−→ax = az then

w−→z = z.

Proof. For a contradiction, assume
w−→z �= z. Then there exists y ∈ Σ∗ such that

Prefix (w)y−1 = Prefix (w)z−1 and |y| > |z|. Then Prefix (w)(ay)−1 = (Prefix (w)y−1)a−1 =

(Prefix (w)z−1)a−1 = Prefix (w)(az)−1. Thus ay ≡L
au az and |ay| > |az|. It contradicts the

assumption
w−→ax = az. �

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 141

Note that the statement of the above lemma slightly differs from that of Lemma 40.

Lemma 44 Let a, b ∈ Σ and w ∈ Σ∗. Let x, y ∈ Substr(w) such that
w−→
xb = xby �= w. If

axb ∈ Substr(w), then axby ∈ Substr(w), and
w−−−→

axby′ =
w−−→

axby for any y′ ∈ Prefix (y).

Proof. Since axb ∈ Substr(w) and xby �= w, there always exists z ∈ Σ∗ such that
w−→

axb = axbz ∈ Substr(w). By Lemma 43,
w−→

xbz = xbz. Since
w−→
xb = xby, y ∈ Prefix (z).

Because axbz ∈ Substr(w), axby ∈ Substr(w). For any y′ ∈ Prefix (y), axbz ≡L
w axby′

since
w−→

axb = axbz. Therefore
w−−−→

abxy′ = abxz =
w−−→

abxy. �

Suppose
w−→x = x. If we in advance know node [

w−→x]R
w

has an out-going edge labeled with

by, we can avoid to scan the whole string xby in traversing the path axby from the initial

node of CDAWG(w). Moreover, it is guaranteed that the path by from the (explicit or

implicit) node for ax consists of one edge: no explicit node is contained in the path. This

is a key to achieve an algorithm that constructs MASCDAWG(w) in linear time with

respect to its size.

The whole algorithm is shown in Figure 12.4. Here we also read an input string w

from right to left, and thus w is written as w = wnwn−1 . . . w1. The label wiwi−1 . . . wj of

each edge can be represented by a pair of the beginning position i and the ending position

j − 1. (i > j − 1) If the string corresponding to the label appears in w more than once,

we represent it by the leftmost occurrence. This way we can assign endpos(s) to a node

s, where endpos(s) indicates the ending position of every in-coming edge of s. Thereby,

we represent each edge by a triple (r, i, s), where r, s are explicit nodes. An implicit node

corresponding to some substring x of w can be represented by a triple (r, k, p), where

r is an explicit parent node of the implicit node. Assuming the representative of the

equivalence class associated with r is y, x = yu where u = wkwk−1 . . . wp. The quartet

(r, k, p, s) is called the reference quartet, where s is the closest explicit child node of r

reachable via the wk-edge from r. When |p − k| is minimum, the quartet (r, k, p, s) is

called the canonical reference quartet.

Theorem 28 For any string w ∈ Σ∗, our algorithm constructs MASCDAWG(w) in time

linear in its size.

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 142

Algorithm Construction of MASCDAWG(w = wnwn−1 . . . w1).
1 create new nodes s0,s1,s2;
2 #(s0) := 1; #(s1) := 1; #(s2) := 2; #(nil) := 0;
3 endpos(s0) := 0; endpos(s1) := 1; endpos(s2) := 2; endpos(nil) := 0;
4 add edges (s1, 1, s0), (s2, 1, s0), (s2, 2, s0);
5 initNode[0] := s0; initNode[1] := s1; initNode[2] := s2; node := s2;
6 for i := 3 to n do
7 (s, k, p, r) := Canonize(FastFind(node, i, 1));
8 target := NewTargetNode((s, k, p, r), i − 1,node);
9 newNode := create a new node with copying all out-going edges of node;

10 add or overwrite edge (newNode, i, target);
11 #(newNode) := i; endpos(newNode) := i;
12 initNode[i] = newNode; node = newNode;

function NewTargetNode(refQuartet (s, k, p, r), int j,Node backbone) : Node
1 nextNumSuf := #(r) + 1;
2 if nextNumSuf = #(backbone) then return backbone; /* redirection */
3 let (backbone, �,nextBackbone) be the wj-edge from backbone;
4 m := �− endpos(nextBackbone); /* length of this edge */
5 if k = p then /* explicit node */
6 newNode := create a new node with copying all out-going edges of s;
7 (s, k, p, r) := Canonize(FastFind(s, j,m));
8 target := NewTargetNode((s, k, p, r), j −m,nextBackbone);
9 add or overwrite edge (newNode, j, target);

10 #(newNode) := nextNumSuf; endpos(newNode) := j;
11 return newNode;
12 else if wp = wj then /* implicit and next characters are the same */
13 (s, k, p, r) := Canonize(s, k, p−m, r); /* skip m characters */
14 return NewTargetNode((s, k, p, r), j −m,nextBackbone);
15 else /* implicit and next characters are different */
16 newNode := create a new node; /* edge split */
17 add new edges (newNode, p, r) and (newNode, j, s0);
18 #(newNode) := nextNumSuf; endpos(newNode) := j;
19 return newNode;

function FastFind(Node s, int i, int length) : refQuartet
/* compute the position from s along the string wiwi−1 . . . wi−length+1 */
/* remark that the first character wi is only compared */
1 if s has the wi-edge then
2 let (s, �, r) be the wi-edge from s;
3 return (s, �, �− length, r);
4 else return (s, i, i − length,nil);

function Canonize(refQuartet (s, k, p, r)) : refQuartet
/* when the referenced position is an explicit node, canonize the expression */
1 if k > p and p = endpos(r) then return (r, p, p, r);
2 else return (s, k, p, r);

Figure 12.4: The algorithm to construct MASCDAWG(w).

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 143

Proof. Firstly, remark that in any call of NewTargetNode, the following pre-

conditions are satisfied.

backbone = 〈w[i−1:], [−−−−→w[i−1:j]]〉,
s = 〈w[i−1:], [−→y]〉,
v = w[k:p],

r =

{
〈w[i−1:], [−→x]〉 if x = w[i:j],

nil otherwise,

where x is the longest string in Prefix (w[i:j]) ∩ Substr(w[i−1:]), y is the longest prefix of

x satisfying
w[i−1:]−→y = y, and v is the string such that yv = w[i−1:j]. It is important to

notice that the reference quartet (s, k, p, r) is a generalization of the reference node s in a

MASDAWG. It can treat implicit nodes as well as explicit nodes. The reference quartet

(s, k, p, r) represents an explicit node if and only if k = p.

The basic structure of the algorithm is similar to that for MASDAWGs. A big dif-

ference is that the referenced node may be implicit, while backbone is always explicit and

backbone always has the wj-edge. Lemmas 39, 41, and 42 fill the gap in showing the

correctness.

A subtle point is that in function FastFind, we compare only the first character

even when traversing a string of length ≥ 2. Lemma 44 guarantees its correctness. The

lemma also gives the validity of line 12.2 in function NewTargetNode, where we skip

m characters whenever the first characters wp and wj are the same.

We now verify the running time. Note that FastFind takes constant time regardless

the length, because it only compare the first character. In the i-th phase of the algorithm,

backbone traverses the first portion of the backbone in MASCDAWG(w[i−1:]). In each call

of NewTargetNode, the value of backbone is changed to the next node on the backbone.

Unfortunately, however, it is not enough to guarantee the linearity of the algorithm. A

very delicate point is that in lines 12.2 and 12.2 of NewTargetNode, backbone proceeds

without creating a new node! To overcome this difficulty, let us remark that in the next

phase, the new backbone consists of the sequence of the nodes created in the last phase,

followed by the rest portion of the last backbone. This means that every node (except

the unique sink node) in MASCDAWG will be touched in NewTargetNode at most

once. Thus the total running time is linear with respect to the size, the number of nodes

in the resulting MASCDAWG. �

CHAPTER 12. SPACE-ECONOMICAL CONSTRUCTION OF MASDAWGS 144

1 $ 11 $ 112

a

$
$ 112

$
a3

$

$ 112

$
a3

$

4
a

b

$

$ 112

$
a3

$

4
a

$

5

b
a

$

$: a$: aa$:ε:

baa$: abaa$:

$ a$

a$
aa$

b aaaaa$

3
$

$a
baa$

Figure 12.5: Construction of MASCDAWG(abaa$).

The on-line (right-to-left) construction of MASCDAWG(w) where w = abaa$ is dis-

played in Figure 12.5.

12.3 Concluding Remarks

It is easy to construct the minimum all-suffixes suffix trie in time proportional to its size,

by a slightly modified algorithm for the MASDAWG. We only need to care not to merge

subtrees of the same suffix trie, so that the resulting structure does not become a dag.

Similarly, the minimum all-suffixes suffix tree can also be built in time linear to its size,

by modifying the algorithm for the MASCDAWG.

Chapter 13

Pattern Discovery from String Data

Sets

A vast amount of data is available today, and discovering useful rules from those data is

quite important. Very commonly, information is stored and manipulated as strings. In

the context of strings, rules are patterns. Given two sets of strings, often referred to as

positive examples and negative examples, it is desired to find the pattern that is the most

common to the former and the least common to the latter. This task of finding the best

pattern in the sense of separating two given sets of strings is critical to discovery science

as well as machine learning. In fact, pattern discoveries from genomical sequence data

will give us a good knowledge to characterize the data.

Shimozono et al. developed knowledge discovery system BONSAI [63] that outputs

a decision tree based on the best substring patterns for separating two input data sets

S, T ∈ Σ∗. The best substring pattern separating S and T can be found in linear time

by a clever use [32] of the suffix tree for S ∪ T . In order that BONSAI system can deal

with subsequence patterns as well, Hirao et al. [28] proposed a practical algorithm to

find the subsequence pattern that is the most abundant in one set and the rarest in the

other. Since this problem is NP-hard, they employed efficient pruning heuristics to reduce

the number of candidate patters for the best subsequence. Also, the matching phase of

their algorithm was significantly sped up by means of directed acyclic subsequence graphs

(DASGs) recalled in Section 10.1. The actually efficiency of this algorithm was reported

in [27].

In this chapter, we firstly present a practical algorithm to discover the best episode

patterns to separate two given sets of strings. An episode pattern is a pair 〈p, k〉, where

145

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 146

p is a string and k is an integer. It said to match a string w if p is a subsequence of a

substring u of w with |u| ≤ k [54, 19]. We stress that episode patterns are generalized

concept of substring patterns as well as subsequence patterns, since the substring pattern

matching with p ∈ Σ∗ corresponds exactly to the episode pattern matching with 〈p, |p|〉,
and the subsequence pattern matching with p is the same as the episode pattern matching

with 〈p,∞〉. We remark that the problem of finding the best episode patterns is also NP-

hard. As well as the case of subsequence patterns, we employ similar pruning heuristics

based on the properties of episode patterns and the evaluation function calculating the

scores of patterns. We make the matching phase of our algorithm fast by using episode

directed acyclic word graphs (EDASGs) proposed in [70]. Bannai et al. [7] and Iida et

al. [33] installed this algorithm into the BONSAI system and evaluated its efficiency.

Secondly, we consider VLDC patterns for a pattern class for the purpose of separating

two given sets of strings. VLDC patterns can be seen as regular patterns [65] in which

the variable � is allowed to be substituted with the empty string ε. VLDC patterns

are generalization of substring patterns as well as subsequence patterns. For instance,

substring pattern matching with aba ∈ Σ∗ corresponds to VLDC pattern matching with

�abc�, and subsequence pattern matching with abc is the same as VLDC pattern matching

with �a � b � c�. The language of a VLDC pattern q ∈ Π is defined to be the set of strings

obtained by replacing �’s in q with arbitrary strings in Σ∗. It corresponds to a class of

the pattern languages proposed by Angluin [3].

Our algorithm for efficient discovery of the best VLDC patterns from two given two

sets of strings is also sped up in two ways, namely, by pruning heuristics and fast VLDC

pattern matching algorithms. We accelerate the matching phase by the two VLDC pattern

matching algorithms introduced in Section 10.3.

We also present a practical algorithm to find the best pair 〈q, k〉 to distingish two

given sets of strings, where q ∈ Π and k ∈ N . Specifying the length of an occurrence of a

VLDC pattern is of great significance especially when classifying long strings over a small

alphabet, since a short VLDC pattern surely matches most long strings. Therefore, for

example, when two sets of biological sequences are given to be separated, this approach

is adequate and promising.

We declare that this work generalizes and outperforms the ones accomplished in [28],

since it is capable of discovering more advanced and useful patterns. In fact, we show

some experimental results that convince us of the accuracy of our algorithms as well as

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 147

their fast performances.

These results were originally published in [29, 64, 35, 8].

13.1 Finding Best Patterns from Sets of Strings

Let good be a function from Σ∗ × 2Σ∗ × 2Σ∗
to the set of real numbers. The problem we

tackle here is defined as follows.

Definition 35 (Finding the best pattern according to good)

Input: Two sets S, T of strings.

Output: A pattern p that maximizes the score of good(p, S, T).

Intuitively, the score of good(p, S, T) expresses the “goodness” of p in the sense of distin-

guishing S from T . The definition of good varies with applications. For examples, the χ2

values, entropy information gain, and gini index can be used. Essentially, these statistical

measures are defined by the numbers of strings that satisfy the rule specified by p. Any

of the above-mentioned measures can be expressed by the following form:

good(p, S, T) = f(xp, yp, |S|, |T |), where

xp = |S ∩ L(p)|,
yp = |T ∩ L(p)|,

and L(p) = {w ∈ Σ∗ | p matches w}. For instance, the entropy information gain [59],

which is used in the BONSAI system [63], is described in terms of the function good , as

follows:

f(x, y, xmax, ymax) = − x + y

xmax + ymax
I(x, y)

−xmax − x + ymax − y

xmax + ymax

I(xmax − x, ymax − y),

where I(x, y) =

0 if x = 0 or y = 0

− x
x+y

log x
x+y
− y

x+y
log y

x+y
otherwise.

When S and T are fixed, xmax = |S| and ymax = |T | are regarded as constants. On

this assumption, we abbreviate the notation of the function to f(x, y) in the sequel.

In Figure 13.1 we show an exhaustive search algorithm for solving the problem of

Definition 35.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 148

pattern FindBestPattern(StringSet S, T)
1 maxVal = −∞;
2 for all possible pattern p do
3 x = |S ∩ L(p)|;
4 y = |T ∩ L(p)|;
5 val = f(x, y);
6 if val > maxVal then
7 maxVal = val ;
8 bestPat = p;
9 return bestPat ;

Figure 13.1: Exhaustive search algorithm.

Since the function good(p, S, T) expresses the goodness of p in the sense of distin-

guishing the two sets, it is natural to assume that the function f is conic, defined as

follows:

Definition 36 Function f from [0, xmax]× [0, ymax] to real numbers is conic if

• for any 0 ≤ y ≤ ymax, there exists an x1 such that

– f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and

– f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

• for any 0 ≤ x ≤ xmax, there exists a y1 such that

– f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and

– f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

Actually, the χ2 values, entropy information gain, and gini index are all conic. We remark

that every convex fuction is conic. In the sequel, we assume that f is conic and can be

evaluated in constant time.

We have the following lemma deriving from the conicality of function f .

Lemma 45 (Hirao et al. [28]) For any 0 ≤ x < x′ ≤ xmax and 0 ≤ y < y′ ≤ ymax, we

have f(x, y) ≤ max{f(x′, y′), f(x′, 0), f(0, y′), f(0, 0)}.

13.2 Finding Best Substring Patterns

For p, w ∈ Σ∗, we write as p �str w if p ∈ Substr(w).

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 149

Definition 37 Let p ∈ Σ∗. The substring language of p is defined by

Lstr(p) = {w ∈ Σ∗ | p �str w}.

The following lemma is quite clear from the above definition.

Lemma 46 (Hirao et al. [28]) For any p, u ∈ Σ∗, if p �str u, then Lstr(p) ⊇ Lstr(u).

Definition 38 (Finding the best substring pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A pattern p ∈ Σ∗ that maximizes the score of f(xp, yp), where xp = |S ∩Lstr(p)|
and yp = |T ∩ Lstr(p)|.

It is stated in [28] that the above problem is solvable in O(‖S‖+ ‖T‖) time by a clever

use [32] of STree(S ∪ T).

13.3 Finding Best Subsequence Patterns

For p, w ∈ Σ∗, we write as p �seq w if p is a subsequence of w.

Definition 39 Let p ∈ Σ∗. The subsequence language of p is defined by

Lseq(p) = {w ∈ Σ∗ | p �seq w}.

The following lemma is quite clear from the above definition.

Lemma 47 (Hirao et al. [28]) For any p, u ∈ Σ∗, if p �seq u, then Lseq(p) ⊇ Lseq(u).

Definition 40 (Finding the best subsequence pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A pattern p ∈ Σ∗ that maximizes the score of f(xp, yp), where xp = |S∩Lseq(p)|
and yp = |T ∩ Lseq(p)|.

The above problem is known to be NP-hard [28], which implies we have faced exponen-

tially many candidates for the best pattern p. To solve this problem quickly in practice,

therefore, we take the following two strategies:

1. Restrict the number of candidate patterns in line 2 of Figure 13.1,

2. Speed up the matching phase in lines 3 and 4 of Figure 13.1.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 150

To do the first one, Hirao et al. [28] used efficient pruning heuristics inspired by Morishita

and Sese [58]. The pruning heuristics is based on the following lemma, which derives from

Lemma 45 and Lemma 47.

Lemma 48 (Hirao et al. [28]) For any strings p, u ∈ Σ∗, if p �seq u, then f(xu, yu) ≤
max{f(xp, yp), f(xp, 0), f(0, yp), f(0, 0)}.

The following problem corresponds to our second strategy given above.

Definition 41 (Counting the matched subsequence patterns)

Input: A set S ⊆ Σ∗ of strings.

Query: A pattern p ∈ Σ∗.

Output: The cardinality of set S ∩ Lseq(p).

This is a sub-problem of the one in Definition 40. It has to be answered as quickly as

possible, since we are given quite many patterns as queries. To solve this problem, Hirao

et al. [28] suggested to construct DASG(s) for each s ∈ S. Then, answering the above

query takes O(‖S‖) preprocessing time and O(|S|·|p|) running time.

The whole algorithm to find the best subsequence pattern from two given sets of strings

according to function f , proposed by Hirao et al. [28], is shown in Figure 13.2.

13.4 Finding Best Episode Patterns

Definition 42 Let p ∈ Σ∗ and k ∈ N . The episode language of 〈p, k〉 is defined by

Leps(〈p, k〉) = {w ∈ Σ∗ | ∃v �str w such that p �seq v and |v| ≤ k}.

We have the following lemma according to the above definition.

Lemma 49 For any 〈p, k〉 and 〈u, j〉 with p, u ∈ Σ∗ and k, j ∈ N , if p �seq u and k ≤ j,

then Leps(〈p, k〉) ⊇ Leps(〈u, j〉).

Definition 43 (Finding the best episode pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A pair 〈p, k〉 that maximizes the score of f(x〈p,k〉, y〈p,k〉), where x〈p,k〉 = |S ∩
Leps(〈p, k〉)| and y〈p,k〉 = |T ∩ Leps(〈p, k〉)|.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 151

string FindBestSubsequence(StringSet S, T , int maxLength =∞)
1 string prefix , p, bestSeq ;
2 double upperBound =∞, maxVal = −∞, val ;
3 int x, y;
4 PriorityQueue queue; /* Best First Search*/
5 push (ε,∞) to queue;
6 while queueis not empty do
7 let (prefix , upperBound) be the popped element from queue;
8 if upperBound < maxVal then break;
9 foreach c ∈ Σ do

10 p = prefix + c; /* string concatenation */
11 x = |S ∩ Lseq(p)|;
12 y = |T ∩ Lseq(p)|;
13 val = f(x, y);
14 if val > maxVal then
15 maxVal = val ;
16 bestSeq = p;
17 upperBound = max{f(x, y), f(x, 0), f(0, y), f(0, 0)};
18 if |p| < maxLength then
19 push (p, upperBound) to queue;
20 return bestSeq ;

Figure 13.2: Algorithm FindBestSubsequence.

We stress that the value of k is not given beforehand. This implies that the search space

for this problem is Σ∗ ×N , while that of finding the best subsequence pattern is Σ∗. We

remark that the above problem is NP-hard as well.

Our pruning heuristics for the purpose of restricting the number of candidate patterns

is based on the following lemma that derives from Lemma 45 and Lemma 49.

Lemma 50 For any 〈p, k〉 and 〈u, j〉 with p, u ∈ Σ∗ and k, j ∈ N , if p �seq u and k ≤ j,

f(x〈u,j〉, y〈u,j〉) ≤ max{f(x〈p,k〉, y〈p,k〉), f(x〈p,k〉, 0), f(0, y〈p,k〉), f(0, 0)}.

Now we turn our attention to speeding up the matching phase of the algorithm.

Definition 44 (Computing the best window size according to f)

Input: Two sets S, T ⊆ Σ∗ of strings and a pattern string p ∈ Σ∗.

Output: An integer k ∈ N that maximizes the score of f(x〈p,k〉, y〈p,k〉), where x〈p,k〉 =

|S ∩ Leps(〈p, k〉)| and y〈p,k〉 = |T ∩ Leps(〈p, k〉)|.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 152

This is a sub-problem of the one in Definition 43, where a pattern string p is given

beforehand.

Let � be the length of the longest string in S ∪ T . A short consideration reveals that,

as candidates for k, we only have to consider the values from |p| up to �, which results

in a rather straightforward solution. In addition to that, we will give a more efficient

computation method.

For strings p, u ∈ Σ∗, we define the threshold value θ of p for u by

θu,p = min{k ∈ N | u ∈ Leps(〈p, k〉)}.

If there is no such value, let θu,p = ∞. Note that u /∈ Leps(〈p, k〉) for any k < θu,p and

u ∈ Leps(〈p, k〉) for any k ≥ θu,p.

Definition 45 (Computing the minimum window size)

Input: Two strings p, u ∈ Σ∗.

Output: The threshold value θu,p.

It is easy to see that the above sub-problem can be efficiently solved by using EDASG(u)

(see Section 10.2), in O(|p|·|u|) time.

The set of threshold values of p ∈ Σ∗ with respect to S ⊆ Σ∗ is defined as ΘS,p =

{θu,p | u ∈ S}. A key observation is that the best window size for given S, T ⊆ Σ∗ and

pattern p ∈ Σ∗ can be found in set ΘS,p ∪ ΘT,p without loss of generality. Thus we can

restrict the search space for the best window size to ΘS,p ∪ΘT,p.

From now on, we consider the numerical sequence {x〈p,k〉}∞k=0. (We will treat {y〈p,k〉}∞k=0

in the same way.) It clearly follows from Lemma 50 that the sequence is non-decreasing.

Remark that 0 ≤ x〈p,k〉 ≤ |S| for any k. Moreover, x〈p,l〉 = x〈p,l+1〉 = x〈p,l+2〉 = · · · , where

l is the length of the longest string in S. Hence, we can represent {x〈p,k〉}∞k=0 with a list

having at most min{|S|, l} elements. We call this list a compact representation of the

sequence {x〈p,k〉}∞k=0 (CRS, for short).

We show how to compute CRS for each p and a fixed S. Observe that x〈p,k〉 increases

only at the threshold values in ΘS,p. By computing a sorted list of all threshold values in

ΘS,p, we can construct the CRS of {x〈p,k〉}∞k=0. Using the counting sort, we can compute

the CRS for any p ∈ Σ∗ in O(|S|ml+|S|) = O(‖S‖m) time, where m = |p|. We emphasize

that the time complexity of computing the CRS of {x〈p,k〉}∞k=0 by our method is the same

as that of computing x〈p,k〉 for a single k (0 ≤ k ≤ ∞).

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 153

string FindBestEpisode(StringSet S, T , int �)
1 string prefix , p;
2 episodePattern bestEpisode ; /* pair of string and int */
3 double upperBound =∞, maxVal = −∞, val ;
4 int k′;
5 CompactRepr x̄, ȳ; /* CRS */
6 PriorityQueue queue; /* Best First Search*/
7 push (ε,∞) to queue;
8 while queueis not empty do
9 let (prefix , upperBound) be the popped element from queue;

10 if upperBound < maxVal then break;
11 foreach c ∈ Σ do
12 p = prefix + c; /* string concatenation */
13 x̄ = S.crs(p);
14 ȳ = T .crs(p);
15 k′ = argmaxk{f(x〈p,k〉, y〈p,k〉)} and val = f(x〈p,k′〉, y〈p,k′〉);
16 if val > maxVal then
17 maxVal = val ;
18 bestEpisode = 〈p, k′〉;
19 upperBound = max{f(x〈p,∞〉, y〈p,∞〉), f(x〈p,∞〉, 0), f(0, y〈p,∞〉), f(0, 0)};
20 if |p| < maxLength ;
21 if upperBound > maxVal and |p| < � then
22 push (p, upperBound) to queue;
23 return bestEpisode ;

Figure 13.3: Algorithm FindBestEpisode.

After constructing CRSs x̄ of {x〈p,k〉}∞k=0 and ȳ of {y〈p,k〉}∞k=0, we can compute the best

threshold value in O(|x̄|+ |ȳ|) time. Thus we have the following, which gives an efficient

solution to finding the best threshold value.

Lemma 51 Given S, T ⊆ Σ∗ and p ∈ Σ∗, we can find the best threshold value in O((‖S‖+
‖T‖) · |p|) time.

The whole algorithm to find the best episode pattern from two given sets of strings

according to function f is shown in Figure 13.3. We add a method crs(p) to the data

structure StringSet that returns CRS of {x〈p,k〉}∞k=0, in the way mentioned above.

By Lemma 50, we can use the value upperBound = max{f(x〈p,∞〉, y〈p,∞〉), f(x〈p,∞〉, 0),

f(0, y〈p,∞〉), f(0, 0)} to prune branches in the search tree computed at line 19. Notice

that the value max{f(x〈p,k〉, y〈p,k〉), f(x〈p,k〉, 0), f(0, y〈p,k〉), f(0, 0)} is not appropriate as

upperBound . Note also that x〈p,∞〉 and y〈p,∞〉 can be extracted from x̄ and ȳ in constant

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 154

time, respectively.

13.5 Finding Best VLDC Patterns

Let q, u ∈ Π, where Π = (Σ ∪ {�})∗. We write as q �vldc u if u can be obtained by

replacing �’s in q with some elements in Π.

Definition 46 Let q ∈ Π. The VLDC language of q is defined by

Lvldc(q) = {w ∈ Σ∗ | q �vldc w}.

According to the above definition, we have the following lemma.

Lemma 52 For any q, u ∈ Π, if q �vldc u, then Lvldc(q) ⊇ Lvldc(u).

Definition 47 (Finding the best VLDC pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A VLDC pattern q ∈ Π that maximizes the score of f(xq, yq), where xq =

|S ∩ Lvldc(q)| and yq = |T ∩ Lvldc(q)|.

The problem is known to be NP-hard [56], and thus we essentially have exponentially

many candidates. Therefor, we reduce the number of candidates by using the pruning

heuristics as well.

By Lemma 45 and Lemma 52, we have the next lemma, basing on which we can

perform the pruning heuristic to speed up our algorithm.

Lemma 53 For any q, u ∈ Π, if q �vldc u, then f(xu, yu) ≤ max{f(xq, yq), f(xq, 0), f(0, yq),

f(0, 0)}.

The general concept of the algorithm to solve the problem of Definition 47 is the same

as the one in Figure 13.2.

To speed up the matching phase of the algorithm, we consider the following problem.

Definition 48 (Counting the matched VLDC patterns)

Input: A set S ⊆ Σ∗ of strings.

Query: A pattern q ∈ Π.

Output: The cardinality of set S ∩ Lvldc(q).

This is a sub-problem of the one in Definition 47. The first idea is to use a DFA accepting

Lvldc(q) and run it over each string in S, as mentioned in Section 10.3. Then, |S∩Lvldc(q)|
can be computed in O(|q|) preprocessing time and in O(‖S‖) running time.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 155

Another idea is to construct WDAWG(s) for each string s ∈ S. This way, |S∩Lvldc(q)|
can be computed in O(N) preprocessing time and O(|S| · |q|) running time, where N =∑

s∈S |s|2.

13.6 Finding Best VLDC Patterns in Window

Recall the VLDC pattern matching problem with window size, introduced in Section 10.4.

Definition 49 For a pair 〈q, k〉 with q ∈ Π and k ∈ N , its language is defined by

Lvldcw(〈q, k〉) = {w ∈ Σ∗ | 〈q, k〉 matches w}.

According to the above definition, we have the following lemma.

Lemma 54 For any 〈q, k〉 and 〈u, j〉 with q, u ∈ Π and k, j ∈ N , if q �vldc u and k ≤ j,

then Lvldcw(〈q, k〉) ⊇ Lvldcw(〈u, j〉).
The problem to be tackled is formalized as follows.

Definition 50 (Finding the best VLDC pattern and window size according to f)

Input: Two sets S, T ⊆ Σ∗ of strings.

Output: A pair 〈q, k〉 with q ∈ Π and k ∈ N that maximizes the score of f(x〈q,k〉, y〈q,k〉),

where x〈q,k〉 = |S ∩ Lvldcw(〈q, k〉)| and y〈q,k〉 = |T ∩ Lvldcw(〈q, k〉)|.

We stress that the value of k is not given beforehand, i.e., we compute not only q but

also k with which the score of function f is maximum. Therefore, the search space of this

problem is Π×N , while that of the problem in Definition 47 is Π. We remark that this

problem is also NP-hard.

By Lemma 45 and Lemma 54, we achieve the following lemma that plays a key role

in the heuristics for pruning the search tree.

Lemma 55 For any 〈q, k〉 and 〈u, j〉 with q, u ∈ Π and k, j ∈ N , if q �vldc u and k ≤ j,

f(x〈u,j〉, y〈u,j〉) ≤ max{f(x〈q,k〉, y〈q,k〉), f(x〈q,k〉, 0), f(0, y〈q,k〉), f(0, 0)}.

The general concept of the algorithm for finding the best pair of q ∈ Π and k ∈ N is

the same as the one in Figure 13.3.

Speed-up of the matching phase of the algorithm can be achieved by quickly answering

the following sub-problem of Definition 50.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 156

Definition 51 (Computing the best window size for VLDC pattern according to f)

Input: Two sets S, T ⊆ Σ∗ of strings and a VLDC pattern q ∈ Π.

Output: An integer k ∈ N that maximizes the score of f(x〈q,k〉, y〈q,k〉), where x〈q,k〉 =

|S ∩ Lvldcw(〈q, k〉)| and y〈q,k〉 = |T ∩ Lvldcw(〈q, k〉)|.

For a string u ∈ Σ∗ and VLDC pattern q ∈ Π, we define the threshold value θ′ of q for u

by

θu,q = min{k ∈ N | u ∈ Lvldcw(〈q, k〉)}.

If there is no such value, let θ′u,q = ∞. Note that u /∈ Lvldcw(〈q, k〉) for any k < θ′u,q and

u ∈ Lvldcw(〈q, k〉) for any k ≥ θ′u,q.

The set of threshold values for q ∈ Π with respect to S ⊆ Σ∗ is defined as Θ′
S,q =

{θ′u,q | u ∈ S}. A key observation is that the best window size for given sets S, T ⊆ Σ∗

of strings and a VLDC pattern q ∈ Π can be found in set Θ′
S,q ∪ Θ′

T,q without loss of

generality. Thus we can restrict the search space for the best window size to Θ′
S,q ∪Θ′

T,q.

It is therefore important to quickly solve the following sub-problem.

Definition 52 (Computing the minimum window size for VLDC pattern)

Input: A string u ∈ Σ∗ and VLDC pattern q ∈ Π.

Output: The threshold value θ′u,q.

This is a sub-problem of Definition 51. We remark that this problem can be solved in

O(|u|·|q|) running time by any method introduced in Section 10.4.

13.7 Computational Experiments

The algorithms were implemented in the Objective Caml Language. All calculations

were performed on a Desktop PC with dual Xeon 2.2GHz CPU (though our algorithms

only utilize single CPU) with 1GB of main memory running Debian Linux. In all the

experiments, the entropy information gain is used as the score for which the search is

conducted.

13.7.1 Artificial Data

We first tested our algorithms on an artificial dataset. The datasets were created as

follows: The alphabet was set to Σ = {a, b, c, d}. We then randomly generate strings over

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 157

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

Ti
m

e
(s

ec
s)

Length of each string in positive/negative set

Execution time for 100 positive/100 negative completely random data (maxlen = 8)

Substring
VLDC: PMM
VLDC: WDAWG
VLDC: WDAWG-sm
VLDC in Window: PMM
VLDC in Window: DP-rm

Figure 13.4: Execution time (in seconds) for artificial data for different lengths of
the examples. The maximum length of patterns to be searched for
is set to 8. WDAWG-sm is matching using the WDAWG with state
memoization. DP-rm is matching using the dynamic programming
table with row memoization. Only one point is shown for DP-
rm here, since a greater size caused memory swapping, and the
computation was not likely to end in a reasonable amount of time.

Σ of length l. We created 3 types of datasets: 1) a completely random set, 2) a set where

a randomly chosen VLDC pattern �ccd � a � ddad� is embedded in the positive examples,

and 3) a set where a pair of a VLDC pattern and a window size 〈�ccd � a � ddad�, 19〉 is

embedded in the positive examples. In 2) and 3), a randomly generated string is used as

a positive example if the pattern matches it, and used as a negative example otherwise,

until both positive and negative set sizes are n. Examples for which the set size exceeds

n are discarded.

Figure 13.4 and Figure 13.5 show the execution times for the completely random

dataset for different l and n, respectively. We can see that the execution time grows

linearly in n and l as expected, although the effect of pruning seems to take over for

VLDC patterns in the left graph, when the length of each sequence is long. Searching for

VLDC patterns and window sizes using dynamic programming with row memoization,

does not perform very well.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 158

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

Ti
m

e
(s

ec
s)

of strings in each positive/negative set

Execution time for completely random data of length 100 (maxlen = 8)

Substring
VLDC: PMM
VLDC: WDAWG
VLDC: WDAWG-sm
VLDC in Window: PMM
VLDC in Window: DP-rm

Figure 13.5: Execution time (in seconds) for artificial data for different number
of examples in each positive/negative set. The maximum length of
patterns to be searched for is set to 8. WDAWG-sm is matching
using the WDAWG with state memoization. DP-rm is matching
using the dynamic programming table with row memoization.

Figure 13.6, Figure 13.7, and Figure 13.8 show the execution times for different maxi-

mum lengths of VLDC patterns to look for, for the 3 datasets, respectively (The length of

a VLDC pattern is defined as the length of the pattern representation, excluding any �’s

on the ends). We can see that the execution time grows exponentially as we increase the

maximum pattern length searched for, until the pruning takes effect. Figure 13.9 shows

the effect of performance of an exhaustive search, run on the completely random dataset,

compared to searches with the branch and bound pruning for the different datasets. The

pruning is more effective when it is more likely to have a good solution.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 159

13.7.2 Real Data

To show the usefulness of VLDC patterns and windows, we also tested our algorithms

on actual protein sequences. We use the data available at http://www.cbs.dtu.dk/

services/TargetP/, which consists of protein sequences which are known to contain

protein sorting signals, that is, (in many cases) a short amino acid sequence segment which

holds the information which enables the protein to be carried to specified compartments

inside the cell. The dataset for plant proteins consisted of: 269 sequences with signal

peptide (SP), 368 sequences with mitocondrial targeting peptide (mTP), 141 sequences

with chloroplast transit peptide (cTP), and 162 “Other” sequences. The average length

of the sequences was around 419, and the alphabet is the set of 20 amino acids.

Using the signal peptides as positive examples, and all others as negative examples,

we searched for the best pair 〈p, k〉 with maximum length of 10 using PMMs. To limit the

alphabet size, we classify the amino acids into 3 classes {0, 1, 2}, according to the hydropa-

thy index [48]. The most hydrophobic amino acids {A, M, C, F, L, V, I} (hydropathy

≥ 0.0) are converted to 0, {P,Y,W,S,T,G} (−3.0 ≤ hydropathy < 0.0) to 1, and {R,

K, D, E, N, Q, H} (hydropathy < −3.0) to 2. We obtained the pair 〈0�00�00000�, 26〉,
which occurs in 213/269 = 79.2% of the sequences with SP, and 26/671 = 3.9% of the

other sequences. The calculation took exactly 50 minutes. This pattern can be interpreted

as capturing the well known hydrophobic h-region of SP [75]. Also, the VLDC pattern

suggests that the match occurs in the first 26 amino acid residues of the protein, which is

natural since SP, mTP, cTP are known to be N-terminal sorting signals, that is, they are

known to appear near the head of the protein sequence. A best substring search quickly

finds the pattern �00000001� in 36 seconds, but only gives us a classifier that matches

152/269 = 56.51% of the SP sequences, and 41/671 = 6.11% of the others.

For another example, we use the mTP set as positive examples, and the SP and

Other sets as negative examples. This time, we convert the alphabet according to the net

charge of the amino acid. Amino acids {D, E} (negative charge) are converted to 0, {K,

R} (positive charge) to 1, and the rest {A, L, N, M, F, C, P, Q, S, T, G, W, H, Y, I, V}
to 2. The calculation took about 21 minutes and we obtain the pair 〈2�1�1�2221�, 28〉
which occurs in 334/368 = 90.76% of the mTP sequences and (73/431 = 16.94%) of the SP

and Other sequences. This pattern can also be regarded as capturing existing knowledge

about mTPs [76]: They are fairly abundant in K or R, but do not contain much D or

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 160

E. The pattern also suggests a periodic appearance of K or R, which is a characteristic

of an amphiphilic α-helix that mTPs are reported to have. A best substring search finds

pattern �212221� in 20 seconds, which gives us a classifier that matches 318/368 = 86.41%

of sequences with mTP and 255/431 = 59.16% of the other sequences.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 161

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

ec
s)

Maximum pattern length

Execution time for completely random 100 positive/100 negative data of length 100

Substring
VLDC: PMM
VLDC: WDAWG
VLDC: WDAWG-sm
VLDC in Window: PMM
VLDC in Window: DP-rm

Figure 13.6: Execution time (in seconds) for artificial data for different maximum
lengths of patterns to be searched for with completely random data.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

ec
s)

Maximum pattern length

Execution time for 100 positive/100 negative data of length 100 with embedded VLDC

Substring
VLDC: PMM
VLDC: WDAWG
VLDC: WDAWG-sm
VLDC in Window: PMM
VLDC in Window: DP-rm

Figure 13.7: Execution time (in seconds) for artificial data for different maximum
lengths of patterns to be searched for with VLDC embedded data.

CHAPTER 13. PATTERN DISCOVERY FROM STRING DATA SETS 162

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

ec
s)

Maximum pattern length

Execution time for 100 positive/100 negative data of length 100 with embedded VLDC in Window

Substring
VLDC: PMM
VLDC: WDAWG
VLDC: WDAWG-sm
VLDC in Window: PMM
VLDC in Window: DP-rm

Figure 13.8: Execution time (in seconds) for artificial data for different maximum
lengths of patterns to be searched for with VLDC and window size
embedded data.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

ec
s)

Maximum pattern length

Effect of branch-and-bound for 100 positive/100 negative of length 100

VLDC: PMM with Branch and bound - Embedded VLDC
VLDC: PMM with Branch and bound - Embedded VLDC in Window
VLDC: PMM with Branch and bound - Random
VLDC: PMM Exhaustive search

Figure 13.9: The effect of pruning of the search space for the different data sets,
compared to exhaustive search on the completely random dataset.

Chapter 14

Concluding Remarks and Future

Perspectives

In this thesis we studied various algorithms on string processing. First we presented

several algorithms for constructing index structures that contribute efficient solutions of

the substring pattern matching problem. The problem is the most fundamental as well

as the most important. Index structures, which effectively enable us to solve the problem

in O(|p|) running time for any given pattern string p, are therefore quite important.

We declare that the algorithm we presented in Chapter 4 has all the desired properties:

it constructs CDAWGs in linear time, on-line, and is applicable to inputs of sets of strings.

We can see the list in Table 4.1 now complete, which implies that our algorithm has filled

the missing piece and even could be seen to be the final solution to constriction of index

structures, also in the sense that CDAWGs require least space as index structures of

these kinds. Moreover, it gave us a unified view to the algorithms for constructing index

structures as described in Chapter 9.

In Chapter 5 we gave a detailed description of how to construct a CDAWG for a set

of strings. We first showed that the algorithm of Chapter 4 that builds CDAWG ′(w) for

a single string w can be easily modified so that it constructs, for any set S of strings,

CDAWG ′(S) in O(‖S‖) time. It is then improved so as to construct CDAWG ′(S) in

O(|T |) time when the set S is given in the form of trie T . We stress that |T | is much

less than ‖S‖ when strings in S share many and long prefixes, and therefore in such case

it runs faster than the first approach introduced in the chapter. We also emphasize that

applying the generic algorithm of Chapter 9 to this scheme, we will be able to construct

STree ′(S) and DAWG(S) in O(|T |) time as well.

163

CHAPTER 14. CONCLUDING REMARKS AND FUTURE PERSPECTIVES 164

Chapter 6 was devoted to the algorithm for constructing and maintaining CDAWGs

in the sliding window mechanism. The algorithm could be a space-efficient alternative to

Larsson’s algorithm for suffix trees for a sliding window [49]. The design of our algorithm

is a combination of the on-line CDAWG construction algorithm of Chapter 4 that moves

ahead the rightmost position of the window, and our original techniques to move the

leftmost position ahead. This algorithm is promising to contribute to reducing space

requirements in PPM style text compression scheme.

It is still an open problem whether conversion of CDAWG ′(bu) to CDAWG ′(u) can

be done in (amortized) constant time for any character b and string u. Also, it is surely

worth considering DAWGs for a sliding window where labels of edges of DAWGs are single

characters. This is really a big advantage in the scheme of a sliding window since we would

not need credit issuing then, which is surely time-consuming and makes the algorithm

rather complicated. However, we hold a strong belief that conversion of DAWG(bu) into

DAWG(u) cannot be done in (amortized) constant time, either. Thus we will need some

alternative way, like in case of CDAWGs.

We gave an on-line algorithm to construct SCDAWGs in Chapter 7, which runs in

linear time. Since the space-requirement of SCDAWGs is strictly smaller than that of

affix trees, our algorithm contributes reduction of memory space needed for construction

of bidirectional index structures. The index structures mentioned in Chapter 7, including

affix trees, all have certain dualities. One interesting question is whether there is a clear

duality in the suffix arrays of a string and its reversal.

In Chapter 8 we presented a linear-time algorithm for bidirectional construction of

suffix trees, which would be an alternative of Maaß’s algorithm for affix trees. We also

showed that our algorithm is capable of bidirectional construction of DAWGs. To tell the

truth, however, the algorithm does not always update DAWG(u) to DAWG(bua) with

a, b ∈ Σ and u ∈ Σ∗. We are almost sure that it is impossible to do the above update in

(amortized) constant time, basing on the observation in Chapter 11. Still, this is only a

conjecture, as a matter of fact.

As a related work a problem of inferring strings from graphs, which we proposed

in [40], can be raised. There we are given a dag G, and infer a string that suits the graph

under some condition. Firstly, we studied the problem of finding a string w such that

DASG(w) is isomorphic to a given graph G. We presented a linear-time algorithm to solve

the problem. Secondly, we considered DAWGs in terms of the string inference problem.

CHAPTER 14. CONCLUDING REMARKS AND FUTURE PERSPECTIVES 165

We proposed an algorithm to solve this problem in quadratic time. We also showed

that the string inference problem for DAWGs can be reduced to the substring equations

problem where we are given equations for strings that should be substrings of a string. The

most interesting open problem at the moment is whether or not any faster algorithm for

solving the problem for DAWGs exists, possibly in O(n log n) or O(n) time. Also, factor

oracles [2] are surely worth to consider in the context of string inference. Factor oracles

may be simpler than DAWGs, but more complicated than DASGs. Therefore it is of great

interest if the problem can be solved in linear time for factor oracles. Another context

of string inference would be to infer stings from arrays. Franěk et al. [23] presented a

method to check if an integer array f is a border array for some string w. They showed

an on-line linear time algorithm to verify if f is a border array for some string w on an

unbounded size alphabet. Duval et al. gave an on-line linear time algorithm for bounded

size alphabet [20]. We are also interested in the problem of examining whether a given

integer array f is the suffix array of some string w. Is it possible to solve the string

inference problem for suffix arrays in linear time?

Chapter 10 was devoted to the introduction of several advanced pattern matching prob-

lems. There we proposed WDAWGs which allow us to solve the VLDC pattern matching

problem in time linear to the length of a given pattern. What should be emphasized here

is that WDAWGs are the first index structure for solving the VLDC pattern matching

problem. Due to the recent high necessity of analysis of genomic sequences which often

contain noises, some efficient pattern matching method allowing errors has been sought.

VLDC pattern matching is one of the most powerful “weapons” for this, and therefore,

the importance of WDAWGs is quite high. We also presented the problem of VLDC pat-

tern matching within a window, which is a generalization of the episode pattern matching

problem. The introduction of the window helps us avoid unwanted, too long matches of

VLDC patterns.

In Chapter 11 we gave an on-line algorithm to directly build MASDAWGs, which

are inherently the same structure as WDAWGs. We showed that the algorithm runs in

time linear to the output size. We also presented a more space-economical algorithm to

construct MASDAWGs in Chapter 12. The algorithm reads a given string right to left,

in contrast to the above on-line algorithm that processes a given string left to right. The

all-suffixes version of CDAWGs, named MASCDAWGs, were introduced in this chapter as

well. Since the space requirement of CDAWGs is smaller than DAWGs, the new structure

CHAPTER 14. CONCLUDING REMARKS AND FUTURE PERSPECTIVES 166

surely contribute to further reduction of space requirement of index structures for all

suffixes of a string. We proposed an algorithm that constructs MASCDAWG(w) directly,

in time proportional to the output size, processing w right to left.

We studied pattern discovery from textual data in Chapter 13. We first produced

a practical algorithm to find the best episode patterns in the scheme of the BONSAI

system [63], where we are given two sets of strings and find the best pattern for the

purpose of separating the two sets. The search space is much bigger than in the case of

the original version of BONSAI, and thus we utilized EDASGs to speed up the matching

phase of the algorithm and employed the pruning heuristics to restrict the number of

candidate patterns. Secondly, we proposed an efficient algorithm that discovers the best

VLDC pattern to distinguish two given sets of strings. We used WDAWGs in order to

accelerate the matching of given patterns with text strings, and also gave an alternative

methods with the use of pattern matching machines. Finally, we introduced an algorithm

to discover the best VLDC pattern within a window. We presented three methods for

finding the best window size using dynamic programming, pattern matching machines,

and WDAWGs. We also showed the experimental results which are good enough to

convince us the effect of the pruning heuristics and the usefulness of VLDC patterns

within windows. As a future work, we are planning to apply the scheme of the edit

distance to the algorithm. The pattern will be a tuple 〈(p, k), d〉 where p is a VLDC

pattern, k is a window size, and d is a hamming distance. Namely, we will look for the

VLDC pattern within a window which, within k hamming distance, matches as many

strings as possible in one set and as few strings as possible in the other.

Bibliography

[1] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching

based on suffix arrays. In Proc. 9th International Symposium on String Processing

and Information Retrieval (SPIRE’02), volume 2476 of Lecture Notes in Computer

Science, pages 31–43. Springer-Verlag, 2002.

[2] C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: A new structure for

pattern matching. In Proc. 26th Annual Conference on Current Trends in Theory and

Practice of Informatics (SOFSEM’99), volume 1725 of Lecture Notes in Computer

Science, pages 291–306. Springer-Verlag, 1999.

[3] D. Angluin. Finding patterns common to a set of strings. Journal of Computer

System Sciences, 21:46–62, 1980.

[4] A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithm

on Words, volume 12 of NATO Advanced Science Institutes, Series F, pages 85–96.

Springer-Verlag, 1985.

[5] R. A. Baeza-Yates. Searching subsequences (note). Theoretical Computer Science,

78(2):363–376, 1991.

[6] M. Baĺık. Implementation of DAWG. In Proc. The Prague Stringology Club Workshop

’98 (PSCW’98). Czech Technical University, 1998.

[7] H. Bannai, K. Iida, A. Shinohara, M. Takeda, and S. Miyano. More speed and more

pattern variations for knowledge discovery system BONSAI. In Proc. 12th Inter-

national Conference on Genome Informatics (GIW’01), pages 454–455. Universal

Academy Press, 2001.

[8] H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano. A string pattern

regression algorithm and its application to pattern discovery in long introns. In

167

BIBLIOGRAPHY 168

Proc. 13th International Conference on Genome Informatics (GIW’02), pages 3–11.

Universal Academy Press, 2002.

[9] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas.

The smallest automaton recognizing the subwords of a text. Theoretical Computer

Science, 40:31–55, 1985.

[10] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete

inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578–

595, 1987.

[11] D. Breslauer. The suffix tree of a tree and minimizing sequential transducers. Theo-

retical Computer Science, 191:131–144, 1998.

[12] M. T. Chen and J. Seiferas. Efficient and elegant subword tree construction. In

Combinatorial Algorithm on Words, volume 12 of NATO Advanced Science Institutes,

Series F, pages 97–107. Springer-Verlag, 1985.

[13] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts for PPM.

In Proc. Data Compression Conference ’95 (DCC’95), pages 52–61. IEEE Computer

Society, 1995.

[14] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial

string matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

[15] M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–

86, 1986.

[16] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New

York, 1994.

[17] M. Crochemore and Z. Trońıček. On the size of dasg for multiple texts. In

Proc. 9th International Symposium on String Processing and Information Retrieval

(SPIRE’02), volume 2476 of Lecture Notes in Computer Science, pages 58–64.

Springer-Verlag, 2002.

[18] M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In Structures

in Logic and Computer Science, volume 1261 of Lecture Notes in Computer Science,

pages 192–211. Springer-Verlag, 1997.

BIBLIOGRAPHY 169

[19] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen. Episode match-

ing. In Proc. 8th Annual Symposium on Combinatorial Pattern Matching (CPM’97),

volume 1264 of Lecture Notes in Computer Science, pages 12–27. Springer-Verlag,

1997.

[20] J.-P. Duval, T. Lecroq, and A. Lefevre. Border array on bounded alphabet. In

Proc. The Prague Stringology Conference ’02 (PSC’02), pages 28–35. Czech Technical

University, 2002.

[21] M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th

Annual Symposium on Foundations of Computer Science (FOCS’97), pages 137–143.

IEEE Computer Society, 1997.

[22] E. R. Fiala and D. H. Greene. Data compression with finite windows. Communica-

tions of the ACM, 32(4):490–505, 1989.

[23] F. Franěk, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang. Verifying

a border array in linear time. J. Comb. Math. Comb. Comput., pages 223–236, 2002.

[24] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying

view of linear-time suffix tree construction. Algorithmica, 19(3):331–353, 1997.

[25] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. In Proc. of 32nd ACM Symposium on Theory

of Computing (STOC’00), pages 397–406, 2000.

[26] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York, 1997.

[27] Y. Hamuro, H. Kawata, N. Katoh, and K. Yada. A machine learning algorithm for

analyzing string patterns helps to discover simple and interpretable business rules

from purchase history. In Progress in Discovery Science, volume 2281 of Lecture

Notes in Artificial Intelligence. Springer-Verlag, 2002.

[28] M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. A practical al-

gorithm to find the best subsequence patterns. In Proc. The Third International

Conference on Discovery Science (DS’00), volume 1967 of Lecture Notes in Artificial

Intelligence, pages 141–154. Springer-Verlag, 2000.

BIBLIOGRAPHY 170

[29] M. Hirao, S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. A practical algo-

rithm to find the best episode patterns. In Proc. The Fourth International Conference

on Discovery Science (DS’01), volume 2226 of Lecture Notes in Artificial Intelligence,

pages 435–440. Springer-Verlag, 2001.

[30] J. Holub and B. Melichar. Approximate string matching using factor automata.

Theoretical Computer Science, 249:305–311, 2000.

[31] H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Online construction of subse-

quence automata for multiple texts. In Proc. 7th International Symposium on String

Processing and Information Retrieval (SPIRE’00), pages 146–152. IEEE Computer

Society, 2000.

[32] L. Hui. Color set size problem with applications to string matching. In Proc. 3rd

Annual Symposium on Combinatorial Pattern Matching (CPM’92), volume 644 of

Lecture Notes in Computer Science, pages 230–243. Springer-Verlag, 1992.

[33] K. Iida, H. Bannai, A. Shinohara, M. Takeda, and S. Miyano. Extension and speed

up of knowledge discovery system BONSAI. In Proc. 7th annual Pacific Symposium

on Biocomputing (PSB’02), page 100, 2002.

[34] S. Inenaga. Bidirectional construction of suffix trees. In Proc. The Prague Stringology

Conference ’02 (PSC’02), pages 75–87. Czech Technical University, 2002.

[35] S. Inenaga, H. Bannai, A. Shinohara, M. Takeda, and S. Arikawa. Discovering best

variable-length-don’t-care patterns. In Proc. The Fifth International Conference on

Discovery Science (DS’02), volume 2534 of Lecture Notes in Computer Science, pages

86–97. Springer-Verlag, 2002.

[36] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Construction of

the CDAWG for a trie. In Proc. The Prague Stringology Conference ’01 (PSC’01),

pages 37–48. Czech Technical University, 2001.

[37] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-line construc-

tion of symmetric compact directed acyclic word graphs. In Proc. of 8th International

Symposium on String Processing and Information Retrieval (SPIRE’01), pages 96–

110. IEEE Computer Society, 2001.

BIBLIOGRAPHY 171

[38] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Unification of

algorithms to construct index structures for texts. Technical Report DOI-TR-CS-196,

Department of Informatics, Kyushu University, 2001.

[39] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and

G. Pavesi. On-line construction of compact directed acyclic word graphs. In Proc.

12th Annual Symposium on Combinatorial Pattern Matching (CPM’01), volume 2089

of Lecture Notes in Computer Science, pages 169–180. Springer-Verlag, 2001.

[40] S. Inenaga, A. Shinohara, and M. Takeda. Inferring strings from graphs. Technical

Report DOI-TR-CS-215, Department of Informatics, Kyushu University, 2003.

[41] S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. Compact directed acyclic

word graphs for a sliding window. In Proc. 9th International Symposium on String

Processing and Information Retrieval (SPIRE’02), volume 2476 of Lecture Notes in

Computer Science, pages 310–324. Springer-Verlag, 2002.

[42] S. Inenaga, A. Shinohara, M. Takeda, H. Bannai, and S. Arikawa. Space-economical

construction of index structures for all suffixes of a string. In Proc. 27th International

Symposium on Mathematical Foundations of Computer Science (MFCS’02), volume

2420 of Lecture Notes in Computer Science, pages 341–352. Springer-Verlag, 2002.

[43] S. Inenaga, M. Takeda, A. Shinohara, H. Hoshino, and S. Arikawa. The minimum

DAWG for all suffixes of a string and its applications. In Proc. 13th Annual Sympo-

sium on Combinatorial Pattern Matching (CPM’02), volume 2373 of Lecture Notes

in Computer Science, pages 153–167. Springer-Verlag, 2002.

[44] J. Kärkkäinen. Suffix cactus: A cross between suffix tree and suffix array. In Proc.

6th Annual Symposium on Combinatorial Pattern Matching (CPM’95), volume 973

of Lecture Notes in Computer Science, pages 191–204. Springer-Verlag, 1995.

[45] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM

Journal of Computing, 6(2):323–350, 1977.

[46] S. R. Kosaraju. Fast pattern matching in trees. In Proc. 30th IEEE Symposium on

Foundations of Computer Science, pages 178–183, 1989.

BIBLIOGRAPHY 172

[47] S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice and

Experience, 29(13):1149–1171, 1999.

[48] J. Kyte and R. Doolittle. A simple method for displaying the hydropathic character

of a protein. Journal of Molecular Biology, 157:105–132, 1982.

[49] N. J. Larsson. Extended application of suffix trees to data compression. In Proc. Data

Compression Conference ’96 (DCC’96), pages 190–199. IEEE Computer Society,

1996.

[50] N. J. Larsson. Structures of String Matching and Data Compression. PhD thesis,

Lund University, 1999.

[51] M. G. Maaß. Linear bidirectional on-line construction of affix trees. In Proc. 11th

Annual Symposium on Combinatorial Pattern Matching (CPM’00), volume 1848 of

Lecture Notes in Computer Science, pages 320–334. Springer-Verlag, 2000.

[52] V. Mäkinen. Compact suffix array. In Proc. 11th Annual Symposium on Combi-

natorial Pattern Matching (CPM’00), volume 1848 of Lecture Notes in Computer

Science, pages 305–319. Springer-Verlag, 2000.

[53] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal of Computing, 22(5):935–948, 1993.

[54] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episode in se-

quences. In Proc. 1st International Conference on Knowledge Discovery and Data

Mining, pages 210–215. AAAI Press, 1995.

[55] E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,

23(2):262–272, 1976.

[56] S. Miyano, A. Shinohara, and T. Shinohara. Polynomial-time learning of elementary

formal systems. New Generation Computing, 18:217–242, 2000.

[57] A. Moffat. Implementing the PPM data compression scheme. IEEE Trans. Commun.,

38(11):1917–1921, 1990.

BIBLIOGRAPHY 173

[58] S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning. In

Proc. 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 226–236. ACM Press, 2000.

[59] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[60] D. Revuz. Minimization of acyclic deterministic automata in linear time. Theoretical

Computer Science, 92(1):181–189, 1992.

[61] K. Sadakane. Compressed text databases with efficient query algorithms based on

the compressed suffix array. In Proc. of 11th International Symposium on Algorithms

and Computation (ISAAC’00), volume 1969 of Lecture Notes in Computer Science,

pages 410–421. Springer-Verlag, 2000.

[62] T. Shibuya. Constructing the suffix tree of a tree with a large alphabet. In Proc.

10th Annual International Symposium on Algorithms and Computation (ISAAC’99),

volume 1741 of Lecture Notes in Computer Science, pages 225–236. Springer-Verlag,

1999.

[63] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa.

Knowledge acquisition from amino acid sequences by machine learning system BON-

SAI. Transactions of Information Processing Society of Japan, 35(10):2009–2018,

1994.

[64] A. Shinohara, M. Takeda, S. Arikawa, M. Hirao, H. Hoshino, and S. Inenaga. Finding

best patterns practically. In Progress in Discovery Science, volume 2281 of Lecture

Notes in Artificial Intelligence, pages 307–317. Springer-Verlag, 2002.

[65] T. Shinohara. Polynomial-time inference of pattern languages and its applications.

In Proc. 7th IBM Symposium on Mathematical Foundations of Computer Science

(MFCS’82), pages 191–209, 1982.

[66] J. Stoye. Affixbäume. Master’s thesis, Universität Bielefeld, 1995. (in German).

[67] J. Stoye. Affix trees. Technical Report 2000–4, Universität Bielefeld, Technische

Fakultät, 2000.

BIBLIOGRAPHY 174

[68] M. Takeda, T. Matsumoto, T. Fukuda, and I. Nanri. Discovering characteristic

expressions from literary works: A new text analysis method beyond n-gram and

KWIC. Theoretical Computer Science, 2002. (to appear).

[69] Z. Trońıček. Problems related to subsequences and supersequences. In Proc. 6th In-

ternational Symposium on String Processing and Information Retrieval (SPIRE’99),

pages 199–205. IEEE Computer Society, 1999.

[70] Z. Trońıček. Episode matching. In Proc. 12th Annual Symposium on Combinatorial

Pattern Matching (CPM’01), volume 2089 of Lecture Notes in Computer Science,

pages 143–146. Springer-Verlag, 2001.

[71] Z. Trońıček and B. Melichar. Directed acyclic subsequence graph. In Proc. The

Prague Stringology CLub Workshop ’98(PSCW’98), pages 107–118. Czech Technical

University, 1998.

[72] E. Ukkonen. Approximate string matching over suffix trees. In Proc. 4th Annual

Symposium on Combinatorial Pattern Matching (CPM’93), volume 684 of Lecture

Notes in Computer Science, pages 228–242. Springer-Verlag, 1993.

[73] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[74] E. Ukkonen and D. Wood. Approximate string matching with suffix automata. Al-

gorithmica, 10(5):353–364, 1993.

[75] G. von Heijne. The signal peptide. Journal of Membrane Biology, 115:195–201, 1990.

[76] G. von Heijne, J. Steppuhn, and R. G. Herrmann. Domain structure of mitochondrial

and chloroplast targeting peptides. European Journal of Biochemistry, 180:535–545,

1989.

[77] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium

on Switching and Automata Theory, pages 1–11, 1973.

