On—Line Construction of Compact Directed
Acyclic Word Graphs *

Shunsuke Inenaga!, Hiromasa Hoshino', Ayumi Shinohara', Masayuki
Takeda!, Setsuo Arikawal, Giancarlo Mauri?, and Giulio Pavesi?

! Dept. of Informatics, Kyushu University, Japan
{s-ine,hoshino,ayumi,takeda,arikawa}@i.kyushu-u.ac.jp
2 Dept. of Computer Science, Systems and Communication,
University of Milan—Bicocca, Italy
{mauri,pavesi}@disco.unimib.it

Abstract. A Compact Directed Acyclic Word Graph (CDAWG) is a
space—efficient text indexing structure, that can be used in several differ-
ent string algorithms, especially in the analysis of biological sequences.
In this paper, we present a new on-line algorithm for its construction,
as well as the construction of a CDAWG for a set of strings.

1 Introduction

Several different string problems, like those deriving from the analysis of biolog-
ical sequences, can be solved efficiently with a suitable text—indexing structure.
Perhaps, the most widely used and known structure of this kind is the suffix tree,
that can be built in linear time and permits to efficiently find and locate all the
substrings of a given string. The main drawback of suffix trees is the additional
space required to implement the structure. In many applications, like sequence
analysis and pattern discovery in biological sequences, keeping as many data as
possible in main memory might provide significant advantages. This fact has led
to the introduction of more space—efficient structures, like suffiz arrays [1], suffiz
cacti [2], and others.

In this work, we focus our attention on the Compact Directed Acyclic Word
Graph (CDAWG), first described in [3]. The CDAWG for a string can be seen
either as a compaction of the Directed Acyclic Word Graph (DAWG) [4], or a
minimization of the suffix tree, from which it can be derived as shown in [3,
5] for DAWGs and [6] for suffix trees. In the latter case, the basic idea is to
merge redundant parts of the suffix tree (see Fig. 1). Experimental results [3, 5]
have shown how CDAWGs provide significant reductions of the memory space
required by suffix trees and DAWGs when applied to genomic sequences. A linear
time algorithm for the direct construction of the CDAWG of a string is presented
in [5], so to avoid the additional space required by the preliminary construction of

* The results described in this work were reached independently by the Kyushu and
Milan groups, submitted simultaneously to the conference, and merged into a joint
contribution.

Fig. 1. Suffix tree and CDAWG for string cocoa. Substrings co and o occur as prefix of
the same suffixes: the corresponding nodes are merged as well as the subtrees rooted
at the nodes. Leaves are merged into a single final node.

the DAWG or the suffix tree. The algorithm is similar to McCreight’s algorithm
for suffix trees [7]. In this paper, we present a new algorithm for the construction
of CDAWGsS, based on Ukkonen’s algorithm for suffix trees [8]. The algorithm
is on-line, that is, it processes the characters of the string from left to right one
by one, with no need to know the whole string beforehand. Furthermore, we
show how the algorithm can be used to build a CDAWG for a set of strings, a
structure first described in [3], where was derived by compacting a DAWG for
a set of strings. The main drawback of this approach was the fact that, when a
new string was added to the set, the DAWG had to be built again from scratch.
Instead, the algorithm we present allows to add a new string directly to the
compact structure.

2 Definitions

Let X be a nonempty finite alphabet, and X* the set of strings over X. If
s = afvy, with a,8,7y € X*, then a is a prefix of s, v is a suffix of s, and
a, B, and « are substrings (factors) of s. If s = s1...5, is a string in X*, |s|
denotes its length, and s[i..j] its substring s; ...s;. With Suf(s) we will denote
the set of all suffixes of s. Let X be a subset of X*. For any string u € X%,
u1X = {z | ur € X}. Given a string s, we define the syntactic congruence on
X* associated with Suf(s) and denoted by =gyz(s) as:

U Zguf(s) V = utSuf (s) = v~ Suf(s) (for any u,v € X*)

That is, u and v occur as prefixes of the same suffixes of s. In other words,
the occurrences of u and v must end at the same positions in the string. Hence,
if u and v occur in the string, one must be a suffix of the other. As in [3,5],
we will call classes of factors the congruence classes of the relation =g,y(,). The
class of all strings that are not substrings of s is called the degenerate class. The
longest string in a non—degenerate class of factors is the representative of the

®

Fig. 2. Implicit CDAWG and CDAWG for string abcab.

class. Given a non—degenerate class of factors C' of =g, (5), and its representative
u, if there are at least two characters a, b € X' such that ua and ub are substrings
of s, then C' is a strict class of factors of =g,f(5). From now on, we will say that
two substrings are strictly congruent if they belong to the same strict class of
factors. We are now ready to give a formal definition of a CDAWG.

Definition 1. The compact directed acyclic word graph (CDAWG) of a string
s is a directed acyclic graph, where:

1. two distinct nodes are marked as initial and final;

2. edges are labeled with non empty substrings of s;

3. labels of two edges leaving the same node cannot begin with the same char-
acter;

4. every suffix of s corresponds to a path on the graph starting from the initial
node and ending at a node, such that the concatenation of the edge labels on
the path exactly spells the suffiz. From now on, we will call a node corre-
sponding to a suffix of s terminal node;

5. substrings spelled by paths starting from the initial node and ending at the
same non—terminal node of the graph belong to the same strict class of fac-
tors.

The CDAWG of a string s has at most |s| + 1 nodes and 2|s| — 2 edges [3, 5].
According to the definition of a strict class of factors, non-terminal nodes must
have at least two outgoing edges. We will denote with (p,a,q) the edge p — ¢
of the graph labeled with substring a. The following definitions will be useful
throughout the paper:

Definition 2. The implicit CDAWG of a string s is a CDAWG where nodes
with outdegree one are removed, and each edge entering a node with outdegree
one is merged with the edge leaving it.

In the implicit CDAWG of a string s, the suffixes of s are spelled out by paths in
the graph starting at the initial node, but not necessarily ending at a node. An
example is shown in Fig. 2. For every node p, let length,(p) be the length of the
longest substring spelled by a path from the initial node to p. Edges belonging
to the spanning tree of the longest paths from the initial node are called solid

edges. In other words, an edge (p, a, q) is solid iff length (q) = length (p) + |c|.
Finally, we assume that the label of each edge is implemented with a pair of
integers denoting the starting and ending points in the string of the substring
corresponding to the label, and every node is annotated with the length of the
longest path from the initial node.

3 Construction of the CDAWG for a Single String

Given an alphabet X, let s = s1...s, be a string on X. Our algorithm is
divided in n phases, building at each phase i the implicit CDAWG G; for each
prefix s[1..i] of s. More in detail, the implicit CDAWG ;4 for s[l..i + 1] is
constructed starting from graph G; for s[1..i]. Each phase i+ 1 is divided in i +1
extensions, one for each of the i + 1 suffixes of s[1..i + 1]. In extension j of phase
i+ 1, the algorithm finds the end of the path from the initial node labeled with
substring s[j..i], and extends it by adding character s;;1 to the path, unless it
is already there. Therefore, in phase ¢ + 1, substring s[1..i + 1] is first put on
the graph, followed by s[2..i + 1], s[3..i + 1], and so on. Extension i + 1 of phase
i + 1 adds the single character s; 1 after the initial node. The initial graph G;
has one initial node I and one final node F', connected by an edge labeled by
character s;. The algorithm can be sketched as follows:

1. Construct graph G;
2. For i from 1 ton —1 do
3. For j from 1 to i + 1 do

4. Find the end of the path from I labeled s[j..1]
5. Add character s;41 if needed

6. End for

7. End for

At extension j of phase i + 1, once the end of the path spelling s[j..i] has been
located, the CDAWG can be updated according to three different rules:

1. In the current graph, the path spelling s[j..i] ends in F'. To update the graph,
character s;y; is appended to the label of the edge entering F'.

2. The path corresponding to s[j..7] does not continue with s; 41, but continues
with at least one character c. If the path ends at a node p, we create a new
edge (p, siy1, F'). Otherwise, we create a new node ¢ at the end of the path,
splitting the edge in two at the point where the path ends. Then, we create
a new edge (g, siy1,F).

3. Some path at the end of s[j..7]] continues with s;;1. In this case, substring
8[j.i + 1] is already in the current graph: we do nothing (hence the implicit

graph).
These rules, however, do not guarantee that at the end of the phase we cor-

rectly constructed a CDAWG. In fact, the algorithm must also check whether a
substring strictly congruent to another one has been encountered, or, conversely,

Fig. 3. Implicit CDAWG for string abcaba before (left) and after redirection of an edge,
at phase 6, extension 5. Node 1, labeled ab, was created at the previous extension, after
the insertion of a at the end of the path labeled ab. Now, path corresponding to b is
found ending in the middle of non-solid edge (I, bcaba, F'), that is redirected to node
1 and becomes (I,b,1).

whether a substring has to be removed from a strict class of factors, so that at
the end of phase ¢ + 1 paths ending at the same node correspond to strict classes
of factors of s[1..i+1], and vice versa. Here we sketch how the algorithm has to be
modified. A more detailed description of the algorithm and its implementation
can be found in [9].

Detecting strictly congruent factors. Two substrings a and § belong
to the same class C iff they are prefixes of the same suffixes, and there are at
least two characters a,b € X such that aa, ab, Sa, and Bb occur in s. Moreover,
a must be a suffix of 3, or vice versa. We suppose w.l.o.g. that a = ¢, with
¢ € X. We also assume that a and § have occurred just once, that substrings aa
and fBa have been put in the graph in some previous phase (in two consecutive
extensions), and in the current extension we have to insert ab. The path spelling
« ends in the middle of an edge, and the next character on the edge is a. A new
node p is created at the end of the path, as well as a new edge (p,b, F'). At the
following extension, we have to locate 8 in the graph. If 8 has occurred only once
(together with «), it now belongs to the same strict class of factors, and we end
in the middle of a non—solid edge that continues with a. In this case, we redirect
the edge to p, labeling it with the part of the label that was contained in the
path of 3 (see Fig. 3). Since there can be more than two consecutive substrings
to be assigned to the same class, it is possible that we again end along non—solid
edges in the following extensions. In this case, we redirect the non—solid edges
to p as well, until we reach an extension where we end at a node or along a
solid edge. Otherwise, if 8 had previously occurred also by itself, either the path
corresponding to 8 ends at a node (8 has been followed by characters different
from a), or the edge we end on is solid (8 had been followed only by a). In the
former case, if there is not an edge labeled b leaving the node we create a new
edge labeled b to the final node. In the latter case, we create a new node and

Fig. 4. CDAWG for string abcabdb at phase 7, extension 7. Character b is found at the
end of the non-solid edge (I,b,1). At extension 6, the path spelling db ended at the
final node. Thus, b has to be removed from the class associated with node 1, that is
cloned into node 2. Edge (I,b,1) becomes (I,b,2).

connect it to the final node with an edge labeled b. Then, there may be again
non—solid edges that have to be redirected into the newly created node.

Splitting a strict class of factors. Conversely, a substring that has been
assigned to a strict class of factors has to be removed from the class if it does
not occur as a suffix of the representative when a new character s;1 is added to
the string. Let a and 8, a = ¢f3, be the two substrings assigned to the same class
in the previous example. Now, suppose that in phase ¢ + 1 we have to insert 8 in
the graph. In this case, s;41 is the last character of 8, and we find it at the end
of the edge entering node p, that is non—solid, since is not the representative
of the class. Now we have two cases: s;1; was found at the end of an edge that
entered node p also at the previous extension, or we ended up somewhere else.
In the former case, we had also inserted a at the previous extension of the same
phase, therefore 3 still belongs to the same class. In the latter, we have detected
an occurrence of 8 not preceded by «, that is, not as a suffix of a, and we have
to remove it from the class. To reflect this in the graph, we clone the node p
into a new node ¢, and redirect the non—solid edge to ¢ keeping the same label.
The redirected edge becomes solid. An example is shown in Fig. 4. If also some
suffixes of # had been previously assigned to the same class as 3, in the following
extensions we will again find s;;; at the end of a non—solid edge entering p. These
edges are redirected to ¢. It can be proved that it suffices to check only the last
edge on each path to ensure that a class has to be split. No cloning takes place
if a character is found at the end of an edge entering the final node.

The two observations outlined above can be implemented in the algorithm by
modifying Rules 2 and 3 accordingly. It is worth mentioning that both redirection
of edges to a newly created node and node cloning can take place during the
same phase. An example is shown in Fig. 5.

Fig. 5. From left to right, CDAWG for string abcabb at phase 6, extensions 5, 6, and 7.
Character b is put in the graph after substring ab, and the path spelling b is found in
the middle on non-solid edge (I, bcabb, F') (left) that is redirected to node 1 (center).
Then, at extension 7 (that adds b after the empty string) b is found at the end of a
non-solid edge. Node 1 is thus cloned into node 2 (right).

3.1 Using Suffix Links

Naively, locating the end of s[j..7] in extension j of phase i+1 would take O(i—j)
time by walking from the initial node and matching the characters of s[j..i] along
the edges of the graph. This would lead to an overall O(n?) time complexity for
the construction of the whole graph. We will now reduce it, as in [8], to O(n) by
introducing suffiz links and with some remarks.

Definition 3. Let p be a node of the graph, different from the initial or final
node. Let 3 be the representative of the class associated with p. The suffix link
of p, denoted by L(p), is the node q whose representative v is the longest suffix
of B whose path does not end at p.

The suffix link of a node p can be implemented with a pointer from p to L(p).
If ~ is empty, then L(p) is the initial node. Suffix links are not defined for the
initial and the final node. Although the definition does not guarantee that every
node in the graph has a suffix link, we can prove the following:

Lemma 1. Any node created during phase i + 1 will have a suffiz link from it
by the end of the phase.

Proof. In extension j of phase ¢ + 1 a new node p can be created at the end of
the path spelling substring s[j..i] by application of Rule 2 or by cloning. In the
former case, L(p) will be the first node to be created or encountered at the end
of the path corresponding to a suffix of s[j..i] (possibly after edge redirections).
Such a node always exists, since the last extension locates the empty suffix at
the initial node. In the latter case, let us suppose that a node ¢ is cloned into
node p with path spelling s[j..i + 1]. Substring s[j..i 4+ 1] is the longest suffix of
the representative of ¢ that does not belong to the same class. Thus, L(q) is set
to p. Suffix link L(p) is left undefined until one of the suffixes of s[j..i + 1] ends
at a node other than p (that again could be I). O

Fig. 6. A suffix link. Node p corresponds to class a3, node g corresponds to 3. Paths
labeled with suffixes of a3 longer than 8 end at p. If at some extension j character
si+1 is added after af~, then extensions from j + 1 to j + |a| are implicitly performed
as well.

During any phase, the only node of the graph other than the initial and the
final without a suffix link from it is the last created one. Let us suppose that
the algorithm has completed extension j of phase ¢ + 1. Suffix links are used to
speed up the search for the remaining suffixes of s[j..i]. Starting from the end of
s[j..i] in the graph, we walk backwards along the path corresponding to s[j..i]
up to either the initial node or a node p that has a suffix link. This requires
traversing at most one edge. Let v be the concatenation of the edge labels of
the path from p to s[j..i]. If p is not the initial node, we move to node L(p) and
follow from it the path spelling . Otherwise, we search for s[j + 1..i] starting
from I. Finally we add s;11 according to one of the extension rules, redirecting
an edge or cloning a node if needed. Notice that, if node p is the end of [> 2
different paths, the position reached after searching from ~ from L(p) will be
the end of path s[j + [..i], that is, extensions from j + 1 to j + ! — 1 have been
implicitly performed at extension j.

A path spelling « starting from L(p) always exists, since all the suffixes of
s[j..i] are already in the graph. Thus, to find the path spelling v the algorithm
just matches the first characters on the edges encountered. To obtain a linear
time algorithm, we need just two more “tricks”.

Remark 1. When during any extension Rule 3 is applied, that is, a given sub-
string s[j..i + 1] is already on the graph, then the same rule will apply to all
further extensions, since all the suffixes of s[j..i + 1] are already in the graph as
well. Therefore, once Rule 3 is applied (and no node has to be cloned or edges
redirected), we can stop and move on to the next phase, since all the strings to
be inserted are already in the graph and no adjustment is needed for the classes.

Remark 2. If a new edge is created entering the final node during extension j
of any phase i, then Rule 1 will always apply at extension j in any successive
phase. That is, new characters will always be appended at the end of the last
edge in the path associated with s[j..7], that will enter the final node. Thus, when
a new edge is created entering the final node with label s[j..i + 1], we label it
with integers h and e (j < h < i+1), where e denotes the current phase, that is,
the current end position in the string. If we implement e with a global variable,

and set it to i + 1 at the beginning of each phase i + 1, we perform implicitly all
the extensions that would end up at the final node.

Every phase i starts with a series of applications of Rules 1 and 2, that put
s; at the end of an edge entering the final node; when Rule 3 is applied for
the first time, it will be also applied to all further extensions. Now, let j; be
the first extension where Rule 3 is applied with cloning in phase ¢, and j} the
first extension where it is applied without edge redirection to the cloned node.
Extensions j; +1 to j* —1 will redirect edges to the last node created. Extensions
from j;7 + 1 to ¢ need not to be performed, since in each of them we would not
do anything. In phase ¢ + 1, all extensions from 1 to j; — 1 will apply Rule 1,
therefore they are implicitly performed by setting the counter e to ¢ + 1. Thus,
we can start phase ¢+ 1 directly from extension j; — 1, until we find an extension
where Rule 3 is applied without cloning or edge redirection. This can be done by
starting phase ¢+ 1 from the position in the graph of the last suffix of s[1..7] that
had to be redirected to the cloned node. This took place at extension j; —1. The
first extension in phase i + 1 will have to look for s;;1 exactly at the endpoint
of the last extension of phase i. This will also implicitly perform all extensions
from j; to ji — 1. Of course, if in phase ¢ Rule 3 is first applied without cloning
we can move on to phase ¢ + 1 as well.

The algorithm does not need to know which extension is currently perform-
ing. That is, it starts phase i + 1 from the endpoint of phase i, adding s;41.
Then it starts moving in the graph by using suffix links, and adding s;4+1 at the
end of each path. If the backward walk ends at I, and v = 71 ...~k is the label
of the path traversed, then it looks for the path labeled s ...7,. Phase i + 1
ends when the algorithm applies for the first time Rule 3 without node cloning
or edge redirection. Moreover, whenever we find s;;1 at the end of a non—solid
edge, we no longer have to check what happened at the previous extension, and
just clone the node. In fact, if the representative of the class had been met during
one of the previous extensions, we would have stopped the phase at that point,
without reaching the current extension.

At the end of phase n, we have constructed the implicit CDAWG for string
s. In order to obtain the actual CDAWG, we perform an additional extension
phase n + 1, extending the string to a dummy symbol $ that does not belong to
the string alphabet. Anyway, we do not increment the phase counter e to n + 1,
so to avoid appending $ to edges entering the final node. Moreover, whenever
a new node p has to be created, we do not add the edge (p,$, F) to the graph.
Nodes created in this phase will thus have outdegree one, and will correspond to
terminal nodes of the CDAWG. Notice that, whenever a path s[j..n] ends along
an edge, we always create a new node and mark it as terminal, while cloning
of nodes and redirection of edges work as in the previous phases. When a path
s[j.-n] ends at a node, we mark the node as terminal. At the end of the additional
phase, the implicit CDAWG has been transformed into the actual CDAWG for
string s. An example of the on-line construction of a CDAWG is shown in Fig. 7.
With arguments analogous to Ukkonen’s algorithm for suffix trees, we can prove
the following:

Fig. 7. From left to right, construction of the CDAWG for string abcabcbed: at the
end of phase 6 (implicit CDAWG for string abcabc); at the end of phase 7 (abcabcb,
where abc, bc, and ¢ belong to the same strict class of factors); at the end of phase 8
(abcabebe, where be and ¢ have been removed from the class with representative abe);
the final structure. Stars indicate the position in the graph reached at the end of the
last explicit extension of each phase.

Theorem 1. Given a string s = s1 ...5s, over a finite alphabet X, the algorithm
implemented with suffiz links and implicit extensions builds the CDAWG for s
in O(n) time and O(n|X|) space if the graph is implemented with a transition
matriz, or in O(n|X|) time and O(n) space with adjacency lists.

Proof (sketch). The operations performed in any explicit extension (creation or
cloning of nodes, edge redirections), that is, extensions that are not performed
implicitly by incrementing the e counter, take constant time. Let j the last
explicit extension performed at phase ¢, and j;41 the first explicit extension
performed at phase i + 1. In the worst case, we have j;11 = j¥ — 1. Moreover,
for each i, j; < j;+1. Thus, at most 3n explicit extensions are performed by the
algorithm. At any extension j of phase ¢, to locate the endpoint of s[j..i] the
algorithm walks back at most one edge from the endpoint of s[j — 1..i], follows
a suffix link, and then traverses some edges checking the first symbol on each
edge. If the graph is implemented with a transition matrix, traversing an edge
takes constant time. Else, it takes O(|X|) time. The only thing unaccounted for
is the overall number of edges traversed. For every node p of the graph, let the
node depth of p be the number of nodes on the path from the root to p labeled
with the representative of the class associated with p. As in [8], the sum of the
node depths counted during all the explicit extensions is reduced at most by
O(n), and since the maximum node—depth is n, the maximum number of edges
traversed is bounded by O(n). O

4 The CDAWG for a Set of Strings

The basic idea of the CDAWG for a set of strings S = {s!,...,s*} is the same
of the single string structure. Now, the nodes of the structure correspond to
patterns that occur as prefix of the same suffixes in every string of the set. In

a
b
(1) c
$1
a
b
c
$1
@

Fig. 8. CDAWG for strings ababc$: and abcab$s, after the insertion of ababc$: (left)
and abcab$s (right). Characters $1 and $» are used as terminations. Edges (I, $1, F1)
and (I, $2, F) have been omitted.

other words, given Suf(S) (the set of the suffixes of the k strings), the nodes
of the CDAWG correspond to strict classes of factors for =gys(s). The only
difference is that now we have k final nodes Fj ... F, one for each string, and
we want all the suffixes of s to end at the corresponding final node F;. This result
can be obtained by appending a different termination symbol, not belonging to
the string alphabet, to each string of the set. More formally:

Definition 4. The CDAWG for a set of strings s' ...s* is a directed acyclic
graph, with a node marked as initial and k distinct nodes Fy ... F}, marked as
final. Edges are labeled with non empty substrings of at least one of the strings.
Labels of two edges leaving the same node cannot begin with the same character.
For every string s' in the set, all suffives of s' are spelled by patterns start-
ing at the initial node and ending at node F;. Paths ending at non final nodes
correspond to strict classes of factors of the congruence relation =gy (s)-

The CDAWG for a set of strings can be constructed with the algorithm
presented in the previous section. First, we build the CDAWG for string s! (with
the termination symbol) and final node Fj. Notice that, since the termination
symbol does not occur anywhere else in s', the resulting structure is a CDAWG,
with no need to perform the additional phase. Then, string s2 is added to the
graph, but in this case with final node F». The same will apply to every other
string in the set. Node cloning and edge redirection rules ensure the correctness
of the resulting structure. It can be proved that the algorithm takes O(N) time
to construct the structure, implemented with a transition matrix, where N =
Ele |s?|. This structure (with marginal differences) was first described in [3],
where it was built by reducing a DAWG. Therefore, adding a new string to
the set required the construction of a new DAWG from scratch. The algorithm
presented here, instead, permits to add strings directly to the compact structure
(see Fig. 8). As in [3] we can give an upper bound on the size of the structure.

Theorem 2 (Blumer et al., [3]). The CDAWG for a set of strings s* ...sk,
has at most N + k nodes, where N = Ele |s¢|.

5 Conclusions

A CDAWG is a space—efficient text—indexing structure that represents all the
substrings of a string. We presented a new on—line algorithm for its construction,
as well as the construction of a CDAWG for a set of strings. The same structures
can be computed by reduction starting from the corresponding DAWGs or suffix
trees; however, the approach presented in this paper permits to save time and
space simultaneously, since the CDAWGs can be built directly. Moreover, once
the structure has been built for a set of strings, new strings can be added directly
to the compact structure.

Acknowledgements

The Milan—Bicocca group has been supported by the Italian Ministry of Univer-
sity, under the project “Bioinformatics and Genomic Research”.

References

1. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Computing, 22(5):935-948,1993.

2. J. Kérkkéinen. Suffix cactus: a cross between suffix tree and suffix array. Combi-
natorial Pattern Matching, 937:191-204, July 1995.

3. A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Com-
plete inverted files for efficient text retrieval and analysis. Journal of the ACM,
34(3):578-595, 1987.

4. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31-55, 1985.

5. M. Crochemore and R. Verin, On compact directed acyclic word graphs, Springer
Verlag LNCS 1261, pp.192-211, 1997.

6. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology, Cambridge University Press, New York, 1997.

7. E. McCreight. A space—economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262-272, 1976.

8. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

9. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa, On-line con-
struction of compact directed acyclic word graphs. DOI Technical Report 183,
Kyushu University, January 2001.

