On-line Linear-time Construction of
Word Suffix Trees

Shunsuke Inenaga'? and Masayuki Takeda?:3

! Japan Society for the Promotion of Science
2 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan
{shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
3 SORST, Japan Science and Technology Agency (JST)

Abstract. Suffix trees are the key data structure for text string match-
ing, and are used in wide application areas such as bioinformatics and
data compression. Sparse suffix trees are kind of suffix trees that repre-
sent only a subset of suffixes of the input string. In this paper we study
word suffix trees, which are one variation of sparse suffix trees. Let D
be a dictionary of words and w be a string in DV, namely, w is a se-
quence wi - - - wg of k words in D. The word suffix tree of w w.r.t. D is
a path-compressed trie that represents only the k suffixes in the form
of w;---wk. A typical example of its application is word- and phrase-
level search on natural language documents. Andersson et al. proposed
an algorithm to build word suffix trees in O(n) expected time with O(k)
space. In this paper we present a new word suffix tree construction algo-
rithm with O(n) running time and O(k) space in the worst cases. Our
algorithm is on-line, which means that it can sequentially process the
characters in the input, each by each, from left to right.

1 Introduction

Suffix trees have played a very central role in combinatorial pattern matching
as they enable us to solve a multitude of important problems efficiently [3, 8].
To give some examples of applications, suffix trees are utilized in data com-
pression [13,16,10] and in bioinformatics such as motif finding [14], regulatory
elements discovery [5], and fast protein classification [7]. Suffix trees are fairly
useful since they can be constructed in linear time and space with respect to the
input string length [19, 15, 18].

On the other hand, there have been great demands to deal with a common
case where only certain suffixes of the input string are relevant. Suffix trees that
contain only a subset of all suffixes are called sparse suffix trees.

The ‘sparsity’ of the suffix tree varies with the application: In [12] Kérkkéinen
and Ukkonen proposed the evenly spaced sparse suffiz tree which contains every
i-th suffix for some fixed positive integer i. Their contribution is an algorithm
which allows the original full text to be searched, by using the evenly spaced
sparse suffix tree. Clifford and Sergot [6] introduced distributed suffiz trees whose
idea is to partition the original suffix tree into a constant number of subtrees

and construct each of them in linear time, in parallel. Their suffix tree is thus
helpful to index huge genome sequence databases. Also, sparse suffix trees for
a set of arbitrary suffixes are used in the core of pattern discovery algorithms
from biological sequences [11,9].

Another type of sparse suffix trees is word suffiz trees [4]. Let D be a dictio-
nary of words and w be a string in D¥, namely, w is a sequence w; - - - wy, of k
words in D. The word suffix tree of w w.r.t. D is a tree structure which repre-
sents only the k suffixes in the form of w; - - - wg. One typical application of word
suffix trees is a word- and phrase-level index for documents written in a natural
language. Note that normal suffix trees report any occurrences of a keyword in
the text string, which may cause unwanted matchings (e.g., an occurrence of
“other” in “mother” is possibly retrieved).

This paper investigates word suffix tree construction. The most intuitive
solution is to build a normal suffix tree using O(n) time and space, then to
prune it so that only the leaves corresponding to the k suffixes remain. However,
this approach apparently wastes extra space, as the size of the resulting tree is
only O(k). To index large text strings efficiently, we need to handle a restricted
situation where only O(k) computational space is available. Still, this is a rather
challenging task, as traditional linear suffix tree construction algorithms heavily
rely on the fact that all suffixes are to be inserted in the tree. On the other hand,
it is no more true for word suffix trees.

In [2] Andersson et al. took a first step in this problem: they presented an
algorithm to build word suffix trees with O(k) working space in O(n) ezpected
running time. This present paper takes a further step and puts a period to this
problem - our algorithm constructs word suffix trees with O(k) working space
in O(n) running time in the worst cases. Remark that this is optimal, since
the resulting tree requires O(k) space, and we have to read the whole input
string at least once and it takes O(n) time. Our algorithm is based on, and is a
generalization of, Ukkonen’s on-line suffix tree construction algorithm introduced
in [18]. In addition, our algorithm can be seen as a practical solution to efficient
construction of general sparse suffix trees.

The rest of the paper is organized as follows. In Section 2 we introduce some
definitions and notations. In Section 3 we define word suffix tries and propose
an on-line construction algorithm for them. Section 4 presents a word suffix
tree construction algorithm, which is the main subject of this paper. Finally,
conclusions and further discussions are given in Section 5.

2 Preliminaries

Let X be a finite set of symbols, called an alphabet. A finite sequence of symbols
is called a string. We denote the length of a string u by |u|. The empty string
is denoted by e, that is, || = 0. Let * be the set of strings over X, and let
X+ = 3*\{e}. Strings z, y, and z are said to be a prefiz, substring, and suffiz
of the string u = xyz, respectively. A prefix, substring, and suffix of a string u
are said to be proper if they are not u. Let Prefiz(u) and Suffiz(u) be the set of

prefixes and suffixes of string u, respectively. Let Prefiz(S) = U, cg Prefiz(u) for
a set S of strings. The i-th symbol of a string u is denoted by wu[i] for 1 < i < |ul,
and the substring of a string u that begins at position ¢ and ends at position j
is denoted by ufi..j] for 1 <i < j < |ul.

Definition 1 (Prefix property). A set L of strings is said to have the prefix
property if no string in L is a proper prefiz of another string in L.

Let D = X* - 4. Then D is a set of strings each followed by #, and D is
called a dictionary. We assume that any string w is an element of DT. This is a
very natural assumption, since for example in the European languages the blank
character can be regarded as the special character #, and any text is an element
of DT.

A factorization of string w € DT w.r.t. D is a list wy,...,w; of strings in
D such that w = wy - - - wy. Note that this factorization is always unique, since
D = X* .4 clearly satisfies the prefix property because of # not being in X'. Now,
let Suffix p(w) = {w; ---wi | 1 < i < k+1}. Remark that Suffiz ,(w) is a subset
of Suffiz(w) which consists only of the original string w and the suffixes which
immediately follow # in w (including the empty suffix ¢ intended by wg11wg).

3 Word suffix trie

In this section, we present our word suffix ¢rie construction algorithm which will
be a basis of our word suffix tree construction algorithm to be given later as the
main topic of this paper.

3.1 Definition

Definition 2 (Word suffix trie). The word suffix trie of a string w € DT
w.r.t. D, denoted by WSTriep(w), is a trie which represents Suffix p(w).

Fig. 1 compares the normal suffix trie and the word suffix trie for string w,
where X' = {a,b}, D = X* - #, and w = ab#ab#a#.

It is easy to see that there is a natural one-to-one correspondence between
the nodes of WSTriep(w) and the strings in Prefiz(Suffiz p(w)). Any string u
in Prefiz(Suffiz p(w)) can be written as u = zy such that x € D* and y is a
proper prefix of some string in D. It should be stated that the choice of z and
y is unique for each u. Hereafter, we represent a node of WSTriep(w) with an
ordered pair (z,y), as mentioned above.

3.2 Word suffix trie construction algorithm

Suffix link. Ukkonen [18] used suffix links for on-line construction of normal
suffix tries. Here we give a new definition of suffix links that is suitable for on-line
word suffix trie construction.

Fig. 1. The normal suffix trie of w = ab#ab#a# on the upper, and the word suf-
fix trie of w w.r.t. D = {a,b}" - # on the lower. Note that the normal suffix tree
represents all the suffixes of w, while the word suffix tree represents only the suffixes

ab#ab#at, ab#a#, a#, e € Suffiz p(w).

For dictionary D = X* - #, we consider the smallest DFA Mp which accepts
D. Clearly it has a unique final state with no outgoing edges (see the left of
Fig. 2). Then we attach Mp to the word suffix trie, replacing the unique final
state of Mp by the root of the word suffix trie. Now we define the suffix links of
word suffix tries as follows:

Definition 3 (Suffix links of word suffix trie). Let D = X* - # and Mp be
the smallest DFA that accepts D. For each node s = {x,y) of WSTriep(w),

1. if x € DT, the suffiz link from s goes to node (x',y) such that ¥’ € D* and
x = hx' for some h € D;
2. otherwise (if x = €), the suffiz link from s goes to the initial state of Mp.

Fig. 2 shows the smallest DFA Mp which accepts D = {a,b}* - #, and
WSTriep(w) for w = ab#ab#a# with its suffix links.

Algorithm. Fig. 3 shows a pseudo code of our on-line algorithm to build word
suffix tries, with the help of DFA Mp and suffix links of Definition 3. Observe
that procedure Update is identical to that of Ukkonen’s on-line normal suffix trie
construction algorithm of [18]. The only change is the initialization steps of the
main routine where we set the root of the trie to the final state of Mp and the
suffix link of the root to the initial state of Mp. This simple modifications make

Fig. 2. To the left is the smallest DFA Mp accepting D = {a,b}" - #, and to the right
is WSTriep(w) for w = ab#ab#a#, with Mp and its suffix links (broken arrows)
attached. Nodes 4, 5, 6, 7, 8, 9, 10, and 11 are those in Group 1 of Definition 3, and
nodes 1, 2, and 3 are those in Group 2.

Input: w=w[l..n] € D" and auxiliary DFA Mp.
Output: Word suffix trie of w w.r.t. D.
{

root = the final state of Mp;

slink(root) = the initial state of Mp;

top = root;

for (i =1; i < mn; i+ +) top = Update(top, w[i]);

}

node Update(top, c) {

newtop = CreateNewNode();

create a new edge top = newtop;

prev = newtop;

for (t = slink(top); no c-edge from t; t = slink(t)) {
new = CreateNewNode();
create a new edge t = new;
slink (prev) = new;
prev = new;

slink(prev) = the initial node of the c-edge from ¢;
return newtop;

}

Fig. 3. Word suffix trie construction algorithm. For any node v, slink(v) represents
the node to which the suffix link of v goes. Remark that function Update is identical
to that of Ukkonen’s normal suffix trie construction algorithm [18]. The initialization
step using the auxiliary DFA Mp changes the algorithm so that it builds word suffix
tries.

a difference in the resulting data structures. A snapshot of on-line construction
of WSTriep(w) with the running example is shown in Fig. 4.

For the correctness of the algorithm of Fig. 3, it suffices to show the following
lemma:

Lemma 1. Let w € DT, wy,...,w; be a unique factorization of w w.r.t. D.
Let j be an integer with 0 < j < |w|, and w be the prefix of length j of w. Let
u=wi ---wev such that v is a proper prefix of wey1. After the j-th call of the

Fig. 4. A snapshot of on-line construction of WSTriep(w) with w = ab#ab#a# and
D = {a,b} - #. The update with the last # is shown in three steps, where we get three
new nodes and edges.

Update operation, we have a trie representing the strings
{w; - we |1 <i<l+1}-w.

The suffiz link of the node (w; - - - wg,v) goes to the node (w;y1 -+ we,v), if it < L;
and otherwise, goes to the state §(qo,v) of Mp, where § and qo are, respectively,
the state-transition function and the initial state of Mp.

Proof. By induction on j = |u|. When |u| = 0, the lemma trivially holds. We
now consider |u| > 0. When v # ¢, let v = v'b with " € ¥* and b € X. By
the induction hypothesis, after the (j — 1)-th call of Update, we have a trie
representing

{w;-we | 1<i<l+1}-0,

and the suffix link of node (w; -+ - wy, v’) goes to node (w;q1 -+ we,v'), if i < ¢
and otherwise, goes to the state §(qgo,v") of Mp. At the j-th call, the variable top
is set to the node (w; - - - wy,v’) and the node (w; - - - wy, v'd) is created (variable
newtop). In the iteration of the for loop, we traverse the suffix links starting at
the node {(wy - - - wg,v’). For each i = 2, ..., ¢, the node (w; - - - wy, v'b) is created,
if it does not exist. Note that the iteration is guaranteed to halt since the suffix
links lead us to the state d(qg,v’). During the iteration, the suffix links of the
newly created nodes (w; - - - wy, v'b) are set to the nodes (w;11 - - - wy, v'b), if i < ¢;
and to the state §(qo, v'd), otherwise. Thus the lemma holds for the case v # .
Similarly, we can prove the case v = ¢. a

Remark 1. Our word suffix trie construction algorithm of Fig. 3 generalizes
Ukkonen’s normal suffix trie construction algorithm [18]. Assume just for now

D = X, and consider a DFA which accepts X with only two states that are a
single initial state and a single final state. Then this DFA plays the same role
as the auxiliary ‘L’ node used in Ukkonen’s algorithm, and thus our algorithm
builds normal suffix tries. The same discussion applies to the word suffix tree
construction algorithm to be given in the next section.

4 Word suffix tree

In the previous section, we presented our on-line algorithm that constructs word
suffix tries. The drawback is, however, that the size of a word suffix trie can be
quadratic in the input string length. In this section, we consider the word suffiz
tree whose size is bounded by O(k), where k is the number of words in string w
w.r.t. dictionary D. We then propose a new algorithm to build a word suffix tree
in O(n) time with O(k) space, where n = |w| and w = w; - - - wi. The advantage
of our algorithm to the one by Andersson et al. [2] is that our algorithm runs
in O(n) time in the worst cases, while their algorithm runs in O(n) time on the
average.

4.1 Definitions

Definition 4 (Word suffix tree). The word suffix tree of a string w € DT
w.r.t. D, denoted by WSTreep(w), is a path-compressed trie which represents

Suffiz p(w).

For any strings x,y, let lcp(x,y) denote the longest common prefix of x and
y. Let

I={lep(w; - wg,wj--wg) |1 <i#j<k+1} and,
E={w;---wg | w; - wy ¢ Prefiz(w;---wg) for any 1 < j <i < k}.

Then, there is a one-to-one correspondence between the strings in I and the
internal nodes (including the root) of WSTreep(w), and there is a one-to-one
correspondence between the strings in E and the leaves of WSTreep(w). Here-
after, we sometimes refer to any node s of WSTreep(w) as the corresponding
string in T U E.

Fig. 5 compares the normal suffix tree and the word suffix tree for string
w = ab#ab#a#, where X = {a,b} and D = X* - #.

4.2 Word suffix tree construction algorithm

Note that |I| + |E| = O(k), which means that the size of WSTreep(w) is also
O(k). Since WSTreep(w) is path compressed, the edges of WSTreep(w) are
labeled by substrings of w rather than single characters. By implementing these
substring labels with pointers to w, WSTreep(w) can be finally implemented
in O(k) space. The time cost for word suffix tree construction is £2(n) due to
the need of scanning the whole string w. Thus, the final goal is to construct
WSTreep(w) in O(n) time with O(k) space.

b # a # O
#
b
CaQ b#a ™ b # a # ’O

a

O

a b #a ™ b # a #
o), O
#

Fig. 5. The normal suffix tree of w = ab#ab#a# on the upper, and the word suffix
tree of w w.r.t. D = {a,b}" - # on the lower.

Suffix link. The suffix links of WSTreep(w) are a key to achieve the above
goal. Recall that any node s of WSTriep(w) is regarded as a unique ordered
pair {z,y), such that x € D* and y is a proper prefix of some string in D. We
apply the same notion to the nodes of WSTreep(w). Also, we use the auxiliary
DFA Mp that accepts D in the same way.

Definition 5 (Suffix links of word suffix tree). Let D = X* - # and Mp be
the smallest DFA that accepts D. For each node s = {x,y) of WSTreep(w),

1. if s € I and x € D%, the suffix link from s goes to mode (x',y) such that
' € D* and x = hx' for some h € D;

2. if s € I and x = ¢, the suffix link from s goes to the initial state of Mp;

3. otherwise (if s € E), the suffix link from s is undefined.

The suffix links of those in Group 3 in the above definition remain undefined, as
they are never used in our construction algorithm to be shown later. See Fig. 6
for the word suffix tree with the auxiliary DFA Mp and suffix links, using the
running example.

Algorithm. A pseudo-code of our algorithm to build word suffix trees is sum-
marized in Fig. 7. It simulates construction of word suffix tries in O(n) time and
with O(k) space. Fig. 8 shows a snapshot of on-line construction of WSTreep(w)
with the running example.

The main result of this paper follows:

g:j/# a\'z“'/l b # a _/5\ b # a # @
'\N

Fig. 6. The word suffix tree with auxiliary DFA Mp and suffix links (broken arrows),
where w = ab#ab#a# and D = {a,b}" - #. Note that the suffix links of nodes 9, 10,
and 11, which are those in Group 3 of Definition 5, are missing, as they are never used
in the construction algorithm.

Theorem 1. The algorithm of Fig. 7 builds word suffix trees in linear time (on
a fized alphabet).

Proof. Since the algorithm is a time and space economical simulation of the
word suffix trie construction algorithm of Fig. 3, the correctness follows from
Lemma 1.

We now prove the linearity of the algorithm. Consider the location, referred
to as (s, (k,7 — 1)), which represents the substring w[k — ¢..i — 1] where ¢ is the
length of the string represented by the node s. One iteration of the while loop
in the main routine alters s into slink(s) and therefore decreases the length of
the substring by at least one. We note that Canonize never alters the substring
represented by (s, (k,p)) although it might update s and k. On the other hand,
the length of the substring is increased by at most one at each iteration of the for
loop in the main routine. Thus, the total number of iterations of the while loop
in the main routine is linearly proportional to the input string length. We have
only to estimate the total cost of all executions of Canonize. We note that the
value of variable k changes only by an execution of Canonize, and monotonically
increases. The cost of one execution of Canonize is proportional to the number
of iterations of the while loop in it plus one, which is linear with respect to the
number of times the variable k is increased during the iterations. The total cost
of all executions of Canonize is therefore proportional to the number of times
k is increased in the execution of the algorithm. Since the length of the string
wlk..t — 1] is increased by at most one at each iteration of the for loop in the
main routine, the number of times k is increased is linear with respect to the
input string length. ad

5 Conclusions and further discussions

We have presented a new on-line algorithm for constructing word suffix trees.
The algorithm is very simple and runs in linear time even in the worst cases,
whereas the one proposed by Anderson et al. runs in linear time on the average.

The simplicity of our algorithm is due to the use of DFA Mp accepting a dic-
tionary D. The idea comes from the synchronization technique introduced in [17]
in which similar DFA are embedded onto the Aho-Corasick pattern matching

Input: w =w(l..n] € D" and auxiliary DFA Mp.
Output: Word suffix tree of w[l..n] w.r.t. D.
{
root = the final state of Mp; slink(root) = the initial state of Mp;
(s, k) = (root, 1);
for (i=19i<m;i++) {
oldr = nil;
while (CheckEndPoint(s, (k,i — 1), w[i]) == false) {
if (k<i—1) r = SplitEdge(s, (k,i—1));
else r=zys;
t = CreateNewNode();

(#,00)
create a new edge r ———— t;
if (oldr # nil) slink(oldr) = r;
oldr = r;
(s, k) = Canonize(slink(s), (k,i — 1));

if (oldr # nil) slink(oldr) = s;
(s, k) = Canonize(s, (k,1));

}

boolean CheckEndPoint(s, (k,p),c) {
if (k<p){ /*(s,(k,p)) is implicit. */

let s —P) ¢ be the w(k]-edge from s;

return (c == w[k’ +p — k+ 1]);
} else return (there is a c-edge from s);

}

(node,integer)-pair Canonize(s, (k,p)) {
if (k >p) return (s,k); /*(s,(k,p)) is explicit. */

find the w[k]-edge s) L ¢ from 8;

while (p' — k' <p—k) {
k+=p -k +1;s=54

if (k <p) find the w[k]-edge s EP) L ¢ from S;

return (s, k);

}

node SplitEdge(s, (k,p)) {
let s —*P), ¢ be the w(k]-edge from s;
r = CreateNewNode();

(k' k' +-p—k) (k' +p—k+1,p")
_ - —_

replace this edge by edges s rand r

return r;

/

)

Fig. 7. Word suffix tree construction algorithm.

Ql’ @LC a @ @LC ab O 9_#}@ ab 4 O

z z z z

Q
o
Q

O_#’C ayb ta ® O_#’. abytab o 4 @ ab#jabt ®
G ZU zé;

-

ab#a_"‘_b#a _@ @L@ ab#a_"‘_b#a# _@

C# C aab #a) b4 at ® X'y
&) p g
T b

R

Fig. 8. A snapshot of on-line construction of WSTreep(w) with w = ab#ab#a# and
D = {a,b}" - #. The update with the last # is shown in three steps. The star mark
denotes the location represented by (s, (k,i—1)) in the algorithm of Fig. 7, from which
a new edge is possibly created.

machines [1] so that they process multi-byte character texts in a byte-by-byte
manner without extra work for avoiding false matches.

Lastly, our algorithm can be seen as a practical solution to efficient construc-
tion of general sparse suffix trees. Let w € X* and Pos be a set of positions of
suffixes we want to store in the sparse suffix tree. Let |w| = n and |Pos| = k.
For any position ¢ in Pos, we insert the special character # at position ¢ — 1 of
the original string w. Note that the length of the modified string w’ is at most
twice as that of the original string w, and therefore the word suffix tree for w’
can be constructed with O(k) space in O(n) time. To search for pattern p € X*
of length m, we skip any # in the word suffix tree of w’. This way the matching
can be done correctly, and in O(m) time.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333-340, 1975.

2. A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246-260, 1999.

3. A. Apostolico. The myriad virtues of subword trees. Combinatorial Algorithms on
Words, F12:85-96, 1985.

4. R. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular expressions.
In Proc. 16th International Colloquium on Automata, Languages and Program-
ming (ICALP’89), volume 372 of Lecture Notes in Computer Science, pages 46—62.
Springer-Verlag, 1989.

5. H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano. Efficiently finding
regulatory elements using correlation with gene expression. Journal of Bioinfor-
matics and Computational Biology, 2(2):273-288, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Clifford and M. Sergot. Distributed and paged suffix trees for large ge-
netic databases. In Proc. 14th Ann. Symp. on Combinatorial Pattern Match-
ing (CPM’03), volume 2676 of Lecture Notes in Computer Science, pages 70-82.
Springer-Verlag, 2003.

B. Dorohonceanu and C. G. Nevill-Manning. Accelerating protein classification
using suffix trees. In Proc. 8th International Conference on Intelligent Systems for
Molecular Biology (ISMB’00), pages 128-133. AAAI Press, 2000.

. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.

S. Inenaga, H. Bannai, H. Hyyrd, A. Shinohara, M. Takeda, K. Nakai, and
S. Miyano. Finding optimal pairs of cooperative and competing patterns with
bounded distance. In Proc. 7th International Conference on Discovery Science
(DS’04), volume 3245 of Lecture Notes in Artificial Intelligence, pages 32-46.
Springer-Verlag, 2004.

S. Inenaga, T. Funamoto, M. Takeda, and A. Shinohara. Linear-time off-line text
compression by longest-first substitution. In Proc. 10th International Symp. on
String Processing and Information Retrieval (SPIRE’03), volume 2857 of Lecture
Notes in Computer Science, pages 137-152. Springer-Verlag, 2003.

S. Inenaga, T. Kivioja, and V. Mékinen. Finding missing patterns. In Proc. 4th
Workshop on Algorithms in Bioinformatics (WABI'04), volume 3240 of Lecture
Notes in Bioinformatics, pages 463—-474. Springer-Verlag, 2004.

J. Karkkdnen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd International
Computing and Combinatorics Conference (COCOON’96), volume 1090 of Lecture
Notes in Computer Science, pages 219-230. Springer-Verlag, 1996.

N. J. Larsson. Extended application of suffix trees to data compression. In Proc.
Data Compression Conference ‘96 (DCC’96), pages 190-199. IEEE Computer So-
ciety, 1996.

L. Marsan and M.-F. Sagot. Extracting structured motifs using a suffix tree - algo-
rithms and application to promoter consensus identification. In Proc. 4th Annual
International Conference on Computational Molecular Biology (RECOMB’00),
pages 210-219. ACM, 2000.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of ACM, 23(2):262-272, 1976.

J. C. Na, A. Apostolico, C. S. Iliopoulos, and K. Park. Truncated suffix trees and
their application to data compression. Theoretical Computer Science, 304(1-3):87—
101, 2003.

M. Takeda, S. Miyamoto, T. Kida, A. Shinohara, S. Fukamachi, T. Shinohara, and
S. Arikawa. Processing text files as is: Pattern matching over compressed texts,
multi-byte character texts, and semi-structured texts. In Proc. 9th International
Symp. on String Processing and Information Retrieval (SPIRE’02), volume 2476
of Lecture Notes in Computer Science, pages 170—186. Springer-Verlag, 2002.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp.
on Switching and Automata Theory, pages 1-11, 1973.

