Finding Missing Patterns

Shunsuke Inenaga, Teemu Kivioja, and Veli Makinen

Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland.

{inenaga,kivioja,vmakinen}@cs.helsinki.fi

Abstract. Consider the following problem: Find the shortest pattern
that does not occur in a given text. To make the problem non-trivial, the
pattern is required to comnsist only of characters that occur in the text.
This problem can be solved easily in linear time using the suffix tree of
the text. In this paper, we study an extension of this problem, namely
the missing patterns problem: Find the shortest pair of patterns that do
not occur close to each other in a given text, i.e., the distance between
their occurrences is always greater than a given threshold a. We show
that the missing patterns problem can be solved in O(min(an logn,n?))
time, where n is the size of the text. For the special case where both pairs
are required to have the same length, we give an algorithm with time
complexity O(an loglogn). The problem is motivated by optimization of
multiplexed nested-PCR.

1 Introduction

For a decade, pattern discovery has played a central role in bioinformatics [15].
Especially extracting surprising and useful patterns is a core of knowledge dis-
covery from textual data [4,13]. One extreme example of surprising patterns
is missing patterns, namely, patterns that do not appear in a given text 7" are
sought. Amir et al. [1] introduced a generalized version of the missing pattern
problem in such a way that pattern P may ‘approximately’ occur in 7. They call
this problem the inverse pattern matching problem. Some improvements for this
inverse problem appeared in [5]. Another related work is the farthest substring
problem by Lanctot et al. [10], where a set of text strings is considered as input.

In this paper, we explore another type of extension of the missing pattern
problem: given a text 7" and threshold value «, find the shortest pair of patterns
such that the distance between their occurrences in T' is always greater than «
(see Fig. 1). We show that this problem is solvable in O(min(an logn,n?)) time,
where n is the length of 7. For the case that the lengths of the two patterns
have to be the same, we present a simpler and slightly more efficient solution
when « is small; we achieve time complexity O(anloglogn). Not only is our
missing patterns problem interesting in theory, but it is also well-motivated in
practice. Indeed, we will show how missing patterns can be used to optimize the
sensitivity of PCR.

The rest of the paper is organized as follows: In Section 2 we give definitions,
and introduce our biological motivations and data structures. Section 3 presents

our O(min(anlogn,n?))-time algorithm for finding a missing patterns pair in
general cases, and in Section 4 we develop specialized algorithms for cases where
the two patterns are required to be of the same length. In section 5 we make
some preliminary experimental observations.

2 Preliminaries

2.1 Definitions

A string T = tits - - - t, is a sequence of characters from an ordered alphabet X' of
size 0. A substring of T is any string ;.. j = t;t;41---tj, where1 <¢ < j<n. A
substring of length k is called k-mer. A suffiz of T is any substring T, ,,, where
1 < i < n. A prefiz of T is any substring 77 ;, where 1 < j < n. Suffixes and
prefixes can be identified by their starting and ending positions, respectively. A
pattern is a short string over the alphabet X'. We say that pattern P = p1ps - - - pg
occurs at position j of text string T iff p1 = ¢j,p2 = tj11,...,06 = tj4r—1. Such
positions j are called the occurrence positions of P in T'.

A missing pattern P (with respect to text T') is such that P is not a substring
of T, i.e., P does not occur at any position ;7 of 7. Let a > 0 be a threshold
parameter. A missing pattern pair (A, B) is such that if A (resp. B) occurs at
position j of text T, then B (A) does not occur at any position j' of T, such
that j —a < j' < j+a. If (4, B) is a missing pair, we say that A and B do not
occur a-close in T'. These notions are illustrated in Fig. 1.

A B B IR

Fig. 1. Missing pattern pair (A, B).

We study the following problem:

Problem 1 (Missing Patterns Problem) Given a text T and threshold «,
find patterns A and B of minimum total length, such that (A, B) is a missing
pattern pair with respect to T, i.e., A and B do not occur a-close in T.

2.2 Biological Motivation

The missing patterns problem is biologically motivated by finding good adapters
for primers used in a polymerase chain reaction (PCR). PCR is a standard
technique for producing many copies of a region of DNA [3]. It is routinely used
for example in medicine to detect infections and in forensic science to identify

individuals even from tiny samples. In PCR a pair of short fragments of DNA
called primers is specifically designed for the amplified region so that each of
them is complementary to the 3’ end of one of two strands of the region (see
also Fig. 2). Given single-stranded DNA molecules, the primers hybridize to their
binding sites flanking the target region. An enzyme called DNA polymerase adds
nucleotides after each primer using the other strand as template and thus builds a
copy of the strand started by the primer. The molecules are made single-stranded
again by heating and the process is repeated many times (20-30) resulting in an
exponential blow-up in the number of copies of the target region.

Fig. 2. PCR.

PCR is a sensitive method: in theory one can detect a couple of DNA
molecules in a complex mixture of different molecules by using 20-30 amplifi-
cation cycles but in practice the achieved sensitivity is lower. In particular, it is
difficult to combine specificity of amplification with sensitivity. The sample can
include homologous sequences that need to be separated from each other, such
as sequences from several bacterial species, and the specific primers can thus
bind to other sites than their intended target sites and start amplification of an
incorrect region of DNA. The problem can be alleviated by using stringent con-
ditions in PCR reaction but that can also decrease the amplification efficiency of
the correct target leading to lower sensitivity. In order to achieve ultrasensitive
detection, repeated PCR with nested primers, so-called nested PCR, is used.

Today, detection tests are performed preferably in a multiplexed fashion. In
PCR, it means that several regions are amplified simultaneously in the same
assay. Selecting specific primer pairs for multiplex PCR is a hard computational
problem [12] but outside the scope of this paper.

In this work we describe adapters for specific PCR primers that facilitate the
set-up of multiplexed nested-PCR assays. An adapter-primer pair is designed to
further amplify any fragment amplified by the specific primers. Adapter primers
work by binding to short sequences called adapters attached to the ends of all
specific primers (see Fig. 2). Further amplification by adapter primers increases
sensitivity of detection. On the other hand, using the same pair of primers for
all fragments in the latter step of nested PCR simplifies multiplexing.

A crucial requirement for a good adapter primer pair is that it should only
bind to the adapters and should not amplify anything directly from the sam-

ple. However, since the adapter sequences can be chosen freely, we have a huge
number of options available. Motivated by the demand for ultrasensitive and
multiplexed detection, we aim for optimal selection of adapter primers.

Assume that we want to select such a pair of primers that they do not amplify
a certain region R (|R| < «) and let that region be flanked by patterns C' and
D in the sequence S (see Fig. 2). The sequence S denotes all the sequences that
can be present in a sample, such as the human genome and the genomes of the
bacteria or viruses that possibly are the cause of an infection. Let us denote the
reverse complement of a sequence S by S’ (the choice of one strand as S and
the other as S’ is arbitrary). The region R can be amplified by a primer pair
only if the left primer binds to C' and the right primer binds to D. Thus, if we
have found a missing pair (A4, B) for the strand S, then (A’, B) is such a pair of
patterns that there is no such region of length less than o that A’ is the binding
site of the left primer and B is the binding site of the right primer. However,
(A’, B) can also work the other way round, i.e. there can be such a region that
A’ is a binding site of the right primer and B is the binding site of the left
primer. But in that case the pair (4, B) would occur a-close in the strand S'. In
conclusion, if (A, B) is a missing pair for both strands of the sample sequence,
i.e. for the string SS’, then (A’, B) is not a pair of primer binding sites for any
region of length less than a. A safe threshold « can be determined based on the
speed of the polymerase reaction and duration of the PCR cycle.

Until now we have ignored the fact that a primer can bind and initiate
the polymerase reaction even if the primer and the binding site are not exact
complements. Especially, if the 3’ end of the primer binds to a site, it can initiate
the polymerase reaction even if the 5’ end of the primer dangles freely. That
is why we search for the shortest missing pair (Amin, Bmin), Where |Apin| =
| Biin| = k. Then, we can take the pair (A ., Bmin) as the 5’ ends of the
adapters and (Amin, B),;,) as the 3’ primer ends of the adapter primers. Such
a selection guarantees that if the first & nucleotides of the left primer match a
binding site in the sample sequence, the right primer has at least one mismatch in
the first k£ nucleotides and vice versa. In addition, no pair of primers satisfies this
condition for k£ — 1. Therefore, using the shortest missing pair in the construction
of adapter primers minimizes the risk of any unwanted amplification. Notice
that Problem 1 is a generalization of the objective described above; all of our
algorithms can be adopted for this special case.

The adapter primers also have to satisfy other requirements. For example,
the melting temperature of both primers should be within a specified range.
The primers should not form stable hairpin loops or bind to each other. These
additional requirements can be satisfied because there most probably are many
missing pairs of the same length and the missing pairs are short compared to the
length of the primer which typically is around 17..25 bases. We show in Section 5
that these assumptions are valid for the yeast genome. Thus, the 3’ ends of the
adapter primers can be chosen from several alternatives and the 5’ ends can be
chosen freely to satisfy the other requirements.

2.3 Data Structures

We use some well-known string data structures in our algorithms, such as key-
word tries and suffix trees. Let us briefly recall these structures.

Definition 2 (Adopted from [6]) The keyword trie for set P of patterns is a
rooted directed tree K satisfying three conditions: (1) Each edge is labeled with
exactly one character; (2) any two edges out of the same node have distinct labels;
(8) every pattern P of P maps to some node v of K such that the characters on
the path from the root of IC to v spell out P, and every leaf of K is mapped to by
some pattern in P.

Definition 3 The suffix trie of text T is a keyword trie for set S, where S is
the set of all suffizes of T'.

Definition 4 The suffix tree of text T is the path-compressed suffix trie of T,
i.e., a tree that is obtained by representing each maximal non-branching path of
the suffix trie as a single edge labeled by the catenation of the labels in the corre-
sponding edges of the suffix trie. The labels of the edges of suffix tree correspond
to substrings of T; each edge can be represented as a pair (I,r), such that Ty,
gives the label.

Definition 5 The sparse suffix tree of text T is a suffix tree built on a subset
S' of suffizes of T, i.e., a path-compressed keyword trie for set S'.

The suffix tree of text T = t1t5---t,, takes O(n) space, and it can be con-
structed in O(n) time [16, 11, 14] (omitting the alphabet factors). A sparse suffix
tree can be pruned from the (full) suffix tree in linear time [8,2]. (Direct con-
structions of sparse suffix trees were also considered in [8,2], but O(n) time is
enough for our purposes.)

The nodes of all the above-defined trees can be partitioned into two classes:
(1) A node is complete if it has an edge e(c) for each ¢ € ¥ such that the label
of edge e(c) starts with character ¢; (2) otherwise the node is incomplete. Let us
denote by label(v, s) the catenation of labels between two nodes v and s. With
the depth of a node v we mean |label(root,v)|.

We sometimes refer to implicit nodes of the suffix tree, meaning, in addition
to all (explicit) nodes of the suffix tree, also the positions on the edge labels of
the suffix tree, as they all correspond to nodes of the corresponding suffix trie.

3 General Algorithm using Sparse Suffix Trees

Let us first describe how the one pattern case (as mentioned in the abstract)
can be solved. That is, we wish to find a pattern of minimum length that does
not occur in a text of length n. The solution is as follows. Build the suffix trie
of the text. Among all incomplete nodes of the trie, select the one that has the
minimum depth. Let that node be v and let the character that makes the node

incomplete be c. Then the answer to the question is label(root,v)c. The size of
the suffix trie can be O(n?), which makes this algorithm inefficient. The same
algorithm can be simulated using the suffix tree, which reduces the running time
to O(n); instead of scanning through all implicit nodes of the suffix tree, we
can check the explicit nodes for incompleteness and for each edge whose label is
longer than 1, we know that the implicit node corresponding to the first letter
on the label is incomplete.

3.1 Basic Properties

The topic of this paper, the two-pattern case defined in Problem 1, is more
challenging. However, some aspects of the one-pattern solution can be exploited,
as summarized in the following observation.

Observation 6 (Monotony property) Let v be a node of the suffic tree of text
T, and let e be an edge out of v labeled L = l1l5-1p. Then, string label(root,v)l
occurs in T exactly at the same positions as any string label(root,v) L ._;, where
1<t <p.

Before using the monotony property, we also mention the following simple
but important lemma.

Lemma 7 (Substring property) It holds that either (i) there is a solution to the
missing patterns problem, say pair (A, B), such that both A and B are substrings
of the text; or (ii) the solution is a single pattern.

Proof. Let (A, B) be a solution to the missing pairs problem such that A is not
a substring of the text. Then (A, ¢) is also a missing pair. Since |A| + |e| = |4| <
|A| + |B|, pair (4, B) can not be the shortest missing pair, unless B is an empty
string, in which case A is a single pattern solution. O

The above lemma states that we can restrict to selecting both A and B as
non-empty substrings of T'. The case where one pattern is enough was considered
at the beginning of this section.

3.2 Basic Algorithm

Let V be the set of all nodes of the suffix tree of text T', and let P be the set of
strings obtained by adding to each label(root,v), v € V, all starting characters
of labels on the out edges of v. It is easy to see that |P| < 2n — 1; the size of
P is bounded by the number of internal nodes in the tree. Finally, let Occ(P)
be the list of occurrences of pattern P € P in T; it can be obtained in time
O(|Occ(P)|) from the suffix tree.

Recall that we are interested in finding a missing pair (A4, B). Let us choose
as A a string from P. Our goal is to choose B so that (A, B) will be a missing
pair. As A is now fixed, we try to choose B of minimum length. Let us, for now,
assume that we have found pattern B of minimum length such that (4, B) is

a missing pair. The crucial observation is that if we repeat this process for all
A € P, we can choose among all the missing pairs found so far, the one where
the sum |A|+ |B| is minimized. The correctness of this procedure follows directly
from Observation 6 and Lemma 7.

What is left is to explain how to choose B of minimum length so that (A, B)
will be a missing pair. This is done as follows. Let us define a set Zone(A4, a):

Zone(A,a) = Ujcoce(a)ld — a,j + a.
We have the following observation:

Observation 8 If and only if B is a prefiz of any suffix Tj . such that j' €
Zone(A,), then pair (A, B) occurs a-close in T'.

Now, building the sparse suffix tree over suffixes T} ., j' € Zone(4,),
we can choose B exactly as in the algorithm sketched at the beginning of this
section: Among all incomplete implicit nodes of the sparse suffix tree, select the
one that has the minimum depth. Let that node be u and let the character that
makes the node incomplete be d. Then B = label(root,u)d. The algorithm is
illustrated in Fig. 3.

0 of 0—O0—0—D0

Fig. 3. Illustration of the algorithm to find a missing pair (A,B), where A =
label(ri,v)c, B = label(ra,u)d, r1 is the root of the full suffix tree, and ry is the
root of the sparse suffix tree corresponding to A.

Theorem 9 The missing patterns problem on text of length n can be solved in
time O(n?) and space O(n).

Proof. The correctness of the algorithm should be clear from the above discus-
sion. The time complexity follows from the facts that the size of P is at most
2n—1, and for each A € P we use O(n) time for constructing the set Zone(4, «)
and the corresponding sparse suffix tree; To construct Zone(A,) in linear time,
one should first mark in a bit-vector of length n all suffixes in Occ(A). Then for
each marked suffix j, one should mark in some other bit-vectors the starting
point j — a and the end point j + «a of the influence region. Finally, scanning

from left to right one can maintain a counter to know at each text position j'
whether it is inside some influence region or not, i.e., whether it should be in-
cluded in the sparse suffix tree or not. As mentioned earlier, the sparse suffix
tree can be obtained from the full suffix tree in O(n) time. Overall, we have
O(n x n) = O(n?) time. At each phase of the algorithm, we use O(n) space. 0O

3.3 Improved Algorithm

We will now improve Theorem 9 in the case where a is small. First, we observe
that we can select pattern A near the root of the suffix tree because of the
following lemma.

Lemma 10 If o* > n, then there must be a missing pattern of length k.

Proof. There are at most n — k + 1 different k-mers in 7. Since o* is larger than
this, there must be some X € X* that is not a k-mer. O

Hence, we can restrict to the case k < log, n, as there must otherwise be a
single pattern solution, which can be found in linear time as explained at the
beginning of this section.

Let P=? be a subset of P such that all strings in P=? are at most of length
q. Now, we make the following observation:

Observation 11 For each suffiz j, there are at most ¢ = log, n strings A € P=1
such that j € Occ(A).

A direct consequence of Observation 11 is that the overall size of sparse suffix
trees corresponding to strings A € P=? is at most O(anlog, n); each suffix can
belong to at most (2« + 1) log, n different sparse suffix trees, and the size of a
sparse suffix tree is proportional to the number of suffixes it contains.

Now, we can build the sparse suffix trees incrementally in linear time in
their overall size as follows: make a depth-first search (DFS) on the full suffix
tree limited to depth log, n. Let SST, be the sparse suffix tree corresponding
to an internal node v; more formally, SST, is the sparse suffix tree of suffixes
Jj € Zone(A, o), where A = label(root,u)c, u is the parent of v, and c is the first
letter of the edge label from u to v. Let ¢ be the child node of v to which we are
proceeding in the DFS search. We make the observation that the sparse suffix
tree SST, corresponding to node g will contain a subset of suffixes represented
by SST,; we can prune SST, to construct SST,;. To manage the incremental
computation efficiently, we show in the next lemma that SST| can be constructed
from SST, in linear time in the size of SST,. To make this possible, we need to
attach some additional information to the sparse suffix trees: We use threaded
sparse suffix trees, where the leaves (suffixes) of the tree are linked together in
a double linked list in increasing order of the suffix positions, and each leaf has
a pointer to the corresponding leaf of the full suffix tree.

Lemma 12 Let SST, be the threaded sparse suffix tree corresponding to a node
v of the full suffiz tree (in the sense defined above). Then, the threaded sparse
suffiz tree SST, corresponding to the child g of v can be constructed in linear
time in the size of SST,.

Proof. The algorithm is as follows. We make a copy of SST, and prune it
(i.e. delete extra leaves) to construct SST,. Let us simply use SST, to de-
note the copy of it. The construction has three phases; (i) we mark all leaves
(suffixes) of SST, that are contained in the subtree of g in the full suffix tree,
(ii) we mark all leaves of SST, whose suffix positions are within « distance from
the ones marked at phase (i), and (iii) we delete all unmarked leaves of SST, to
construct SSTy.

Phase (iii) is trivial; as a leaf is deleted (making some constant time local
updates to the tree) we redirect the links between suffix positions to retain the
threaded structure. In phase (ii) we extend the effect of the suffixes marked in
phase (i) by scanning through the double linked list once from first to last and
once from last to first. For phase (i) recall that the leaves of SST, have pointers
to the corresponding leaves of the full suffix tree. We reverse these pointers, so
that we have pointers from some leaves of the full suffix tree to SST,. Then we
go through the leaves in the subtree of g, and follow the pointers from these
leaves marking the corresponding leaves of SST,. This concludes phase (i).

It is clear that after steps (i),(ii), and (iii), the remaining tree corresponds
to SSTy, and the construction time is linear in the size of the tree SST,. O

After noticing that the threaded version of the full suffix tree is easy to obtain
in linear time in its size, we get by induction using Lemma 12 the following result.

Theorem 13 The missing patterns problem on text of length n can be solved in
time O(anlogn) and space O(nlogn) on a constant alphabet.

Proof. Lemma 12 states that we use linear time in the size of the parent sparse
suffix tree to construct the child sparse suffix tree. Each node of the full suffix
tree can have at most o children, and hence we can use time at most o times the
size of each sparse suffix tree. This gives the claimed time bound on a constant
alphabet. The space usage follows from the fact that we need to store at most
log, n different sparse suffix trees at the same time during the DFS to manage
the incremental computation. O

The constant multiplicative factor o occurring in the proof of the above theo-
rem can be reduced to log o by organizing the edges of each node of the full suffix
tree in a balanced tree; we can build temporary sparse suffix trees for the nodes
of each balanced tree. The overall size of the trees grows to O(log canlog, n),
but each tree is scanned through only a constant number of times.

4 Algorithms for Patterns of Same Length

We now concentrate on the special case of the missing patterns problem, men-
tioned in Section 2.2 with a biological motivation, where the patterns are re-
quired to be of the same length. That is, we search for a missing pattern pair

(A, B) such that |A| = |B| = k. For this special case we give a slightly faster
algorithm than the algorithm of the previous section based on the sparse suffix
trees, when « is not too large; we obtain time complexity O(anloglogn) on a
constant alphabet.

In the sequel, we assume that the alphabet of the stringsis X' = {0,1,...,0—
1}. This makes the exposition easier, and is not a crucial assumption, since it
takes O(nlogo) time to map any other (ordered) alphabet into X. This is neg-
ligible to the time required by the algorithms for the missing patterns problem.

Let us start with a trivial algorithm, and then proceed with improvements
that result into an improved bound. We will first consider checking if there is a
missing pair for a fixed length k.

4.1 Trivial Algorithm

For a fixed k, search the text for each possible pattern pair and check whether
any occurrences are too close. There are 02F pattern pairs of correct length. It
takes O(k + n) time and O(k) space to check one pair: Run e.g. two Knuth-
Morris-Pratt algorithms [9] in parallel. So, the total time requirement to report
a possible missing pair for fixed k is O(c%*(k + n)). The algorithm only needs
O(k) space.

4.2 Simple Algorithm

For each k-mer pair (C, D) of T such that C and D are a-close in T, insert the
concatenated string C'D into a keyword trie and search the tree for missing pairs.
The size of the keyword trie is O(kan) and the time requirement for inserting
the concatenated strings is O(kan logo). Checking whether there exists a string
P of length 2k which is not in the keyword trie, takes O(kan) time. Such a string
P = AB defines a missing pair (4, B), |A| = |B| = k.

Alternatively, one can use a bit-table of size 02*, as there is a bijective map-
ping from the strings C'D to integers 0, 1,...,0%% — 1. For each string CD its
entry in the table can be computed in constant time using the well-known tech-
nique of computing the entry of string Y'b knowing the entry of string aY (see
e.g. [7]). ! Then, marking the entries corresponding to the a-close k-mer pairs
(C, D) takes O(c** + na) time. An unmarked entry corresponds to a missing
pair.

Analysis. Notice that Y¥"7 ¢! < oF, since ¢ > 2. The term o* is a multi-

plicative factor in the previous algorithms, and hence if we run those algorithms
for each value k = 1,2,..., until we find a missing pair (A4, B) with some length
|A| = |B| = k, the total time complexity will be at most two times the complexity

of the last step.

! The entry of aY is v = ad!¥! + 410! 7 4 ypo! ¥ 172 4 .. -+ yy|- The entry of Y'b can
be computed in constant time, as it is o(v — ao!¥! 1) +b.

Before running any of the algorithms, we can first check in O(n) time whether
there is a single missing pattern using the suffix tree approach. If such pattern
is not found, we know that k& < log, n (due to the Lemma 10). Equivalently
o% < n, which simplifies the bounds.

We notice also that we can bound ¢* with a function of n and a: If k is the
smallest value such that o2* > na, then there must be a missing pair (A4, B) such
that |A| = |B| = k. Then equation 02*=2 < na gives an estimate 0% < oZna.

Plugging these bounds to the complexity of the bit-table algorithm we get
O(0?* + na) = O(c*na + na). This bound is for fixed k. We can search for the
correct value of k using binary search among 1,2,..., M + 1. The overall

work becomes O(o?na + na log(% +1)) = O(0*na + naloglog, n), which
gives the following result.

Theorem 14 The missing patterns problem on a text of length n for patterns
of the same length can be solved in O(anloglogn) time and O(na) space on a
constant alphabet.

Notice also that the algorithms for the general case can be used to solve this
restricted case. In fact, the result of Theorem 13 already gives an O(anlogn)
time solution with better constant factors on the alphabet size. Moreover, that
algorithm uses considerably less space than the bit-table algorithm.

5 Experiments

We have run some preliminary tests with the baker’s yeast (Saccharomyces cere-
visiae) genome using the bit-table version of the simple algorithm described in
Section 4.2. We set the distance a to a realistic value 5000 and searched for
shortest missing pattern pairs of the same length k. There were solutions for
k = 8 (i.e. both patterns of the pair are of length 8), in fact there were over 16
million such pairs.

Ultimately our aim is to find short missing pairs of patterns for the human
genome in order to construct good adapter primers for biomedical applications.
The test results with the yeast genome suggest that there most likely are missing
pattern pairs for the human genome that are short enough to make the approach
attractive from the biochemical point of view. The human genome is about 250
times larger than the baker’s yeast genome, the size which size is about 12Mb,
but on the other hand increasing k by 2 increases the number of pattern pairs 256
times. In addition, the human genome has a lot of repetitive elements. Processing
a text as large as the human genome will be challenging but, in our opinion,
feasible. Moreover, the time complexity of the simple algorithm depends on o,
which is in practice (at least in our experiment with yeast) much smaller than
the theoretical bounds we derived for it.

6 Acknowledgements

The authors would like to thank Mr. K. Kataja and Dr. R. Satokari from VTT
Biotechnology. Mr. Kataja was the first one to bring the adapter primer selection
problem to our attention and Dr. Satokari has advised us on the biotechnological
issues. The discussions with Juha Ké&rkkdinen from the University of Helsinki
and Jens Stoye, Sven Rahmann, and Sebastian Bocker from Bielefeld University
led to better understanding of the problem. Especially we wish to thank Matthias
Steinriicken from Bielefeld University, as he found a fundamental fault in one of
the algorithms we had in an earlier version of this paper.

References

1

2.

10.

11.

12.

13.

14.
15.

16.

A. Amir, A. Apostolico, and M. Lewenstein. Inverse Pattern Matching. J. Algo-
rithms, 24(2):325-339,1997.

A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246-260, 1999.

. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell, fourth edition. Garland Science, 2002.
A. Apostolico. Pattern discovery and the algorithmics of surprise. Artificial
Intelligence and Heuristic Methods for Bioinformatics, pp. 111-127, 2003.

. L. Gasieniec, P. Indyk, P. Krysta. External Inverse Pattern Matching. In Proc.

Combinatorial Pattern Matching 97 (CPM’97), Springer-Verlag LNCS 1264, pp.
90-101, 1997.

. D. Gusfield. Algorithms on strings, trees and sequences: Computer science and

computational biology. Cambridge University Press, 1997.
R. Karp and M. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31:249-260, 1987.

. J. Kérkkéinen and E. Ukkonen. Sparse suffix trees. In Proc. Second Annual In-

ternational Computing and Combinatorics Conference (COCOON ’96), Springer-
Verlag LNCS 1090, pp. 219-230, 1996.

. D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM

Journal on Computing, 6(2):323-350, 1977.

J. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection
problems. Information and Computation, 185(1):41-55, 2003.

E. M. McCreight. A space economical suffix tree construction algorithm. Journal
of the ACM, 23, pp. 262-272, 1976.

P. Nicodéme and J.-M. Steyaert. Selecting optimal oligonucleotide primers for
multiplex PCR. In Proc. of the 5th International Conference on Intelligent Sys-
tems for Molecular Biology (ISMB’97), pp. 210-213, 1997.

A. Shinohara, M. Takeda, S. Arikawa, M. Hirao, H. Hoshino, and S. Inenaga.
Finding Best Patterns Practically. In Progress in Discovery Science (Final Report
of the Japanese Discovery Science), Springer-Verlag LNAI 2281, pp. 307-317,
2002.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.
J. Wang, B. Shapiro, and D. Shasha. Pattern Discovery in Biomolecular Data.,
Oxford University Press, 1999.

P. Weiner. Linear pattern matching algorithms. In Proc. IEEE 14th Annual
Symposium on Switching and Automata Theory, pp. 1-11, 1973.

