
Dynamic Edit Distance Table under a General
Weighted Cost Function
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1 Introduction

String comparison is a fundamental task in theoretical computer science, with
applications in e.g., spelling correction and computational biology. Edit distance
is a classic similarity measure between two given strings A and B. It is the
minimum total cost for transforming A into B, or vice versa, using three types
of edit operations: single-character insertions, deletions, and/or substitutions.

Landau et al. [1] introduced the problem of left incremental edit distance com-
putation: Given a solution for the edit distance between A and B, the task is to
compute a solution for the edit distance between A and B′, where B′ = bB. The
alternative problem in which B and B′ are interchanged is called the left decre-
mental edit distance computation. Applications of left incremental/decremental
edit distance computation include cyclic string comparison and computing ap-
proximate periods (see [1–3] for more).

Let m and n be the lengths of A and B, respectively. The basic dynamic pro-
gramming method for the above problem requires Θ(mn) time per added/deleted
character in front of B. For a unit edit cost function (the insertion, deletion, and
substitution costs are all 1), Landau et al. [1] presented a fairly complicated O(k)-
time algorithm, where k is an error threshold with 1 ≤ k ≤ max{m,n}. When k
is not specified, then the algorithm takes O(m + n) time. Other O(m + n)-time
solutions for the unit cost function were presented in [2–4].

This paper deals with a more general, weighted edit cost function: we allow
the edit cost function to have arbitrary non-negative integer costs. Schmidt [2]
presented a complicated O(n log m) time solution per added/deleted character
for a general cost function. In this paper, we present a simple O(min{c(m +
n),mn})-time algorithm for the same problem, where c is the maximum weight
in the cost function. This translates into O(m+n) time under constant weights.
Our algorithm uses a difference table, a representation of a dynamic programming
table proposed by Kim and Park [3]. We also show that the algorithm of Kim
and Park is not easily applicable to the case of general weights.

We report some preliminary experimental results which show advantages of
our algorithm over a basic dynamic programming method for general edit cost
functions and the Kim-Park algorithm for the unit cost function.



2 Preliminaries

Let Σ be a finite alphabet. An element of Σ is called a character and that of Σ∗ is
called a string. The empty string is denoted by ε. For any string A = a1a2 · · · am,
let A[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ m. For convenience, let A[i : j] = ε if i > j.

For any string A = a1a2 · · · am, we define the three editing operations:

1. Insert character b after position i of A, where i = 0 means inserting at front.
2. Delete character ai from position i of A.
3. Substitute character b for character ai at position i of A.

The above operations can be represented as pairs (ε, b), (ai, ε), and (ai, b), re-
spectively. Each (x, y) has a positive cost function δ(x, y). That is, δ : ({ε} ×
Σ)∪(Σ×{ε})∪(Σ×Σ) → N , where N denotes the set of non-negative integers.
For any a, b ∈ Σ, we assume δ(a, b) = 0 if a = b, and δ(a, b) > 0 otherwise.

The edit distance of between strings A and B under cost function δ is the
minimum total cost of editing operations under δ that transform A into B, or vice
versa. Such an edit distance between A and B under δ is denoted by edδ(A,B).

The fundamental solution for edδ(A,B) is to compute a dynamic program-
ming table D of size (m + 1) × (n + 1) s.t. D [i, j] = edδ(A[1 : i], B[1 : j]) for
0 ≤ i ≤ m and 0 ≤ j ≤ m, using the well-known recurrence (1) shown below.

D [i, 0] =
∑i

h=1 δ(ah, ε) for 0 ≤ i ≤ m,

D [0, j] =
∑j

h=1 δ(ε, bh) for 0 ≤ j ≤ n, and

D [i, j] = min{D [i, j − 1] + δ(ε, bj),D [i− 1, j] + δ(ai, ε),
D [i− 1, j − 1] + δ(ai, bj)}, for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1)

As seen above, for a given D-table for A and B[1 : j], we are able to compute
edδ(A, B[1 : j + 1]) and edδ(A,B[1 : j − 1]) in O(m) time. This paper deals
with the symmetric problem of left incremental (resp. decremental) edit distance
computation: Given a representation of edδ(A,B[j : n]) for strings A and B,
compute a representation of edδ(A,B[j − 1 : n]) (resp. edδ(A,B[j + 1 : n])).

3 The Kim-Park Algorithm

A unit cost function δ1 is s.t. δ1(ε, b) = 1 for any b ∈ Σ, δ1(a, ε) = 1 for any
a ∈ Σ, and δ1(a, b) = 1 for any a 6= b. The unit cost edit distance is known
as the Levenshtein edit distance or edit distance. This section briefly recalls the
algorithm of Kim and Park [3] that solves the problem in O(m + n) time for δ1.

3.1 Solution for the Unit Cost Function

Essentially the same techniques can be used to solve both the left incremental
and decremental problems; as in [3], we concentrate on the decremental problem.



Let D denote the D-table for A and B, and D ′ denote the D-table for A and
B ′ = B[2 : n]. We find it convenient to use 1-based column indices with D ′. Now
column 1 acts as the left boundary column with values D [i, 1] =

∑i
h=1 δ(ah, ε),

and columns j = 2 . . . n obey recurrence (1) in normal fashion. Now D ′[i, j] =
edδ(A[1 : i], B[2 : j]) and cell (i, j) corresponds to ai and bj in both D and D ′.

Kim and Park use a difference representation (the DR-table) of the D-table,
where each position (i, j) has two fields such that DR[i, j].U = D [i, j]−D [i−1, j]
and DR[i, j].L = D [i, j] − D [i, j − 1]. DR[i, j].U is the difference to the upper
neighbor and DR[i, j].L is the difference to the left neighbor when row indices
grow downwards and column indices towards right.

Let DR′ denote the DR-table of strings A and B′. In what follows, we recall
how the Kim-Park algorithm computes the DR′-table from the DR-table.

The Kim-Park algorithm is essentially based on the change table Ch, which
is defined under our indexing convention1 as Ch[i, j] = D ′[i, j]−D [i, j].

Lemma 1 ([3]). For the unit cost function δ1, each Ch[i, j] is −1, 0, or 1.

Lemma 2 ([3]). For any 0 ≤ i ≤ m, let f(i) = min{j | Ch[i, j] = −1} if such
j exists, and let f(i) = n otherwise. Then, Ch[i, j′] = −1 for f(i) ≤ j′ < n and
f(i) ≥ f(i − 1) for 1 ≤ i ≤ m. Also, for any 0 ≤ j ≤ n, let g(j) = min{i |
Ch[i, j] = 1} if such i exists, and let g(j) = m+1 otherwise. Then, Ch[i′, j] = 1
for g(j) ≤ i′ ≤ m and g(j) ≥ g(j − 1) for 1 ≤ j < n.

Ch[i, j] is said to be affected if Ch[i− 1, j − 1], Ch[i− 1, j], and Ch[i, j − 1] are
not of the same value. DR′[i, j] is also said to be affected if Ch[i, j] is affected.

Lemma 3 ([3]). If DR′[i, j] is not affected, then DR′[i, j] = DR[i, j]. If DR′[i, j]
is affected, then DR′[i, j].U = DR[i, j].U−Ch[i, j]+Ch[i−1, j] and DR′[i, j].L =
DR[i, j].L− Ch[i, j] + Ch[i, j − 1].

By Lemmas 1 and 2, there are O(m+n) affected entries in Ch, and these entries
are categorized into two types: (-1)-boundaries and 1-boundaries. Consider the
four neighbors Ch[i−1, j−1], Ch[i−1, j], Ch[i, j−1] and Ch[i, j]. Among these,
the upper-right entry Ch[i − 1, j] belongs to the (−1)-boundary if and only if
Ch[i− 1, j] = −1 and at least one of the other three entries is not -1. In similar
fashion, the lower-left entry Ch[i, j − 1] belongs to the 1-boundary if and only if
Ch[i, j − 1] = 1 and at least one of the other three entries is not 1.

The Kim-Park algorithm scans the (-1)- and 1-boundaries of Ch and com-
putes the affected entries in DR′ using Lemma 3.

Theorem 1 ([3]). The algorithm of Kim and Park [3] transforms DR to DR′

in O(m+n) time for δ1.

1 [3] used 0-based indexing with D ′ and defined Ch[i, j] = D ′[i, j]−D [i, j + 1].
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Fig. 1. From left to right, D, D′ and Ch tables for strings A = abbbbca and B =
acaaaaa, with cost function δ(ε, b) = 5 for any character b, δ(a, ε) = 1 for any character
a, and δ(a, b) = 5 for any characters a 6= b.

3.2 Exponential Lower Bound for a General Cost Function

As became evident in the preceding section, the primary principle of the Kim-
Park algorithm could be frased as “trace the x-boundary in Ch for each possible
boundary-type x”. Here we consider how a direct application of this principle
would to a general weighted function δ. An important fact is that now Lemma 1
does not hold. See Fig. 1 that illustrates D, D′ and Ch for A = abbbbca and
B = acaaaaa, with δ(ε, b) = 5 for any b ∈ Σ, δ(a, ε) = 1 for any a ∈ Σ, and
δ(a, b) = 5 for any a 6= b. The entries of the Ch-table have seven different values
-5, -4, -3, -2, -1, 0, and 1.

Even if we leave aside the non-trivial question of how to define the possible
boundary types under general costs, the feasibility of “tracing each possible x-
boundary” seems to depend heavily on the number of different values in Ch.

It was shown in [5] that the number of different values in Ch is constant if
each edit operation cost is a constant rational number. Let us now consider an
integer cost function that may have an exponential edit cost w.r.t. the length of
a given string. We may obtain the following negative result. The proof is omitted
due to lack of space.

Theorem 2. Let A = a1a2 · · · am and B = b1b2 · · · bm+1 be strings such that
ai 6= ai′ for any 1 ≤ i 6= i′ ≤, bj 6= bj′ for any 1 ≤ j 6= j′ ≤ m + 1, and ai 6= bj

for any 1 ≤ i ≤ m and 1 ≤ j ≤ m + 1. Let δ(ε, σ) = δ(σ, ε) = (m− 1)2m − 1 for
any σ ∈ Σ, δ(ai, bj) = 2m if i 6= j, and δ(ai, bj) = 2i−1 if i = j. Then, Ch-tables
under δ can have Ω(2m) different values.

Due to the above theorem, a natural extension of the Kim-Park algorithm might
need to check if there is an x-boundary in the Ch-table for exponentially many
different values x. Note e.g. from Fig. 1 that different boundaries do not all begin
from column 1, and now the boundaries may also be non-contiguous, making
their tracing more difficult. Also note the input strings may define which of the
Ω(2m) values actually appear within the O(mn) entries of the Ch-table.

In part due to these difficulties, we propose in the next section an algorithm
that discards the notion of tracing boundaries.



4 A Simple Algorithm for a General Cost Function

As became evident in the preceding discussion, the essential question in incre-
mental/decremental edit distance computation is: Which entries in DR do we
need to change in order to transform DR into DR′? The algorithm of Kim and
Park finds such changed entries by traversing the affected entries of the Ch-table.

We ignore the Ch-table and concentrate only on the difference table DR
(and its updated version DR′). Recurrence (1) showed how to compute the value
D [i, j] when the three neighboring values D [i, j−1], D [i−1, j] and D [i−1, j−1]
are known. Consider Fig. 2, where the values of D [i, j−1], D [i−1, j] and D [i, j]
are represented by using D [i−1, j−i] = d as a base value. Now DR[i−1, j].L = x
and DR[i, j − 1].U = y.

j − 1 j

i − 1

i

d+x

d+zd+y

d

Fig. 2. Illustration of
computing DR[i, j].

Computing DR[i, j] consists of computing DR[i, j].U
= d+z−(d+x) = z−x and DR[i, j].L = d+z−(d+y) =
z − y. If we assume that DR[i − 1, j].L = x and
DR[i, j − 1].U = y are already known, then the only
missing value is z. Based on recurrence (1), the relation-
ship between the values in Fig. 2 fulfills the condition
d+z = min{d+y+δ(ε, bj), d+x+δ(ai, ε), d+δ(ai, bj)}.
Since d appears in each choice within the min-clause,
we may drop it from both sides. Now z = min{y +
δ(ε, bj), x + δ(ai, ε), δ(ai, bj)}. This leads directly into
the following recurrence (2) for the entry DR[i, j].

DR[i, 0].U = δ(ai, ε) for every 1 ≤ i ≤ m,

DR[0, j].L = δ(ε, bj) for every 1 ≤ j ≤ n, and

DR[i, j].U = z −DR[i− 1, j].L and DR[i, j].L = z −DR[i, j − 1].U,where

z = min{DR[i− 1, j].L + δ(ε, bj),DR[i, j − 1].U + δ(ai, ε), δ(ai, bj)}, for
every 1 ≤ i ≤ m and every 1 ≤ j ≤ n.

(2)

To avoid references to the Ch-table, we use the following alternative to decide if
DR′[i, j] is affected, that is, if it is possible that DR′[i, j] 6= DR[i, j]. The next
lemmas follows directly from recurrence (2).

Lemma 4. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry DR′[i, j] is affected if and
only if DR′[i− 1, j].L 6= DR[i− 1, j].L or DR′[i, j − 1].U 6= DR[i, j − 1].U .

Our algorithm for transforming DR into DR′ uses Lemma 4 to keep track of
which entries in DR may become different. All such affected entries are recom-
puted using recurrence (2).

The columns j = 1 . . . n of DR′ are processed one column at a time in the
order of increasing j. During the computation we maintain a prev∆-table as
follows: When starting to process column j, the table prev∆ contains the row
numbers i for which DR′[i, j − 1].U 6= DR[i, j − 1].U . These row numbers are
recorded in increasing order.



The column j = 1 of DR is a special case. It is transformed directly into the
first boundary column of DR′ by setting DR′[i, 1].U = δ(ai, ε) for i = 1 . . .m. For
simplicity we add each i = 1 . . . m, into prev∆ even if DR′[i, 1].U = DR[i, 1].U .

Each column j = 2 . . . n is processed according to Lemma 4 that states that
the value DR′[i, j] needs to be computed (ie. its value may change from DR[i, j])
only if DR′[i, j − 1].U 6= DR[i, j − 1].U or DR′[i− 1, j].L 6= DR[i− 1, j].L.

The entries DR′[i, j] are recomputed for all i that appear in prev∆, in the
order of increasing row indices i. This handles all entries in column j where the
first condition, DR′[i, j − 1].U 6= DR[i, j − 1].U , of Lemma 4 is true.

The second condition, DR′[i − 1, j].L 6= DR[i − 1, j].L, corresponds to re-
computed and consequently changed values in the currently processed column
j. This is easily checked during the computation as we proceed along increas-
ing row indices i: Whenever we recompute the entry DR′[i, j], that is, recom-
pute DR′[i, j].U and DR′[i, j].L, we also check whether DR′[i, j].L 6= DR[i, j].L.
If this condition is true, then the next-row entry DR′[i + 1, j] is affected and
will be recomputed next. This ensures that also all entries DR′[i, j], for which
DR′[i− 1, j].L 6= DR[i− 1, j].L holds, will be recomputed in column j.

In order to prepare the table prev∆ for the next column j + 1, we record
each row index i where DR′[i, j].U 6= DR[i, j].U into a second table curr∆. This
is done whenever an entry DR′[i, j] has been computed. When we later move
from column j to column j + 1, the roles of the tables prev∆ and curr∆ are
interchanged. Hence the affected row indices recorded into curr∆ in column j
will be read from prev∆ in column j + 1, and the new affected row indices in
column j + 1 will be recorded to curr∆, which previously acted as prev∆ in
column j and was holding the affected values for column j − 1.

The above-described steps are implemented by Algorithm 1. Let us present
the following clarifying comments on the pseudocode of the algorithm:

– In the pseudocode we do not use the separate notation DR′ to refer to the
transformed version of DR.

– In the pseudocode, the tables prev∆ and curr∆ are indexed starting from
1. The variables prevIdx and currIdx, respectively, denote the current po-
sitions in these tables.

– The end of the table prev∆ is marked by inserting a sentinel value m + 1 as
the last value in the table. Also the loop on lines 1-2 does this (and instead
leaves out the first row 1, as the computation in any case starts by using the
row index i = 1).

– Lines 6-8 compute the updated values DR′[i, j].L and DR′[i, j].U into the
variables new.L and new.U according to recurrence (2).

– Line 9 stores the old values DR[i, j].L and DR[i, j].U into the variables old.L
and old.U

– Lines 13-18 check the condition DR′[i − 1, j].L 6= DR[i − 1, j].L of Lemma
4 in the following way: Line 15 increments the current row index i as if the
condition would be true and i +1 would be the next row to process. Line 16
checks if this condition was not true. If it was not, the repeat-until reads still
unused row indices from the prev∆-table until either one which is at least



Algorithm 1: Generalized traversal of affected entries
for i ← 1 to m do1

prev∆[i] ← i + 1; DR[i, 1].U ← δ(ai, ε)2

i ← 1; j ← 1; DR[0, j].L ← δ(ε, bj); currIdx ← 1; prevIdx ← 13

while i ≤ m and j ≤ n do4

while i ≤ m do5

x ← DR[i− 1, j].L; y ← DR[i, j − 1].U6

z ← min{x + δ(ai, ε), y + δ(ε, bj), δ(ai, bj)}7

new.L ← z − y; new.U ← z − x8

old.L ← DR[i, j].L; old.U ← DR[i, j].U9

DR[i, j].L ← new.L; DR[i, j].U ← new.U10

if old.U 6= new.U then11

curr∆[currIdx] ← i; currIdx ← currIdx + 112

i ← i + 113

if old.L = new.L then14

now = i15

repeat16

i ← prev∆[prevIdx]; prevIdx ← prevIdx + 117

until i ≥ now18

curr∆[currIdx] ← m + 119

Interchange the roles of the tables curr∆ and prev∆20

currIdx ← 1; i ← prev∆[1]; prevIdx ← 2; j ← j + 121

i + 1 is found (and it becomes the next row to process) or prev∆ becomes
fully processed (sentinel m + 1 was read).

– Line 19 adds the end sentinel m + 1 to the table curr∆.
– Line 20 corresponds in practice to e.g. swapping two pointers that point to

the ∆-tables.
– Line 21 already reads the first row value i = prev∆[1] for column j + 1.

Therefore prevIdx becomes 2.
– The main loop of line 4 stops either when line 21 sets i = m + 1, which

means that the prev∆-table for the current column was empty, or when the
last column n has been processed.

Let #j denote the number of actually changed entries in column j. That is,
#j = |{i : DR′[i, j] 6= DR[i, j]}|.

Theorem 3. Algorithm 1 recomputes a total of Θ(m) entries in columns j =
1 . . . 2 and a total of O(

∑n
j=2 #j) entries in columns j = 3 . . . n.

Proof. The case for columns j = 1 . . . 2 follows directly from how the m entries
DR′[i, j].U in column 1 are recomputed (ie. reset) and how the prev∆-table is
initialized with Θ(m) row indices prior to processing column 2.

When the algorithm starts to process a column j > 2, the prev∆-table con-
tains O(#j−1) row indices (and one sentinel). Hence in column j at least these
O(#j−1) entries will be recomputed. In addition to these, further entries DR′[i, j]
will be recomputed only if the entry DR′[i−1, j] was recomputed and it became
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Fig. 3. Illustration of crossing paths in proof of Theorem 4.

different than DR[i− 1, j]. The number of such entries is at most #j . No other
cells are recomputed in column j. Hence the total number of cells recomputed in
any column j > 2 is at most O(#j−1+#j). Therefore the total number of entries
recomputed in columns j = 3 . . . n is O(

∑n
j=3(#j−1 + #j)) = O(

∑n
j=2 #j). ut

Theorem 3 states that Algorithm 1 makes the minimum possible work in columns
j > 2, as clearly any algorithm that transforms DR into DR′ must change at
least #j values in column j. The columns j = 1 and j = 2 possibly involve
up to Θ(m) unnecessary work due to how the boundary column j = 1 and the
prev∆-table are first initialized. Minor modifications and a further preprocessing
stage would allow us to make the algorithm completely minimal, ie. to recompute
only O(#1 + #2) entries in the first two columns. We omit this consideration
for now, as one of the main goals of this paper is to propose an algorithm that
is both general and practical. The current form of Algorithm 1 seems to fulfill
this goal well. The pseudocode is compact but nevertheless already provides
such a detailed description of the algorithm that it is very straight-forward to
compose a working implementation in real code, even if one has little background
knowledge. We believe that our Algorithm 1 is not only more general than the
previous algorithm of Kim and Park; it also seems even simpler in terms of
implementing and understanding all steps of the algorithm. These are valuable
qualities in practice.

Corollary 1. Algorithm 1 transforms DR into DR′ in O(m+n) time under the
unit cost function δ1.

Proof. It follows from Theorems 1 and 3 and the preceding discussion that the
work is at most O(m + n) + Θ(m) = O(m + n). ut

Theorem 4. Let c be the highest weight in the used cost function δ, that is,
c = max{δ(a, b) : a, b ∈ Σ ∪ {ε}}. Then

∑n
j=1 #j = O(c(m + n)).

Proof. We analyse the tables DR′, DR and Ch in similar fashion as Schmidt in
the proof of Theorem 6.1 in [2]. The basis is to consider table D as a weighted grid
graph that has a horizontal edge with weight δ(ε, bj) from D[i, j−1] to D[i, j] for
i = 0 . . .m and j = 1 . . . n, a vertical edge with weight δ(ai, ε) from D[i−1, j] to
D[i, j] for i = 1 . . . m and j = 0 . . . n, and a diagonal edge with weight δ(ai, bj) for



i = 1 . . . m and j = 1 . . . n. Now the edit distance D[i, j] = edδ(A[1 : i], B[1 : j])
is equal to the cost of the cheapest weighted path from D[0, 0] to D[i, j].

Let us consider the rows i in column j where DR′[i, j].U 6= DR[i, j].U . Since
D ′[i, j] = D [i, j] + Ch[i, j], we have that DR′[i, j].U = D ′[i, j] − D ′[i − 1, j] =
D [i, j] + Ch[i, j]−D [i− 1, j]−Ch[i− 1, j] = DR[i, j].U + Ch[i, j]−Ch[i− 1, j].
That is, DR′[i, j].U 6= DR[i, j].U if and only if Ch[i, j] 6= Ch[i− 1, j].

Figure 3a depicts minimum cost paths corresponding to the distances D [i, j] =
p, D [i − 1, j] = q1 + q2, D ′[i, j] = r1 + r2 and D ′[i − 1, j] = s. The path from
D[0, 0] to D[i− 1, j] must cross with the path from D[0, 1] to D[i, j]. In Figure
3a, the crossing point divides these paths into the subpaths q1, q1, r1 and r2.

Each path and subpath has a minimal cost, and so the inequalities p ≤ q1+r2

and s ≤ r1 + q2 hold. Hence D [i, j] + D ′[i − 1, j] = p + s ≤ q1 + r2 + r1 + q2 =
D [i − 1, j] + D ′[i, j]. This leads into the inequality D ′[i − 1, j] − D [i − 1, j] ≤
D ′[i, j] − D [i, j], that is, Ch[i − 1, j] ≤ Ch[i, j]. Since we deal with integers,
Ch[i, j] 6= Ch[i− 1, j] iff Ch[i, j] ≥ Ch[i− 1, j] + 1. Note that the Ch[i, j] values
are non-decreasing with growing i, and the minimum increment is 1.

Now consider the possible range of values for Ch[i, j] when i ≥ 1 and j ≥ 1.
The value D[i, j] can never be larger than the alternative of first going to D[0, 1]
along the edge with weight δ(ε, b2) and then following the minimal path of cost
D ′[i, j]. That is, Ch[i, j] ≥ −δ(ε, b2) ≥ c, where c is the maximum weight in δ.
On the other hand, the value D ′[i, j] can never be worse than the alternative of
going directly down until the path corresponding to D[i, j] is reached in some
point D[i′, 1], and then following that path to the end. This is depicted in Figure
3c so that D [i, j] = p1 + p2 and q is the cost of the direct downward path from
D[0, 1] up to the point of crossing D[i′, 1]. The paths (with costs) p1 and q

have the same cost
∑i′−1

h=1 δ(ah, ε) up to row i′ − 1. It is not difficult to show
that q + p2 ≤ p1 + p2 + min{δ(ε, b1), δ(ai′ , b1) − δ(ai′ , ε)}, which means that
Ch[i, j] ≤ min{δ(ε, b1), δ(ai′ , b1)− δ(ai′ , ε)} ≤ c.

Since −c ≤ Ch[i, j] ≤ c and the Ch-values are non-decreasing with incre-
ments ≥ 1, column j may contain at most O(c) different rows i where Ch[i, j] 6=
Ch[i−1, j], that is, at most O(c) different rows i where DR′[i, j].U 6= DR[i, j].U .

In similar fashion we may show each row i contains at most O(c) columns
j where DR′[i, j].L 6= DR[i, j].L. As seen by comparing Figures 3a and 3b, the
underlying cases are very similar. We omit further details due to lack of space.

The end result is that columns j = 1 . . . n contain O(cn) points (i, j) where
DR′[i, j].U 6= DR[i, j].U , and rows i = 1 . . .m contain O(cm) points (i, j) where
DR′[i, j].L 6= DR[i, j].L. Since an entry DR′[i, j] is affected only in the preceding
types of points, we may conclude that

∑n
j=1 #j = O(c(m + n)). ut

Corollary 2. Algorithm 1 transforms DR into DR′ in O(min{c(m + n),mn})
time under an arbitrary cost function δ whose maximum weight is c, and in
O(m + n) time under a cost function δ with constant (but arbitrary) weights.

Proof. The O(mn) bound is due to the fact that Algorithm 1 recomputes each
of the O(mn) entries at most once. The other bounds follow from Theorems 3
and 4. ut



5 Experiments

In all experiments of this section, we computed a representation of D for A and
B[j : n] for each j = n, n − 1, . . . , 1, where the length of both A and B was n.
All the experiments were conducted on a CentOS Linux desktop computer with
two 3GHz dual core Xeon processors and 16GB memory.

5.1 Random Data

a)
2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

se
c

o
n

d
s)

Insertion Cost b)
2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

se
c

o
n

d
s)

Deletion Cost

c)
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c

o
n

d
s)

Substitution Cost

Fig. 4. Running times of our al-
gorithm on random text data of
length 5000 from an alphabet of
size 26 with; a) variable insertion
cost from 1 to 50 and fixed dele-
tion and substitution costs 1, b)
variable deletion cost from 1 to 50
and fixed insertion and substitu-
tion costs 1, c) variable substitu-
tion cost from 1 to 100 and fixed
insertion and deletion costs 50.

First we performed some experiments to investigate the performance of our
algorithm under various edit operation costs. The running times shown in this
section are average times for 10 runs with randomly generated string pairs.

Figures 4a-4c show the running times of our algorithm for random texts of
length 5000 with an alphabet of size 26.

In the test of Fig. 4a, deletion and substitution costs were fixed to 1 and
the insertion cost varied from 1 to 50. Fig. 4b is otherwise similar, but now
the insertion and substitution costs were fixed to 1 and the deletion cost varied
from 1 to 50. From these it is evident how our algorithm becomes slower as the
insertion or deletion cost becomes larger.

Fig. 4c corresponds to a test where the insertion and deletion costs were fixed
to 50 and the substitution cost varied from 1 to 100.

Next we performed experiments to compare running times of our algorithm
with the naive method and the Kim-Park algorithm [3] on random text data,
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Fig. 5. Running times of our algorithm and the naive method on random text data
with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52, (right) fixed
alphabet size 26 and variable lengths from 100 to 5000.
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Fig. 6. Running times of our algorithm and the Kim and Park algorithm on random
text data with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52, (right)
fixed alphabet size 26 and variable lengths from 100 to 3000.

varying the alphabet size and string length as parameters. Ours and the Kim-
Park algorithm compute DR-tables, while the naive method computes D-tables.

Fig. 5 shows running times of our algorithm and the naive method on random
text data with; (left) fixed length 1000 and variable alphabet sizes from 2 to 52,
(right) fixed alphabet size 26 and variable lengths from 100 to 5000. In these
experiments, the insertion, deletion, and substitution costs for our algorithm and
the naive method were randomly selected to be 137, 116 and 242, respectively.

Fig. 6 shows running times of our algorithm and the Kim-Park algorithm
under the unit cost function on random text data with; (left) fixed length 1000
and variable alphabet sizes from 2 to 52, (right) fixed alphabet size 26 and
variable lengths from 100 to 3000. The Kim-Park algorithm has more variance,
probably due to the poor locality of its memory access patterns.

5.2 Corpora Data

In this section, we show our experimental results on data from two corpora: one
consists of English texts from Reuters-21578 text categorization test collection2,
and the other of biological data from the canterbury corpus [6].
2 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html



length our method naive method

1000 0.04 1.50

2000 0.27 12.0

3000 0.71 40.4

4000 1.36 97.1

5000 2.29 189

Table 1. Comparison of running times
for the Reuters data (in seconds).

length our method naive method

1000 0.01 1.43

2000 0.09 11.5

3000 0.23 38.8

4000 0.43 92.8

5000 0.70 181

Table 2. Comparison of running times
for the E.coli data (in seconds).

δ ε A C G T

ε - 3 3 3 3
A 3 0 2 1 2
C 3 2 0 2 1
G 3 1 2 0 2
T 3 2 1 2 0

Table 3. Cost function
for the E.coli data.

Table 1 compares the running times of our algorithm
and the naive method when processing English text.
In this experiment, we used the same randomly se-
lected insertion, deletion, and substitution costs which
are 137, 116 and 242, respectively. For each length
l = 1000, 2000, 3000, 4000, 5000, we randomly selected
10 files of length around l and performed left incremen-
tal edit distance computation between each possible file
pair within the selected similar-length files. The table
shows the average time in seconds over all computa-
tions with the given length.

Table 2 shows a similar comparison when processing DNA sequences from “E.coli”,
the complete genome of the E. Coli bacterium of length 4638690. For each length
l = 1000, 2000, 3000, 4000, 5000, we randomly picked 10 substrings of length l and
performed left incremental edit distance computation between each equal-length
substring pair. In this experiment we used the cost function shown in Table 3,
which was proposed in [7] for weighted edit distance computation between DNA
sequences.

The difference between the highest costs 242 and 3 in these two experiments
seemed to result in the difference of running times of our algorithm, since our
algorithm runs in O(min{c(m + n),mn}) time, where c is the highest cost used.
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