
Faster Subsequence and Don’t-Care Pattern
Matching on Compressed Texts

Takanori Yamamoto1, Hideo Bannai1, Shunsuke Inenaga2, and
Masayuki Takeda1

1Department of Informatics, Kyushu University
2Graduate School of Information Science and Electrical Engineering, Kyushu

University
744 Motooka, Nishiku, Fukuoka 819–0395, Japan

takanori.yamamoto@i.kyushu-u.ac.jp

{bannai,takeda}@inf.kyushu-u.ac.jp
inenaga@c.csce.kyushu-u.ac.jp

Abstract. Subsequence pattern matching problems on compressed text
were first considered by Cégielski et al. (Window Subsequence Problems
for Compressed Texts, Proc. CSR 2006, LNCS 3967, pp. 127–136), where
the principal problem is: given a string T represented as a straight line
program (SLP) T of size n, a string P of size m, compute the number
of minimal subsequence occurrences of P in T . We present an O(nm)
time algorithm for solving all variations of the problem introduced by
Cégielski et al.. This improves the previous best known algorithm of
Tiskin (Towards approximate matching in compressed strings: Local sub-
sequence recognition, Proc. CSR 2011), which runs in O(nm log m) time.
We further show that our algorithms can be modified to solve a wider
range of problems in the same O(nm) time complexity, and present the
first matching algorithms for patterns containing VLDC (variable length
don’t care) symbols, as well as for patterns containing FLDC (fixed
length don’t care) symbols, on SLP compressed texts.

1 Introduction

A straight-line program (SLP) [6] is a context free grammar in the Chomsky nor-
mal form that derives a single string. SLPs are a widely accepted abstract model
of various text compression schemes, since texts compressed by any grammar-
based compression algorithm (e.g. [12, 8]) can be represented as SLPs, and those
compressed by the LZ-family (e.g., [16, 17]) can be quickly transformed to SLPs.
An SLP of a string of size N can be as small as O(log N). SLPs are a promising
representation of a given string, not only for reducing the storage size of the
data, but for efficiently conducting various string processing operations [13, 5].
Recently, self indices based on SLPs have also appeared [4].

Subsequence pattern matching [1] and its related problems have extensively
been studied. Window subsequences are also known as serial episodes in data
mining applications [10]. Now our interest is: Can we efficiently solve subsequence

matching problems on compressed strings? When both text and pattern are given
as SLPs, subsequence matching is NP-hard [9]. Therefore, in the sequel we only
consider the case where the text is given as an SLP, while the pattern is given
as an uncompressed string.

Subsequence problems on SLP-compressed texts were first considered in [3].
The principal problem considered is to compute the number of minimal subse-
quence occurrences of P in T . They presented O(nm2 log m) time algorithms
for solving the problems for an SLP of size n and subsequence pattern of length
m. Later, an improved algorithm running in time O(nm1.5) was presented by
Tiskin [14]. Later, Tiskin improved the running time to O(nm log m) [15]. In this
paper, we further reduce the time complexities to O(nm).

The contribution of this paper is twofold. Firstly, we improve the algorithm
for building the L and R arrays of [3], from O(nm2 log m) to O(nm), therefore
reducing the overall time complexity of the algorithms for the subsequence pat-
tern matching problems to O(nm). Following the ideas of [3], we give a simpler
presentation of these algorithms.

Secondly, we show that the algorithm can be extended to cope with patterns
that contain don’t care symbols, and give O(nm)-time matching algorithms for
patterns containing VLDC (variable length don’t care) symbols, as well as an
O(nm)-time matching algorithm for patterns containing FLDC (fixed length
don’t care) symbols. There has been work on pattern matching for patterns con-
taining FLDC symbols on a compressed representation of Sturmian words [2]. On
the other hand, our algorithms can search arbitrary SLPs for patterns containing
don’t cares, and hence are applicable to more practical compressed texts.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string T is denoted by |T |. The empty string ε is a string of length 0, namely,
|ε| = 0. For a string T = XY Z, X, Y and Z are called a prefix, substring, and
suffix of T , respectively. The i-th character of a string T is denoted by T [i] for
0 ≤ i ≤ |T | − 1, and the substring of a string T that begins at position i and
ends at position j is denoted by T [i : j] for 0 ≤ i ≤ j ≤ |T |− 1. For convenience,
let T [i : j] = ε if j < i.

A string P of length m is a subsequence of string T , if there exist indices
0 ≤ i0 < · · · < im−1 ≤ |T | − 1 such that P [0] = T [i0], . . . , P [m − 1] = T [im−1].
The pair (i0, im−1) is called an occurrence of subsequence P in T . Let Occ(T, P)
denote the set of all occurrences of subsequence P in T . An occurrence (u, v) ∈
Occ(T, P) is minimal if P is not a subsequence of T [u + 1 : v] nor T [u : v − 1].
For strings X, Y , if an occurrence (u, v) ∈ Occ(XY, P) satisfies 0 ≤ u < |X| and
|X| ≤ v < |XY |, we say that this occurrence crosses X and Y .

2.2 Straight Line Programs

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments such that
X1 = expr1, X2 = expr2, . . . , Xn = exprn, where each Xi is a variable and each
expri is an expression, where expri = a (a ∈ Σ), or expri = X`Xr (`, r < i).

a a a b a a a b a b

X
7

X6X5

X3 X4 X5

X
1
X
1
X
1
X
2

X
4

X
1
X
2

X4

X
1
X
2

X
3

X
1
X
1

Fig. 1. An example of an SLP X1 = a,
X2 = b, X3 = X1X1, X4 = X1X2, X5 =
X3X4, X6 = X5X4, X7 = X5X6, that de-
rives string aaabaaabab.

Denote by T the string derived
from the last variable Xn of the pro-
gram T . The size of the program T
is the number n of assignments in T .
Note that |T | = O(2n).

Let val(Xi) represent the string
derived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives. For assign-
ment Xi = X`Xr, if an occurrence
(u, v) of subsequence P in val(Xi)
crosses val(X`) and val(Xr), we say
that (u, v) is a crossing subsequence
occurrence of P in Xi.

3 Subsequence Matching Problems on Compressed Texts

This section is organized as follows: We first review an O(nm) time algorithm for
calculating tables QL and QR, which can determine whether a string P of length
m is a subsequence of the string derived from an SLP T of size n (Subsequence
Recognition). A brief description of the algorithm appears in [14], where it is
noted that the algorithm “has been known in folklore”, which was pointed out
by Y. Lifshits. We then describe how to efficiently compute auxiliary tables
L and R using QL and QR. Following the ideas in [3], we use L and R to give
straightforward descriptions of O(nm) time algorithms for solving the problem of
finding all minimal subsequence occurrences of a pattern in a SLP-compressed
text (Subsequence Matching), and its window-accumulated version (Window
Subsequence Matching).

3.1 Subsequence Recognition

For i = 1, . . . , n, j = 0, . . . , m, let QL(i, j) denote the length of the longest prefix
of P [j : m − 1] which is a subsequence of Xi. We have that P is a subsequence
of T , if and only if QL(n, 0) = m.

Lemma 1 ([14]). Given a pattern P of length m and an SLP T of size n
representing text T , QL(i, j) for i = 1, . . . , n, j = 0, . . . , m can be calculated in
O(nm) time and space.

Proof. QL(i, j) can be defined recursively, as follows. For the base case, if Xi = a
for some a ∈ Σ, then

QL(i, j) =

{
1 if j < m and P [j] = a,

0 otherwise.
(1)

If Xi = X`Xr, then
QL(i, j) = QL(`, j) + QL(r, j′) (2)

where j′ = j + QL(`, j), because P [j : j + QL(`, j) − 1] is the longest prefix
of P [j : m − 1] that is a subsequence of X`, and the rest is the longest prefix
of P [j + QL(`, j) : m − 1] that is a subsequence of Xr. Since each QL(i, j) can
be calculated in constant time, QL(i, j) for i = 1, . . . , n, j = 0, . . . , m can be
calculated in O(nm) time and space. ut

P[j: j + QL(ℓ, j) – 1] is

a subsequence of Xℓ

P[j’ : j’ + QL(r, j’) – 1] is

a subsequence of Xr

Xi

Xℓ Xr

Fig. 2. Lemma 1. QL(i, j) = QL(`, j) +
QL(r, j′) where j′ = j + QL(`, j). QL(`, j)
is the length of the prefix of P [j : m − 1]
which is a subsequence of X`, and QL(r, j′)
is the length of the prefix of the rest of it.

Thus we can test whether a pat-
tern P is a subsequence of an SLP T
in O(nm) time.

We similarly define QR(i, j) as the
length of the longest suffix of P [0 :
m−j−1] that is a subsequence of Xi,
which can also be calculated in O(nm)
time and space.

3.2 Subsequence Matching

Auxiliary Tables. We next define L(i, j) and R(i, j) that are central to the
algorithm presented in [3]. We define L(i, j) as the length of the shortest prefix
of Xi, for which P [j : m − 1] is a subsequence. When there is no such prefix
of Xi, L(i, j) is defined as ∞. We similarly define R(i, j) as the length of the
shortest suffix of Xi, for which P [0 : m − j − 1] is a subsequence. When there
is no such suffix of Xi, R(i, j) is defined as ∞. Only these values for L (resp.
R) corresponding to suffixes (resp. prefixes) of P are required in the algorithms
which follow. However, the algorithm presented in [3] required the values for L
and R corresponding to all substrings of P to compute these values, therefore
making the running time of the algorithm O(nm2 log m). We improve their algo-
rithm by showing that we can calculate L(i, j) (resp. R(i, j)) using only values
corresponding to suffixes (resp. prefixes) of P with support from QL(i, j) (resp.
QR(i, j)), and reduce the running time to O(nm).

Lemma 2. Given a pattern P of length m, an SLP T of size n representing
text T , and QL(i, j) (resp. QR(i, j)) for i = 1, . . . , n, j = 0, . . . , m, L(i, j) (resp.
R(i, j)) for all i = 1, . . . , n, j = 0, . . . , m can be calculated in O(nm) time and
space.

Proof. We shall only describe how to calculate L(i, j) using QL(i, j), since the
case for R(i, j) and QR(i, j) is essentially the same. L(i, j) can be defined recur-
sively as follows: For the base case, if Xi = a for some a ∈ Σ, then

L(i, j) =


0 if j = m,

1 if j = m − 1 and P [j : m − 1] = a,

∞ otherwise.

If Xi = X`Xr, then

L(i, j) =

{
L(`, j) if L(`, j) 6= ∞,

|X`| + L(r, j′) if L(`, j) = ∞,

where j′ = j + QL(`, j). This is because: When L(`, j) 6= ∞, P [j : m − 1] is
a subsequence of X`, and L(`, j) is the length of the shortest prefix of X` for
which P [j : m− 1] is a subsequence. Since X` is a prefix of Xi, the length of the
shortest prefix of Xi = X`Xr for which P [j : m − 1] is a subsequence is clearly
equal to L(`, j). When L(`, j) = ∞, P [j : m − 1] is not a subsequence of X`.
This implies that the value of L(i, j) is at least |X`|. The exact value of L(i, j)
can be efficiently computed from QL(`, j), as follows. Since L(i, j)− |X`| equals
to the shortest prefix of Xr for which P [j′ : m − 1] is a subsequence, we have
L(i, j) − |X`| = L(r, j′) where j′ = j + QL(`, j).

Therefore, given the QL table, each L(i, j) can be computed in constant time.
Hence L(i, j) for all i = 1, . . . , n, j = 0, . . . , m can be computed in O(nm) time
and space. ut

Counting Minimal Occurrences. For text T represented by an SLP T of size
n, we show how to calculate the number of minimal occurrences of subsequence
P of length m in T in time O(nm), using L(i, j) and R(i, j). Let Mi denote the
number of minimal occurrences of P in val(Xi). Since val(Xn) = T , the desired
output is the value of Mn.

Our algorithm is based essentially on the same ideas as described in [3].
However, we note that they did not provide a rigorous proof of correctness, and
the pseudo-code shown in their paper seems to contain some errors. Below, we
give a simple presentation of the algorithm and a proof of correctness.

For any variable Xi = X`Xr, let C(`, r) denote the number of minimal
occurrences of P in Xi that cross X` and Xr.

Lemma 3. Given a pattern P of length m, an SLP T of size n, and C(`, r) for
all variables of form Xi = X`Xr, the values Mi for i = 1, . . . , n can be calculated
in O(n) time.

Proof. Mi is recursively computable as follows. For the base case, if Xi = a for
some a ∈ Σ, then Mi = 0 if P 6= a and Mi = 1 if P = a. If Xi = X`Xr,
then Mi = M` + Mr + C(`, r). Hence we can compute Mi for all i = 1, . . . , n
recursively, in total of O(n) time. ut

What remains is how to calculate C(`, r) for all variables of type Xi = X`Xr.
For k = 0, . . . , m, consider the following pairs (uk, vk) where uk is the beginning
position in Xi, of the shortest suffix of Xl for which P [0 : m − 1 − k] is a
subsequence (or −∞ if such a suffix does not exist), and vk is the ending position
in Xi, of the shortest prefix of Xr for which P [m − k : m − 1] is a subsequence
(or ∞ if such a prefix does not exist), i.e., uk = |X`| − R(`, k) and vk = |X`| +
L(r,m − k) − 1 (see also Fig. 3 (Left)). Clearly uk and vk are monotonically
non-decreasing, that is, uk−1 ≤ uk < |X`| = um, and v0 = |X`| − 1 < vk ≤ vk+1

for k = 1, . . . , m − 1. When both 0 ≤ uk < |X`| and |X`| ≤ vk < |Xi| hold,
then (uk, vk) is a crossing subsequence occurrence of P in Xi. Note that neither
(u0, v0) nor (um, vm) are crossing occurrences. Let OccSS (`, r) = {(uk, vk) | k =
1, . . . ,m−1}. It is easy to see that every minimal crossing subsequence occurrence
of P in Xi must be an element of OccSS (`, r), and it remains to identify them.

Lemma 4. (uk, vk) ∈ OccSS (`, r) is a minimal occurrence if and only if @k′ ∈
{0, . . . , m} s.t. (uk, vk) 6= (uk′ , vk′), and uk ≤ uk′ and vk′ ≤ vk.

Proof. (=⇒) If for some k′ ∈ {0, . . . , m} s.t. (uk′ , vk′) 6= (uk, vk) we have uk ≤
uk′ and vk′ ≤ vk, then (uk, vk) cannot be a minimal occurrence by definition.

(⇐=) We show the contraposition. Assume (uk, vk) is not a minimal occur-
rence. If uk = −∞ (or resp. vk = ∞), then uk ≤ u0 = −∞ (resp. vm ≤ vk = ∞)
and from the monotonicity of uks and vks, we can choose k′ = 0 (resp. k′ = m).
If uk 6= −∞ and vk 6= ∞, there exist some occurrence (u, v) 6= (uk, vk) s.t.
uk ≤ u and v ≤ vk. If (u, v) is a crossing occurrence, then a minimal occurrence
(uk′ , vk′) can be chosen from OccSS (`, r) s.t. u ≤ uk′ and vk′ ≤ v. If it is not,
then v ≤ |Xl| − 1 or u ≥ |Xl|, and we can choose (u0, v0) or (um, vm). ut

Lemma 5. Consider (uk, vk) ∈ OccSS (`, r), and let K = {k′ | (uk, vk) =
(uk′ , vk′), k′ = 1, . . . , m − 1}, ks = min K and ke = max K. Then, (uk, vk)
is minimal if and only if uks−1 < uk and vk < vke+1.

Proof. From the monotonicity of uk and vk, and from Lemma 4, we have that
(uk, vk) is minimal if and only if

@k′ ∈ {0, . . . , m} s.t. (uk, vk) 6= (uk′ , vk′), (uk ≤ uk′) ∧ (vk′ ≤ vk)
⇐⇒ ∀k′ ∈ {0, . . . , m} s.t. (uk′ , vk′) 6= (uk, vk), (uk′ < uk) ∨ (vk < vk′)
⇐⇒ ((uks−1 < uk) ∨ (vk < vks−1)) ∧ ((uke+1 < uk) ∨ (vk < vke+1))
⇐⇒ (uks−1 < uk) ∧ (vk < vke+1). ut

Lemma 6. Given a pattern P of length m, an SLP T of size n, and L(i, j),
R(i, j) for i = 1, . . . , n, j = 0, . . . ,m, C(`, r) for all variables of form Xi = X`Xr,
can be computed in total of O(nm) time.

Proof. A pseudo-code of our algorithm which computes C(`, r) is shown in Al-
gorithm 1 (see also Fig. 3 (Right)). The time complexity is clearly O(m) for each
Xi = X`Xr, and hence O(nm) in total. The correctness is due to Lemma 5. ut

R(ℓ, k)

X
i

X
ℓ X

r

L(r, m k)

R(ℓ, k)

X
i

X
ℓ

X
r

L(r, m k)

rmin

L(r, m k

Fig. 3. (Left) If R(`, k) 6= ∞ and L(r, m − k) 6= ∞, there is a crossing subsequence
occurrence of P . P [0 : k− 1] is a subsequence of X`[|X`| −R(`, k) : |X`| − 1], and P [k :
m− 1] is a subsequence of Xr[0 : L(r, m− k)− 1]. (Right) Illustration of Algorithm 1.
When rmin > R(`, k) and L(r, m − k) < L(r, m − k − 1), then (|X`| − R(`, k), |X`|+
L(r, m− k)− 1) is a crossing minimal occurrence. We then update rmin← R(`, k) to
find the next crossing minimal occurrence.

Algorithm 1: Counting Minimal Crossing Subsequence Occurrences.
Input: SLP variable Xi = X`Xr, pattern P , auxiliary tables L, R.
Output: The number of minimal crossing subsequence occurrences C(`, r).

1 C ← 0 ; rmin ← R(`, 0) ;
2 for k ← 1 to m− 1 do
3 if rmin > R(`, k) and L(r, m− k) < L(r, m− k − 1) then
4 C ← C + 1; rmin ← R(`, k) ;

5 return C ;

Finally, we obtain the main result of this section.

Theorem 1. Given a pattern P of length m and an SLP T of size n represent-
ing text T , the number of minimal subsequence occurrences of P in T can be
calculated in O(nm) time.

Window Subsequence Matching. Cégielski et al. [3] introduced several
window-accumulated variants of subsequence pattern matching on compressed
texts. The principal problem is: Given an SLP T generating text T , a pattern
P , and non-negative integer w, count the number of minimal subsequence oc-
currences (u, v) of P in T such that v − u + 1 ≤ w.

Our algorithm for counting minimal occurrences can readily be extended to
this window-accumulated variant. See Algorithm 1. By simply adding “R(`, k)+
L(r,m − k) ≤ w” in the if-condition of line 3, we can solve the problem in the
same complexity O(nm). We remark that the other variants considered in [3]
can also be solved in the same complexity. Details are omitted due to lack of
space.

4 Don’t-Care Pattern Matching Problems on Compressed
Texts

In this section we show that the ideas of Section 3 can be extended to solve
pattern matching problems for patterns with fixed length don’t care (FLDC)
and variable length don’t care (VLDC) symbols, in the same complexity O(nm).

4.1 FLDC Pattern Matching on Compressed Texts

We can find substrings of Xi matching P , the same way as counting minimal
subsequence occurrences. If a subsequence P of T occurs in (i0, im−1) and im−1−
i0 + 1 = m, obviously the substring T [i0 : im−1], is equal to P .

The above idea can be extended to a pattern matching problem where the
pattern includes fixed length don’t care (FLDC) symbols. Let the symbol ‘◦’
denote a don’t care character that can match an arbitrary character in Σ. We
call P ∈ (Σ ∪ {◦})∗ an FLDC pattern. An FLDC pattern P of length m occurs
in string T at position i0, if T [i0 + i] = P [i] or P [i] = ◦ for all 0 ≤ i ≤ m − 1.

To count the occurrences of an FLDC pattern P using our window subse-
quence matching algorithms, we only need to count minimal subsequence oc-
currences of P that fit in a window of size |P | with the exception that ◦ can
match any single character. We can do this by simply modifying the base cases
of QL(i, j) and L(i, j) as follows: If Xi = a for some a ∈ Σ, then

QL(i, j) =

{
1 if j < m and (P [j] = a or P [j] = ◦),
0 otherwise.

L(i, j) =


0 if j = m,

1 if j = m − 1 and (P [j : m − 1] = a or P [j : m − 1] = ◦),
∞ otherwise.

The base cases of QR(i, j) and R(i, j) should be modified similarly as well.

4.2 VLDC Pattern Matching on Compressed Texts

Let the symbol ‘?’ denote a variable-length don’t care character that can match
an arbitrary string in Σ∗. We call P ∈ (Σ ∪ {?})∗ a variable-length don’t care
(VLDC) pattern. In the sequel, we only consider VLDC patterns that start and
end with ?, and the ?’s do not occur consecutively. Consider any VLDC pattern
P = ?s1 ? s2 ? · · · ? sm′?, where each sj ∈ Σ+. The length of P is m =

∑m′

j=1 |sj |.
Each sj is called the j-th segment of P . VLDC pattern P is said to match a
string T ∈ Σ∗ if there exist indices 0 ≤ i0 < i0 + |s1| ≤ i1 < i1 + |s2| ≤ · · · <
im′−1 + |sm′ | ≤ |T | − 1 such that s1 = T [i0 : i0 + |s1| − 1], . . . , sm′ = T [im′−1 :
im′−1 + |sm′ | − 1]. The pair (i0, im′−1 + |sm′ | − 1) is called an occurrence of
VLDC pattern P in T . An occurrence (u, v) of VLDC pattern P in T is minimal
if neither (u + 1, v) nor (u, v − 1) is an occurrence of P in T . Note that if each

segment is a single character, then the above notion is equivalent to that of
subsequences.

In what follows, we present how to compute minimal occurrences of a VLDC
pattern in an SLP-compressed text. We will extend the notion of the auxiliary
tables L, R, QL, and QR to cope with VLDC pattern matching. In so doing, we
firstly introduce some new notion.

For any Xi = X`Xr and sj , let

Occ‡(Xi, sj) ={
k

∣∣∣∣∣ X`[|X`| − k : |X`| − 1] = sj [0 : k − 1],
Xr[0 : |sj | − k − 1] = sj [k : |sj | − 1], k = 1, . . . , min{|sj | − 1, |X`|}

}
.

Namely, values in Occ‡(Xi, sj) correspond to lengths of overlap with X`, for
all crossing substring occurrences of sj in Xi. We can compute Occ‡(Xi, sj) for
all i = 1, . . . , n, j = 1, . . . ,m′ in total of O(nm) time and space, as follows:
Let h be the length of the longest segment of P . We decompress the prefix and
suffix of length h of each variable Xi, i.e., we compute strings Ai = Xi[|Xi| −
min{h, |Xi|} : |Xi| − 1] and Bi = Xi[0 : min{h, |Xi|} − 1]. This can be done
in total of O(nm) time and space. Let Xi = X`Xr. We can then compute
Occ‡(Xi, sj) in O(|sj |)-time by using any standard linear-time pattern matching
algorithm (e.g. [7]) for text A`Br and pattern sj . Moreover, Occ‡(Xi, sj) forms
a single arithmetic progression [11], and can thus be represented as the first
element, the last element, and the number of elements, which require only O(1)
space. Overall it takes O(nm) time and space to compute Occ‡(Xi, sj) for all
i = 1, . . . , n, j = 1, . . . , m′.

LCP(Xr, sj, k + |Xℓ|)k

Xi

Xℓ

Xr

sj

|Xℓ|

LCP(Xi, sj, k)

Fig. 4. Illustration of the recursion for
LCP(Xi, sj , k). If LCP(`, j, k) = |X`|, then
LCP(i, j, k) = |X`|+ LCP(r, j, k + |X`|).

Let LCP(Xi, sj , k) denote the
length of the longest common pre-
fix of Xi and sj [k : |sj | − 1]. We
can also compute LCP(Xi, sj , k) in
O(nm) time and space for all i =
1, . . . , n, j = 1, . . . , m′, k = 0, . . . , |sj |,
by the following recursion: For the
base case, if Xi = a for some a ∈ Σ,
then LCP(Xi, sj , k) = 0 if Xi 6= sj [k],
and LCP(Xi, sj , k) = 1 if Xi = sj [k].
If Xi = X`Xr, then

LCP(Xi, sj , k) =

{
|X`| + LCP(Xr, sj , k + |X`|) if LCP(X`, sj , k) = |X`|,
LCP(X`, sj , k) otherwise.

Let LCS (Xi, sj , k) denote the length of the longest common suffix of Xi and
sj [0 : |sj |−k−1]. LCS (Xi, sj , k) can also be computed similarly in O(nm) time
and space.

For any VLDC pattern P = ?s1 ? s2 ? · · · ? sm′?, we define a sub-pattern
segsubL(P, j, k, q) of P , for j = 1, . . . ,m′ + 1, k = 0, . . . , |sj | − 1, q = 0, . . . , m′ −

j + 1, as follows:

segsubL(P, j, k, q) =


ε if q = 0 or j > m′,

?sj ? · · · ? sj+q−1? if q > 0, j ≤ m′, k = 0,

sj [k : |sj | − 1] ? · · · ? sj+q−1? if q > 0, j ≤ m′, k > 0.

Let QL(i, j, k) denote the maximum number of segments in the sub-patterns
segsubL(P, j, k, q) that match val(Xi), i.e.,

QL(i, j, k) = max{q | segsubL(P, j, k, q) matches val(Xi)}.

Also, we define L(i, j, k) as the length of the shortest prefix of val(Xi) that
matches the sub-pattern giving QL(i, j, k), i.e.,

L(i, j, k) = min{p | segsubL(P, j, k, QL(i, j, k)) matches Xi[0 : p − 1]}

We define QR(i, j, k) and R(i, j, k) similarly, but be careful that segsubR(P, j, k, q)
for j = 0, . . . , m′, k = 0, . . . , |sj | − 1, q = 0, . . . , j is defined as follows:

segsubR(P, j, k, q) =


ε if q = 0 or j = 0,

?sj−q+1 ? · · · ? sj? if q > 0, j > 0, k = 0,

?sj−q+1 ? · · · ? sj [0 : |sj |−k−1] if q > 0, j > 0, k > 0.

Lemma 7. Given an SLP T and VLDC pattern P = ?s1 ? · · ·?sm′?, QL(i, j, k)
(resp. QR(i, j, k)) and L(i, j, k) (resp. R(i, j, k)) can be also computed in O(nm)
time and space for all i = 1, . . . , n, j = 1, . . . ,m′ + 1 (resp. j = 0, . . . , m′) and
k = 0, . . . , |sj | − 1.

Proof. QL(i, j, k) and L(i, j, k) can be defined recursively as follows. For the base
case, Xi = a, (a ∈ Σ), then

QL(i, j, k) =

{
1 if 1 ≤ j ≤ m′ and k = |sj | − 1 and sj [|sj | − 1] = a,

0 otherwise.

L(i, j, k) =

{
1 if QL(i, j, k) > 0,

0 otherwise.

If Xi = X`Xr, |sj | − k > |X`| and k > 0, then

QL(i, j, k) =

{
QL(r, j, k + |X`|) if LCP(X`, sj , k) = |X`|,
0 if LCP(X`, sj , k) < |X`|.

(3)

L(i, j, k) =

{
|X`| + L(r, j, k + |X`|) if QL(i, j, k) > 0,

0 if QL(i, j, k) = 0.
(4)

(See also Fig 5 (Left).)

k |Xℓ|

Xi

Xℓ

Xr

sj

segsubL(P, j, k + |Xℓ|, Q
L(r, j, k + |Xℓ|))

matches Xr

Occ (i,)segsubL(P, j, k, QL(ℓ, j, k))

matches Xℓ

segsubL(P, , , QL(r, ,))

matches Xr

k

Xi

Xℓ Xr

sj sj

L(ℓ, j, k) L(r, ,)

Fig. 5. (Left) Illustration of Equations (3) and (4) of Lemma 7. If |sj | − k > |X`|
and LCP(i, j, k) = |X`|, then QL(i, j, k) = QL(r, j, k + |X`|) and L(i, j, k) = |X`| +
L(r, j, k + |X`|). (Right) Illustration of Equation (5) of Lemma 7. j′ and k′ can be
computed in O(1) time. Then, QL(i, j, k) and L(i, j, k) can be also computed in O(1)
time. Since sj′ and sj′−1 cannot overlap, k′ must satisfy k′ + L(`, j, k) ≤ |X`|.

If Xi = X`Xr and, |sj | − k ≤ |X`| or k = 0, then let j′ = j + QL(`, j, k)
and k′ = max{x | x ∈ Occ‡(Xi, sj′) ∪ {0}, x + L(`, j, k) ≤ |X`|}. QL(i, j, k)
and L(i, j, k) can be computed as follows: If k = 0 or QL(`, j, k) > 0, then
QL(i, j, k) = QL(`, j, k) + QL(r, j′, k′) and

L(i, j, k) =

{
|X`| + L(r, j′, k′) if QL(r, j′, k′) > 0,

L(`, j, k) if QL(r, j′, k′) = 0.
(5)

(See also Fig 5 (Right).)
Otherwise (k > 0 and QL(`, j, k) = 0), QL(i, j, k) = 0 and L(i, j, k) = 0.

j′ and k′ can be computed in O(1) time if QL(`, j, k), L(`, j, k) and Occ‡(Xi, sj′)
are already computed, and Occ‡ is represented as an arithmetic progression.
Hence QL(i, j, k) and L(i, j, k) for all i = 1, . . . , n, j = 1, . . . , m′, and k =
0, . . . , |sj |−1 can be computed in O(nm) time and space. QR(i, j, k) and R(i, j, k)
can be computed similarly using LCS (Xi, sj , k). ut

An occurrence (u, v) of VLDC pattern P is a crossing occurrence in Xi =
X`Xr if 0 ≤ u < |X`| and |X`| ≤ v < |Xi|. Let Mi and C(`, r) denote the
number of minimal occurrences and the number of minimal crossing occurrences
of VLDC pattern P in Xi = X`Xr, respectively.

Lemma 8. Given a VLDC pattern P of length m, an SLP T of size n, and
C(`, r) for all variables of form Xi = X`Xr, the values Mi for i = 1, . . . , n can
be calculated in O(n) time.

Proof. Mi can be defined recursively as follows. For the base case (Xi = a ∈
Σ), if P = ?a? then Mi = 1, otherwise Mi = 0. For the case Xi = X`Xr,
Mi = M` + Mr + C(`, r). Thus Mi can be computed for all i = 1, . . . , n, in O(n)
total time and space, if C(`, r) for all variables of form Xi = X`Xr are already
computed.

In what follows we describe how to compute C(`, r) for each Xi = X`Xr

in O(m) time. Algorithm 2 shows a pseudo-code of our algorithm to compute

C(`, r). For convenience, for i = 1, . . . , n, j = 0, . . . ,m′ and k ∈ Occ‡(Xi, sj) ∪
{0}, let

L(i, j, k) =


0 if j = 0,

L(i, j, k) if j > 0 and QL(i, j, k) = m′ − j + 1,

∞ otherwise.

R(i, j, k) =


0 if j = 0,

R(i, j, k) if j > 0 and QR(i, j, k) = j,

∞ otherwise.

Note that conceptually, the tables L and R for subsequences correspond to L
and R defined above, and when segsubL(P, j, k, m′ − j + 1) does not match
Xi, then L(i, j, k) = ∞, and when segsubR(P, j, k, j) does not match Xi, then
R(i, j, k) = ∞. Hence we can compute the number of crossing VLDC pattern
occurrences in a similar way to the case of subsequence patterns.

Care is taken for possible crossing occurrences when a segment is crossing Xi.
For any j and k > 0, only occurrences (|X`|−R(`, j, |sj |−k), |X`|+L(r, j, k)−1)
for which k ∈ Occ‡(Xi, sj) can be crossing occurrences of P in Xi (see also Fig. 6
(Left)). For j = 2, . . . ,m′ and k = 0, occurrences (|X`| − R(`, j − 1, 0), |X`| +
L(r, j, 0) − 1) can be crossing occurrences of P in Xi (see also Fig. 6 (Right)).
By checking these possible crossing occurrences in decreasing order of j and k,
we can compute the number of crossing occurrences as described in Algorithm 2.
Since the number of candidates is d = Σm′

j=1|Occ‡(Xi, sj)| + m′ + 1 = O(m), we
can compute all the crossing occurrences in a total of O(nm) time and space. ut

Occ (i, j)

R(ℓ, j, |sj| - k) L(r, j, k)

sjs1 sm

k
Xℓ

Xr
|sj k

Xi

R(ℓ, j L(r, j, 0)

sjs1 smsj

Xi

Xℓ Xr

Fig. 6. Illustration of Algorithm 2. (Left) If k ∈ Occ‡(Xi, sj), R(`, j, |sj | − k) 6= ∞
and L(r, j, k) 6=∞, then (|X`| −R(`, j, |sj | − k), |X`|+ L(r, j, k)− 1) is a candidate of
a crossing occurrence. (Right) If k = 0, R(`, j − 1, 0) 6= ∞ and L(r, j, 0) 6= ∞, then
(|X` −R(`, j − 1, 0), |X`|+ L(r, j, 0)− 1) is a candidate of a crossing occurrence.

Consequently, we obtain the main result of this section:

Algorithm 2: Counting Minimal Crossing VLDC Occurrences.
Input: SLP variable Xi = X`Xr, pattern P , auxiliary tables L(i, j, k), R(i, j, k).
Output: The number of minimal crossing VLDC occurrences C(`, r).

1 d← 0 ; (R[0], L[0])← (R(`, m′, 0), 0) ;
2 for j ← m′ to 1 do

3 forall the k ∈ Occ‡(Xi, sj) in descending order do
4 d← d + 1; (R[d], L[d])← (R(`, j, |sj | − k),L(r, j, k)) ;

5 d← d + 1; (R[d], L[d])← (R(`, j − 1, 0),L(r, j, 0)) ;

6 C ← 0; rmin ← R[0] ;
7 for d′ ← 1 to d− 1 do
8 if rmin > R[d′] and L[d′] < L[d′ + 1] then
9 C ← C + 1; rmin ← R[d′] ;

10 return C ;

Theorem 2. Given a VLDC pattern P of length m and an SLP T of size n rep-
resenting text T , the number of minimal occurrences of P in T can be calculated
in O(nm) time.

Window VLDC Pattern Matching. This algorithm for VLDC patterns
can be also extended to window-accumulated problems by adding the condition
“R[d′] + L[d′] ≤ w”.

5 Conclusion

All algorithms we presented in this paper run in O(nm) time and space. A nat-
ural open problem is if this can be reduced further. Other open problems are
mixing variable and fixed length don’t care symbols, and constraining the min-
imum and maximum lengths of strings that variable-length don’t care symbols
can match.

Acknowledgments

This work was supported by KAKENHI 22680014.

References

1. Baeza-Yates, R.A.: Searching subsequences. Theoretical Computer Science 78(2),
363–376 (1991)

2. Baturo, P., Rytter, W.: Compressed string-matching in standard sturmian words.
Theoretical Computer Science 410(30–32), 2804–2810 (2009)

3. Cégielski, P., Guessarian, I., Lifshits, Y., Matiyasevich, Y.: Window subsequence
problems for compressed texts. In: Proc. CSR 2006. LNCS, vol. 3967, pp. 127–136
(2006)

4. Claude, F., Navarro, G.: Self-indexed text compression using straight-line pro-
grams. In: Proc. MFCS 2009. LNCS, vol. 5734, pp. 235–246 (2009)

5. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Proc. STACS 2009.
pp. 529–540 (2009)

6. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

7. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

8. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data
Compression Conference 1999. pp. 296–305. IEEE Computer Society (1999)

9. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: MFCS
2006. LNCS, vol. 4162, pp. 681–692 (2006)

10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

11. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Proc. CPM 1997. LNCS, vol. 1264,
pp. 1–11. Springer-Verlag (1999)

12. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Data Compression Conference 1994. pp. 244–253. IEEE
Computer Society (1994)

13. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with im-
plicit input. In: Proc. ICALP 2004. LNCS, vol. 3142, pp. 15–27 (2004)

14. Tiskin, A.: Faster subsequence recognition in compressed strings. J. Math. Sci.
158(5), 759–769 (2009)

15. Tiskin, A.: Towards approximate matching in compressed strings: Local subse-
quence recognition. In: Proc. CSR 2011 (2011), to appear

16. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

