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Abstract. For a string w over an alphabet Σ, we consider a com-
posite data structure called the all-suffixes directed acyclic word graph
(ASDAWG). ASDAWG(w) has |w| + 1 initial nodes, and the dag in-
duced by all reachable nodes from the k-th initial node conforms with
DAWG(w[k :]), where w[k :] denotes the k-th suffix of w. We prove
that the size of the minimum ASDAWG(w) (MASDAWG(w)) is Θ(|w|)
for |Σ| = 1, and is Θ(|w|2) for |Σ| ≥ 2. Moreover, we introduce an
on-line algorithm which directly constructs MASDAWG(w) for given w,
whose running time is linear with respect to its size. We also demonstrate
some application problems, beginning-sensitive pattern matching, region-
sensitive pattern matching, and VLDC-pattern matching, for which AS-
DAWGs are useful.

1 Introduction

In the field of information retrieval, pattern matching on strings is one of the
most fundamental and important problems. A variety of patterns have been
considered so far, according to various kinds of purposes and aims. The most
basic one is a substring pattern. Let Σ be a finite alphabet. We call an element in
Σ a character, and one in Σ∗ a string. We say a pattern string p is a substring of
a text string w if w = upv for some strings u, v ∈ Σ∗. When a text w is fixed and
a pattern p is flexible, once constructing a suitable data structure for w, we can
solve the substring matching problem in O(|p|) time, where |p| denotes the length
of p. In order to solve the problem efficiently, much attention has extensively
been paid to inventing efficient data structures, such as suffix trees [21, 16, 20],
directed acyclic word graphs (DAWGs) [3, 5], compact directed acyclic word
graphs (CDAWGs) [4, 7, 11], suffix arrays [14], compact suffix arrays [13], suffix
cacti [12], compressed suffix arrays [18, 8], and so on.

Meanwhile, the problem finding a subsequence pattern has also been widely
studied. We say a pattern p is a subsequence of a text w if p can be obtained
by removing zero or more characters from w. By means of the directed acyclic
subsequence graph (DASG) for w, we can examine whether or not p is a sub-
sequence of w in O(|p|) time [2, 6]. An episode pattern is a “length-bounded”
version of a subsequence pattern [15]. An episode pattern is given in the form of



a pair of a string p and an integer k, as 〈p, k〉. If p is a subsequence of x such that
x is a substring of w with |x| ≤ k, we say that the episode pattern 〈p, k〉 matches
w. The episode directed acyclic subsequence graphs (EDASGs) were introduced
in [19], for a practical solution to the problem.

Now we propose a new kind of pattern matching problem: Given a text string
w = w1w2 · · ·wn (wi ∈ Σ), a string p and an integer k, examine whether or not
p is a substring of w[k :] where w[k :] = wk . . . wn. (NOTE: if k > |w|, the
answer is always NO.) We name the pattern 〈p, k〉 a beginning-sensitive pattern,
a BS-pattern for short. For any string w ∈ Σ∗ DAWG(w) denotes the DAWG
of w. Using the DAWGs for all suffixes of w, this problem is solvable in O(|p|)
time. This simple collection of the DAWGs is called the naive all-suffixes directed
acyclic word graph for w, written as the naive ASDAWG(w). Since the size of
DAWG(w) is O(|w|), that of the naive ASDAWG(w) is O(|w|2).

In this paper we introduce a new composite data structure, named the mini-
mum ASDAWG(w) and denoted byMASDAWG(w).MASDAWG(w) is the min-
imization of the naive ASDAWG(w). We show that the size of MASDAWG(w)
is Θ(|w|) if |Σ| = 1, and Θ(|w|2) if |Σ| ≥ 2. Also, we produce an on-line al-
gorithm that directly constructs MASDAWG(w) in time linear in the size of
MASDAWG(w).

We show further two applications of MASDAWG(w), one of which is as fol-
lows. Let Π = (Σ ∪ {�})∗, where � is a wildcard that matches any string. A
pattern q ∈ Π such as q = a�ba�c is called a variable-length-don’t-care’s pat-
tern (VLDC-pattern), where a, b ∈ Σ. The language L(q) of a pattern q ∈ Π
is the set of strings obtained by replacing �’s in q with strings. For example,
L(a�ba�c) = {aubavc | u, v ∈ Σ∗}. This language corresponds to a class of the
pattern languages proposed by Angluin [1]. We declare that the smallest automa-
ton to recognize all possible VLDC-patterns matching a text w is a variant of
MASDAWG(w).

Finding a good rule to separate given two sets of strings, often referred to as
positive examples and negative examples, is a critical task in knowledge discovery
and data mining. In [9], an efficient method, with which a subsequence pattern
is considered as a rule for the separation, was given, and in [10] one using an
episode pattern was proposed. MASDAWG(w) is believed certainly to be a good
“weapon” to develop a practical algorithm to find the best VLDC-patterns to
distinguish given two sets of strings efficiently. In fact, our experimental result
has shown that the average size of the MASDAWGs for random texts of length 1
to 500 over a binary alphabet is proportional to |w|1.24, in spite of the theoretical
space complexity, Θ(|w|2).

2 All-Suffixes Directed Acyclic Word Graphs

Strings x, y, and z are said to be a prefix, substring, and suffix of string w =
xyz, respectively. The sets of prefixes, substrings, and suffixes of a string w are
denoted by Prefix(w), Sub(w), and Suffix (w), respectively. The empty string is
denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The substring of a string
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w that begins at position i and ends at position j is denoted by w[i : j] for
1≤ i≤ j≤ |w|. For convenience, let w[i : j] = ε for j < i. Let w[i :] = w[i : |w|]
for 1 ≤ i ≤ |w| + 1. Assume S is a subset of Σ∗. For any string u ∈ Σ∗,
u−1S = {x | ux ∈ S}.

Let w ∈ Σ∗. We define an equivalence relation ≡w on Σ∗ by

x ≡w y ⇔ x−1Suffix (w) = y−1Suffix (w).

Let [x]w denote the equivalence class of a string x ∈ Σ∗ under ≡w. The longest
element in the equivalence class [x]w for x ∈ Sub(w) is called its representative.

Definition 1 (Directed Acyclic Word Graph (DAWG)). DAWG(w) is
the dag (V,E) such that

V = {[x]w | x ∈ Sub(w)},
E = {([x]w, a, [xa]w) | x, xa ∈ Sub(w) and a ∈ Σ}.

If we designate the node [ε]w of DAWG(w) as the initial state and the nodes
[x]w with x ∈ Suffix (w) as the final states, then the resulting automaton is the
smallest automaton that accepts the set Suffix (w) [5].

Definition 2 (All-Suffixes DAWG (ASDAWG)). ASDAWG(w) is a kind
of deterministic automaton with |w| + 1 initial nodes, designated by integers
0, 1, . . . , |w|, in which the subgraph consisting of the nodes reachable from the
k-th initial node and of their out-going edges is DAWG(w[k + 1 :]).

The simple collection of DAWG(w[1 :]), DAWG(w[2 :]),. . . , DAWG(w[n]),
DAWG(w[n + 1 :]) (n = |w|) is an example of ASDAWG(w), referred to as
the naive ASDAWG(w). The number of nodes of the naive ASDAWG(w) is
O(|w|2). By minimizing the naive ASDAWG(w), we can obtain the minimum
ASDAWG(w), which is denoted byMASDAWG(w). The naive ASDAWG(abba)
andMASDAWG(abba) are shown in Fig. 1. The minimization is performed based
on the equivalence relation defined as follows. Let an ordered pair 〈u, [x]u〉 denote
a node [x]u of DAWG(u). Each node of the naive ASDAWG(w) can be repre-
sented by a pair 〈u, [x]u〉 with u ∈ Suffix (w) and x ∈ Sub(u). The equivalence
relation, denoted by ∼w, is defined by

〈u, [x]u〉 ∼w 〈v, [y]v〉 ⇔ x−1Suffix (u) = y−1Suffix (v) .

A node of MASDAWG(w) corresponds to an equivalence class under ∼w. We
write 〈u, [x]u〉 simply as 〈u, [x]〉 in case no confusion occurs.

Proposition 1. Let u ∈ Suffix (w). Let x be a nonempty substring of u. We
factorize u as u = hxt and assume h is the shortest such string. Then, 〈hxt, [x]〉
is equivalent to 〈sxt, [x]〉 for every suffix s of h. (NOTE: The string x is not
necessarily the representative of [x]u.)
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Fig. 1. DAWG(x) for each string x ∈ Suffix(w) is shown on the left, where w = abba.
The collection of them is the naive ASDAWG(w). On the right MASDAWG(w) is
displayed. While there are in total 16 nodes and 16 edges in the former, there are
9 nodes and 12 edges in the latter. For example, nodes 〈abba, [b]〉 and 〈bba, [b]〉 are
equivalent due to Case 1 of Lemma 3 and merged into one. Also, 〈abba, [abb]〉, 〈bba, [bb]〉,
and 〈ba, [b]〉 are merged into one node, where the first two are equivalent due to Case 2
and the last two are equivalent due to Case 3. The upper four sink nodes are equivalent
due to Case 2 and the lowest one is equivalent to them (see Lemma 2), and therefore
the five are merged into the same sink node.

Let h0, h1, . . . , hr be the suffixes of the string h arranged in the decreasing
order of their length. The above proposition implies an existence of the chain of
equivalent nodes

〈h0xt, [x]〉, 〈h1xt, [x]〉, . . . , 〈hrxt, [x]〉.
In case more than one string belong to [x]u, the chain length r is maximized by
choosing the shortest one as x. The chain, however, does not necessarily break
at the node 〈hrxt, [x]〉. The shortest string in [x]u is not necessarily the shortest
in [x]hrxt: Shorter one may exist. Thus we need a more precise discussion.

Lemma 1. Let h ∈ Σ+ and u, hu ∈ Suffix (w). If a node of DAWG(u) is
equivalent to some node of DAWG(hu), then it is also equivalent to some node
of DAWG(au) where a is the last character of the string h.

Proof. Let h = ta (t ∈ Σ∗). Assume t �= ε. Let x ∈ Sub(u) with x �= ε, and
y ∈ Sub(tau) with y �= ε. Assume x−1Suffix (u) = y−1Suffix(tau). We have two
cases to consider.

– x ≡u y. In this case, every occurrence of the string y within tau must be
included within the u part. Thus, we have x−1Suffix(u) = y−1Suffix (au).
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Fig. 2. MASDAWG(w) for w = b5. For every i = 0, 1, . . . , 4, the initial node [ε]bi of
DAWG(bi) is equivalent to the node [b]bi+1 of DAWG(bi+1).

– x �≡u y. In this case, (1) y is written as y = sx where s is a nonempty string,
and (2) there is an occurrence of y within tau that covers the boundary
between a and u but the x part of the occurrence of y = sx is contained
in the u part of the string tau. In this case, by truncating an appropriate
length prefix of s we can obtain a string z as a suffix of y = sx such that
x−1Suffix (u) = z−1Suffix (au).

The proof is now complete. ��

The above lemma guarantees that the DAWGs sharing one node ofMASDAWG(w)
are ‘consecutive’. We therefore concentrate on the relation between two consec-
utive DAWGs. First, we consider the equivalence of the initial node.

Lemma 2. Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let y ∈ Sub(bu) and assume y
is the representative of [y]bu. Then, the nodes 〈u, [ε]〉 and 〈bu, [y]〉 are equivalent
under ∼w if and only if y = b and u is of the form b	 with " ≥ 0.

See, for example, MASDAWG(bbbbb) shown in Fig. 2.
As an extreme case of Lemma 2 where " = 0, the node [ε]ε of DAWG(ε) is

always equivalent to the sink node [b]b of the previous DAWG(b).
Next, we consider the equivalence of nodes other than the initial node.

Lemma 3. Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Sub(u) with x �= ε.
Let y ∈ Sub(bu) with y �= ε. Assume x and y are the representatives of [x]u
and [y]bu, respectively. The equivalence 〈u, [x]〉 ∼w 〈bu, [y]〉 implies that if y ∈
Prefix(bu) then y = bx and x ∈ Prefix (u), and otherwise y = x. Moreover,
〈u, [x]〉 ∼w 〈bu, [y]〉 holds if and only if either

(Case 1) x �∈ Prefix (bu) and y = x;
(Case 2) x ∈ Prefix (u), x ≡bu y, and y = bx; or
(Case 3) x = bi, y = bi+1, and u is of the form b	s such that i ≤ ", and s ∈ Σ∗

does not begin with b nor contain an occurrence of bi.

Proof. Suppose x−1Suffix (u) = y−1Suffix(bu). Let u[i+1 :] (0 < i ≤ |u|) be the
longest member of this set.

1. When y ∈ Prefix(bu). Then, i = |y| − 1 and y = by′ with y′ = u[1 : i]. Since
u[i+1 :] ∈ x−1Suffix (u), we have u = hxu[i+1 :] for some h ∈ Σ∗. Namely,
x is a suffix of y′ = u[1 : i].
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(a) When y′ �∈ Prefix(bu). We have y ≡bu y′ and

(y′)−1Suffix (u) ⊆ (y′)−1Suffix(bu) = y−1Suffix (bu) ⊆ x−1Suffix (u).

It derives from the assumption that y−1Suffix (bu) = x−1Suffix (u). Thus,
(y′)−1Suffix (u) = x−1Suffix(u), i.e., x ≡w y′. Since y′ ∈ Prefix (u), y′
must be the representative of [y′]u = [x]u. Consequently, we have x = y′.

(b) When y′ ∈ Prefix (bu). String y′ is a prefix of y = by′, and therefore
has a period of 1. Hence we have y′ = bi and y = bi+1. Since x is a
suffix of y′ = bi, x = bj for some j with 0 < j ≤ i. If j < i, then
u[j + 1 :] ∈ x−1Suffix (u), a contradiction. Thus we have j = i, i.e.,
x = bi. On the other hand, u[1 : i] = y′ = bi and thus u is of the form
b	s such that " ≥ i and s ∈ Σ∗ does not begin with b. We can show that
the string s cannot contain an occurrence of x = bi.

Note that we have x ∈ Prefix (u) in both cases.
2. When y �∈ Prefix (bu). We have y−1Suffix (u) = y−1Suffix (bu) = x−1Suffix (u),

which implies x ≡u y. From the choice of x, y must be a suffix of x and
x = δy with δ ∈ Σ∗. Assume, for a contradiction, that x−1Suffix (bu) �=
x−1Suffix (u). Then there must be a suffix u[j+1 :] of u such that j < i and
bu = hxu[j + 1 :] with h ∈ Σ∗. Since x = δy, we have bu = hδyu[j + 1 :],
which implies u[j + 1 :] ∈ y−1Suffix (bu), a contradiction. Hence we have
x ≡bu y. From the choice of y, x must be a suffix of y. Thus we have x = y.

��
It should be noted that Case 1 and Case 2 of Lemma 3 fit to Proposition 1,

whereas Case 3 is irregular in the sense that the two equivalence classes [x]u and
[y]bu have no common member despite 〈u, [x]〉 ∼w 〈bu, [y]〉. See Fig. 1, which
includes instances of Case 1, Case 2, and Case 3.

The owner of a node ofMASDAWG(w) is defined byDAWG(w[k :]) such that
k is the smallest integer for which DAWG(w[k :]) shares the node. We are now
ready to estimate the lower bound of the number of nodes of MASDAWG(w).

Theorem 1. When |Σ| ≥ 2, the number of nodes of MASDAWG(w) for a string
w is Θ(|w|2). It is Θ(|w|) for a unary alphabet.
Proof. The proof for the case of a unary alphabet Σ = {a} is not difficult.
We can use Lemma 2. We now prove the lower bound in case |Σ| ≥ 2. Let us
consider string w = (ab)m(ba)m, where a, b are distinct characters from Σ. For
each i = 2, . . . ,m − 1, let ui = (ab)i(ba)m. Let x = (ba)j with 0 < j < i. It is
not difficult to show that x �≡ui ax and x �≡ui b−1x, and therefore [x]ui

= {x}.
Thus x is the representative of [x]ui

, and we can use the above lemma. Since
x ∈ Prefix(bui), x �∈ Prefix(ui), and the first character of ui is not b, none of the
three conditions is satisfied, and therefore DAWG(ui) is the owner of the node
corresponding to [x]ui

. Thus, the nodes of MASDAWG(w) corresponding to

[(ba)1]ui
, [(ba)2]ui

, . . . , [(ba)i−1]ui

are distinct and are owned by DAWG(ui). For each i with 1 < i < m, DAWG(ui)
has at least i−1 own nodes. Thus, MASDAWG(w) has Ω(m2) = Ω(|w|2) nodes.

��
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3 Construction

Since the construction of the naive ASDAWG(w) takes O(|w|2) and the mini-
mization can be performed in time linear in the number of edges of the naive
ASDAWG(w) (see [17]), we can build MASDAWG(w) in O(|w|2) time. On
the other hand, we have shown that the number of nodes in MASDAWG(w)
is Θ(|w|2). We are therefore interested in on-line and direct construction of
MASDAWG(w). We obtained the following result.

Theorem 2. MASDAWG(w) can be constructed directly and on-line in linear
time with respect to its size.

The algorithm for the on-line construction ofMASDAWG(w) basically simu-
lates the on-line constructions of the DAWGs for all suffixes of a string w. Fig. 3
illustrates the on-line construction of MASDAWG(abbab).

We present a basic idea of the algorithm together with showing several lem-
mas which support it.

3.1 Suffix Link

In the construction, the suffix links play a key role. One main difference com-
pared with constructing a single DAWG is that a node may have more than one
suffix link. This is because MASDAWG(w) may contain two distinct, equivalent
nodes 〈u, [x]〉 and 〈v, [y]〉 such that the node to which the suffix link of 〈u, [x]〉
points is not equivalent to the one to which the suffix link of 〈v, [y]〉 points.
We update MASDAWG(w) into MASDAWG(wa) as if the underlying DAWGs
for w[1 :], w[2 :], . . . were updated simultaneously, as follows. Conceptually, we
reserve all suffix links of these DAWGs, by associating each suffix link with the
corresponding DAWG. Whenever two or more suffix links are duplicated, the
corresponding DAWGs are consecutive due to Lemma 1. Therefore we can han-
dle them at once. This is critical for linear-time performance of our algorithm.
We traverse the dag induced by the suffix links rooted from the sink node, in
the order of the corresponding DAWGs, and process each encountered node ap-
propriately (creating a new edge to the new sink node, separating the node, or
redirecting an edge to the separated node).

3.2 Compact Representation of Node Length Information

In the on-line construction of the DAWG for a single string, there occurs an
event so-called node separation [3]. Formally, this event is described as follows.
We store in each node [x]w of DAWG(w) its length, namely, the length of the
representative of [x]w. Consider updating DAWG(w) to DAWG(wa) where a is
a character. Let z be the longest suffix of wa that also occurs within w. We call
it the longest repeated suffix of wa. A node separation happens iff z is not the
representative of [z]w. The node [z]w can be detected by traversing the suffix link
chain from the sink node of DAWG(w) in order to find its parent node [z′]w,
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Fig. 3. On-line construction of MASDAWG(w) for w = abbab. Each initial node be-
comes independent whenever a newly appended character violates the condition of
Lemma 2. Node separation of other type occurs only twice. One happens during the
update of MASDAWG(ab) to MASDAWG(abb). The node consisting of 〈ab, [ab]〉 and
〈b, [b]〉 is separated into two nodes. This is regarded as a node separation in DAWG(abb).
The other occurs during the update of MASDAWG(abba) to MASDAWG(abbab). The
node consisting of 〈abba, [abb]〉, 〈bba, [bb]〉, and 〈ba, [b]〉 is separated into two. This is a
special case in the sense that no node separation occurs inside any of DAWG(abba),
DAWG(bba), and DAWG(ba). (See the first case of Lemma 7.) (Note: Though each ac-
cepting node is double-circled in any step in this figure, we do not maintain it on-line.
After the construction of MASDAWG(w) is completed, we mark every node reachable
by the suffix-links-traversal from the sink node.)

which is the first encountered node on the chain that has an out-going edge
labeled by a. Whenever the length of [z]w is greater than that of its parent [z′]w
plus one, the node [z]w of DAWG(w) is separated into two nodes [x]wa and [z]wa

in DAWG(wa), where x is the representative of [z]w.
Recall that a node of MASDAWG(w) corresponds to an equivalence class

under the equivalence relation ∼w, and therefore two or more DAWGs may share
a node of MASDAWG(w). We need to know the length of the corresponding
node of an arbitrary one of them. Naive solution would be to store into a node
of MASDAWG(w) a (|w|+1)-tuple of integers, the i-th value of which indicates
the length of the corresponding node of the i-th DAWG, where i = 0, 1, . . . , |w|.
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i+ 1: x1

x2

· · ·
· · ·
xk

xk+1

xk+2

· · ·
· · ·

x�

Fig. 4. The representatives xj of [xj ]w[i+j:] such that the nodes 〈w[i+ j :], [xj ]〉 of the
naive ASDAWG(w) are merged into a single node of MASDAWG(w).

The overall space requirement is, however, proportional to |w|3. Below we give
an idea of compact representation of the tuple.

Lemma 4. Let 〈w[i+ 1 :], [x1]〉, . . . , 〈w[i+ " :], [x	]〉 be the nodes of the naive
ASDAWG(w) which are merged into a single node in MASDAWG(w), where
0 ≤ i and i + " ≤ |w| + 1. We assume each of the strings x1, . . . , x	 is the
representatives of the equivalence class of it. Then, there exists an integer k with
1 ≤ k ≤ " such that

xj =
{
xk, if 1 ≤ j ≤ k;
xk[j − k + 1 :], if k < j ≤ ".

(See Fig. 4.)

Proof. By Lemma 3. ��

For example,MASDAWG(abb) in Fig. 3 has a node consisting of 〈abb, [b]〉 and
〈bb, [b]〉. Also,MASDAWG(abba) has a node consisting of 〈abba, [abb]〉, 〈bba, [bb]〉,
and 〈ba, [b]〉.

It follows from the above lemma that the function, which takes an integer
s as an input and returns |xs| if 1 ≤ s ≤ ", can be represented as a quartet
(i, ", k, |xk|), which requires only a constant space (or O(log |w|) space). The
update procedure of the quartet for each node is basically apparent, except for
the nodes to be separated.

3.3 Node Separation

Recall that two or more DAWGs can share one node in MASDAWG(w), and
each of them has a possibility of being separated into two nodes. This seems
to complicate the update of MASDAWG(w). However, we can readily show the
following lemma.
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Lemma 5. Suppose b ∈ Σ and u, bu ∈ Suffix (w). Let x ∈ Sub(u) with x �= ε.
Let y ∈ Sub(bu) with y �= ε. Assume x and y are the representatives of [x]u
and [y]bu, respectively. Suppose 〈u, [x]〉 ∼w 〈bu, [y]〉. Let a ∈ Σ, and let z be the
longest repeated suffix of bua. Suppose z ∈ [y]bu. If |z| < |y|, then z is also the
longest repeated suffix of ua, and z ∈ [x]u. If |z| = |y|, then x is a repeated suffix
of ua (not necessarily to be the longest).

The next lemma characterizes the node separations that occur during the
update of MASDAWG(w) to MASDAWG(wa).

Lemma 6. Consider the node of MASDAWG(w) stated in Lemma 4 (see Fig. 4).
Let z be the longest repeated suffix of w[i+ j :]a. Suppose z ∈ [xj ]w[i+j:].

1. When |z| = |xk|: Node separation occurs in none of the DAWGs for the
strings w[i+ j :], . . . , w[i+ " :].

2. When |z| < |xk|: Let t be the maximum integer such that z is a proper
suffix of xt. Node separation occurs in each of the DAWGs for the strings
w[i+ j :], . . . , w[i+ t :]. That is, for each j = 1, . . . , t, the node [xj ]w[i+j:] of
DAWG(w[i+j :]) is separated into [xj ]w[i+j:]a and [z]w[i+j:]a inside DAWG(w[i+
j :]a). The nodes 〈w[i+ j :]a, [x1]〉, . . . , 〈w[i+ " :]a, [x	]〉 are equivalent under
∼wa, and the new nodes 〈w[i+ j :]a, [z]〉, . . . , 〈w[i+ t :], [z]〉 are also equiv-
alent under ∼wa.

The node separations of DAWGs characterized in the above lemma lead
to a node separation in the update of MASDAWG(w) to MASDAWG(wa). It
simultaneously performs the node separations within each DAWG caused by the
common z. (For the same z, we can take j as small as possible.)

The remaining problem to be overcome is that there is another kind of node
separation in the update of MASDAWG(w).

Lemma 7. In the update of MASDAWG(w) to MASDAWG(wa), node separa-
tion of the following types may occur, where w ∈ Σ∗ and a ∈ Σ.

1. When w[i+ 1 :] is of the form b	+1s such that w[i] �= b or i = 0, " ≥ 1, and
s ∈ Σ∗ does not begin with b nor contain an occurrence of b	:
Assume that d is the largest integer such that s contains an occurrence of
bd. MASDAWG(w) has a node consisting of

〈w[i+ j + 1 :], [bd+k]〉, 〈w[i+ j + 2 :], [bd+k−1]〉, . . . , 〈w[i+ j + k], [bd+1]〉,

where k = "− (d+ j) + 1, for each j = 0, 1, . . . , d. If |s| > 0, s ends with bd,
and a = b, then the node is separated into two nodes, one of which consists
of

〈w[i+ j + 1 :]a, [bd+k]〉, 〈w[i + j + 2 :]a, [bd+k−1]〉, . . . , 〈w[i+ j + k − 1]a, [bd+2]〉,

and the other consists only of 〈w[i+ j + k :]a, [bd+1]〉.
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Fig. 5. The naive ASDAWG(bbbbbab) on the left, and the naive ASDAWG(w) on the
right. The nodes connected by the dotted lines are equivalent due to Case 3. Recall
the value of d mentioned in Lemma 7. In string bbbbbab the value of d is 1, whereas in
string bbbbbabb d = 2 since the new b is added afterward.

2. When w[i+ 1 :] is of the form b	 with " ≥ 1 such that w[i] �= b or i = 0:
MASDAWG(w) has a node consisting of

〈b	, [bj ]〉, 〈b	−1, [bj−1]〉, . . . , 〈b	−j , [ε]〉,
for each j = 1, . . . , ". Whenever b �= a, the node is separated into two nodes,
one of which consists of

〈b	a, [bj]〉, 〈b	−1a, [bj−1]〉, . . . , 〈b	−j+1a, [b]〉,
and the other consists only of 〈b	−ja, [ε]〉.
For an example of the first case of the above lemma, consider the update of

MASDAWG(w) to MASDAWG(wb) for w = bbbbbab. The naive ASDAWG(w)
and the naive ASDAWG(wb) are shown in Fig. 5, whereas MASDAWG(w) and
MASDAWG(wb) are displayed in Fig. 6.

It should be emphasized that in the node separation mentioned in the above
lemma no node separation occurs inside a DAWG. This kind of node separation
can also be performed during the suffix link traversal started at the sink node.
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Fig. 6. MASDAWG(bbbbbab) is on the left, and MASDAWG(bbbbbabb) is on the right.
Compare the update of MASDAWG(bbbbbab) to MASDAWG(bbbbbabb) with that of
the naive ASDAWG(bbbbbab) to the naive ASDAWG(bbbbbabb) shown in Fig. 5.

4 Applications

In this section we show some applications to which the data structure ASDAWG
and its variants effectively contribute.

4.1 Finding Beginning-Sensitive Patterns

Definition 3 (Beginning-Sensitive Pattern). A beginning-sensitive pattern
(a BS-pattern for short) is a pair 〈p, i〉 where p is a string in Σ∗ and i is a positive
integer.

Definition 4 (BS-Pattern Matching Problem).
Instance: a text w and a BS-pattern 〈p, i〉.
Determine: whether p is a substring of w[i :].

This is a natural extension of the substring pattern matching problem with
i = 1. The BS-pattern matching problem is solvable in O(|p|) time for an ar-
bitrary pair 〈p, i〉, by using ASDAWG(w). For a given text w, we construct
MASDAWG(w) with the on-line algorithm proposed in Section 3. For a BS-
pattern 〈p, i〉, if i > |w|, the BS-pattern never matches w. Otherwise, we start
with the i-th initial node of MASDAWG(w) and examine whether or not the
string p is recognized.
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4.2 Pattern Matching within a Specific Region

Definition 5 (Region-Sensitive Pattern). A region-sensitive pattern (an
RS-pattern for short) is a triple 〈p, (i, j)〉 where p is a string in Σ∗ and i, j
are positive integers.

Definition 6 (RS-Pattern Matching Problem).
Instance: a text w and an RS-pattern 〈p, (i, j)〉.
Determine: whether p occurs within the region w[i : j] in the text w.

This is a natural extension of the BS-pattern matching problem in which j =
|w|. For a given text w, we construct MASDAWG(w). We assign each node the
integer for the position of the rightmost occurrence of the string corresponding to
the node. For an RS-pattern 〈p, (i, j)〉, if i > |w|, the RS-pattern never matches
w. Otherwise, we start with the i-th initial node ofMASDAWG(w) and examine
whether or not the string p is recognized. If it is recognized, we compare j with
the integer k stored in the node at which p finally arrived. Then: If j ≤ k, YES;
Otherwise, NO. Obviously, the problem can be solved in O(|p|) time.

4.3 Finding Variable-Length-Don’t-Care’s Patterns

Definition 7 (Variable-Length-Don’t-Care’s Pattern). Let Π = (Σ ∪
{�})∗, where � is a wildcard that matches any string. An element q ∈ Π is
called a variable-length-don’t-care’s pattern (a VLDC-pattern for short).

For instance, �a�ab�ba� is a VLDC-pattern for a, b ∈ Σ. We say that a
VLDC-pattern q matches a text string w ∈ Σ∗ if w can be obtained by replacing
�’s in q with some strings. In the running example, the VLDC-pattern �a�ab�ba�
matches text abababbbaa by replacing the �’s with ab, b, b and a, respectively.

Definition 8 (VLDC-Pattern Matching Problem).
Instance: a text w and a VLDC-pattern q.
Determine: whether q matches w.

The smallest automaton to recognize all possible VLDC-patterns that match
a text w ∈ Σ∗ is a variant ofMASDAWG(w). We call the automaton the wildcard
DAWG for w, and write it as WDAWG(w). WDAWG(abbab) is displayed in
Fig. 7. In WDAWG(w), a �-transition is added between each node and the
initial node of the “same layer” in MASDAWG(w) (see also MASDAWG(abbab)
in Fig. 3). Note that there exist two additional nodes, one of which is a unique
initial node of WDAWG(abbab). They are added in order that VLDC-patterns
beginning with a can be recognized. For any q ∈ Π , the VLDC-pattern matching
problem can be solved in O(|q|) time, by using WDAWG(w).
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6. M. Crochemore and Z. Trońıček. Directed acyclic subsequence graph for multiple
texts. Technical Report IGM-99-13, Institut Gaspard-Monge, June 1999.
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