
On-Line Construction of

Compact Directed Acyclic Word Graphs

Shunsuke Inenaga a,b Hiromasa Hoshino a Ayumi Shinohara a,b

Masayuki Takeda a,b Setsuo Arikawa a Giancarlo Mauri c

Giulio Pavesi c

aDepartment of Informatics, Kyushu University, Japan
bPRESTO, Japan Science and Technology Agency (JST)

cDepartment of Computer Science, Systems and Communication, University of
Milan-Biccoca, Italy

Abstract

Many different index structures, providing efficient solutions to problems related to
pattern matching, have been introduced so far. Examples of these structures are
suffix trees and directed acyclic word graphs (DAWGs), which can be efficiently con-
structed in linear time and space. Compact directed acyclic word graphs (CDAWGs)
are an index structure preserving some features of both suffix trees and DAWGs,
and require less space than both of them. An algorithm which directly constructs
CDAWGs in linear time and space was first introduced by Crochemore and Vérin,
based on McCreight’s algorithm for constructing suffix trees. In this work, we present
a novel on-line linear-time algorithm that builds the CDAWG for a single string as
well as for a set of strings, inspired by Ukkonen’s on-line algorithm for constructing
suffix trees.

Key words: pattern matching on strings, compact directed acyclic word graphs,
directed acyclic word graphs, suffix trees, on-line and linear-time algorithms

Email addresses: s-ine@i.kyushu-u.ac.jp (Shunsuke Inenaga),
hoshino@i.kyushu-u.ac.jp (Hiromasa Hoshino), ayumi@i.kyushu-u.ac.jp
(Ayumi Shinohara), takeda@i.kyushu-u.ac.jp (Masayuki Takeda),
arikawa@i.kyushu-u.ac.jp (Setsuo Arikawa), mauri@disco.uminib.it
(Giancarlo Mauri), pavesi@disco.uminib.it (Giulio Pavesi).

Preprint submitted to Elsevier Science 24 February 2004



1 Introduction

Several different string problems, like those deriving from the analysis of bio-
logical sequences, can be efficiently solved by means of a suitable index struc-
ture [11,12,16,10]. The most widely known and studied structure of this kind
seems to be suffix trees [36,30,6,34,27,33] perhaps because of their myriad ap-
plications [1]. For any string w the suffix tree of w requires only O(n) space,
and can be built in O(n) time for a fixed alphabet, where n is the length of w.
Although its theoretical space complexity is linear, much attention has been
devoted to reduction of the practical space requirement of the structure. This
has led to the introduction of more space-economical index structures like suf-
fix arrays [14,29], suffix cacti [25], compact suffix arrays [28], compressed suffix
arrays [15,31], and so on.

Blumer et al. [4] introduced directed acyclic word graphs (DAWG). In [9]
Crochemore pointed out that the DAWG of a string w is the smallest fi-
nite state automaton to recognize all suffixes of w. The smallest automaton
accepting all factors of a string w, which is a variant of the DAWG for w, was
also introduced in [4] and [9]. DAWGs are involved in several combinatorial
algorithms on strings [5,17,3,35], since they serve as indexes of the string,
as well as other index structures such as suffix tries and suffix trees. Some
relationship between suffix trees and DAWGs can be found in [2].

In this work, we focus our attention on compact directed acyclic word graphs
(CDAWGs) first introduced by Blumer et al. [5]. Crochemore and Vérin dis-
played an overview relationship among suffix tries, suffix trees, DAWGs, and
CDAWGs [13]. Suffix trees (resp. DAWGs) are the compacted (resp. mini-
mized) version of suffix tries, as shown in Fig. 1. Similarly, CDAWGs can be
obtained by either compacting DAWGs or minimizing suffix trees.

Not only in theory as stated above, but also in practice, do CDAWGs pro-
vide significant reductions of the memory space required by suffix trees and
DAWGs, as experimental results have shown [5,13]. In Bioinformatics a con-
siderable amount of DNA sequences has to be processed efficiently, both in
space and in time. Therefore, from a practical viewpoint, CDAWGs could also
play an important role in Bioinformatics.

The first algorithm to construct the CDAWG for a given string w was pre-
sented by Blumer et al. [4]. It once builds the DAWG of w, then removes every
node of out-degree one and modifies its edges accordingly, so that the resulting
structure becomes the CDAWG for w. It runs in liner time, but its main draw-
back is the construction of the DAWG as an intermediate structure, which
takes larger space. A solution to this matter was provided by Crochemore
and Vérin [13]: a linear-time algorithm to construct the CDAWG for a string

2



c
o

a

o

c
o
a

a

c

o

a

o

c

o

a

a

o

c

a
o

o

c

a
o

a

c

a a

Suffix Tree

CDAWG

DAWG

minimization

minimization compaction

compaction

Suffix Trie

o

c

a

o

o

c

a

o

a

c

a a

Fig. 1. Relationship among the suffix trie, the suffix tree, the DAWG, and the
CDAWG for string cocoa.

directly. Their algorithm is based on McCreight’s suffix tree construction al-
gorithm [30]. Both algorithms are off-line, that is, the whole input string has
to be known beforehand. Thus, the structure (suffix tree or CDAWG) has to
be rebuilt from scratch, when a new character is added to the input string.
Table 1 summarizes some properties of typical algorithms to construct index
structures. As seen there, a missing piece, which we have been looking for, is
an on-line algorithm for constructing CDAWGs.

In this paper, we present a new linear-time algorithm to directly construct
the CDAWG for a given string, which is based on Ukkonen’s suffix tree con-
struction algorithm [34]. Our algorithm is on-line: it processes the characters
of the input string from left to right, one by one, with no need to know the
whole string beforehand. Our algorithm would be more efficient than the one
in [13], in the sense that our algorithm allows us to update the input string.
Furthermore, we show that the algorithm can be easily applied to building the
CDAWG for a set of strings. Actually, the CDAWG for a set of strings can
be constructed by the algorithm given in [5] which compacts the DAWG for
the set. However, the drawback of this approach is that, when a new string is
added to the set, the DAWG has to be built from scratch. Instead, our algo-
rithm permits us the addition of a new string to the set. A previous version
of this work appeared in [23].

The rest of the paper is organized as follows. Section 2 is devoted to introduc-
tion of basic notation and equivalence relations on strings. In Section 4 we give

3



Index Algorithm linear time on-line multi strings

suffix tries Ukkonen [34]
√ √

suffix trees
Weiner [36]

McCreight [30]
Ukkonen [34]

√
√
√ √ √

DAWGs
Blumer et al. [4]
Crochemore [9]
Blumer et al. [5]

√
√
√

√
√
√ √

CDAWGs
Blumer et al. [5]

Crochemore and Vérin [13]

√
√

√

Table 1
Properties of algorithms to construct index structures.

formal definitions of suffix tries, suffix trees, DAWGs, and CDAWGs, based
on the equivalence relations on strings. The definitions give us a good ‘unified’
view for those index structures, revealing their relationship on the basis of the
equivalence relations. We dedicate Section 5 to recalling the on-line algorithm
to construct suffix tries given by Ukkonen in [34], which reminds us what an
on-line algorithm is like. Ukkonen’s on-line suffix tree construction algorithm
is also revisited in comparison to the suffix trie algorithm in Section 5. Sec-
tion 6 introduces our new on-line algorithm that constructs the CDAWG for
a given string. It is followed by Section 7 where it is shown that the CDAWG
for a set of strings can also be built by the algorithm of Section 6. We finally
conclude in Section 8.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Let x be a
string such that x = a1a2 · · · an where n ≥ 1 and ai ∈ Σ for 1 ≤ i ≤ n. The
length of x is n and denoted by |x|, that is, |x| = n. If n = 0, x is said to be
the empty string. It is denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}.

Strings x, y, and z are said to be a prefix, factor, and suffix of string w = xyz,
respectively. The sets of the prefixes, factors, and suffixes of a string w are
denoted by Prefix (w), Factor(w), and Suffix (w), respectively.

Let w be a string and |w| = n. The i-th character of w is denoted by w[i] for
1 ≤ i ≤ n, and the factor of w that begins at position i and ends at position
j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ n. For convenience, let w[i : j] = ε for

4



j < i.

For a set S of strings w1, w2, . . . , w�, let |S| denote the cardinality of S, namely,
|S| = �. We denote by ‖S‖ the total length of strings in S.

The sets of prefixes, factors, and suffixes of the strings in S are denoted by
Prefix (S), Factor(S), and Suffix (S), respectively.

Definition 1 Let S = {w1, . . . , wk} where wi ∈ Σ∗ for 1 ≤ i ≤ k and k ≥ 1.
We say that S has the prefix property iff wi /∈Prefix (wj) for any 1≤ i �=j≤ k.

3 Equivalence Relations on Strings

Let S ⊆ Σ∗. For any string x ∈ Σ∗, let Sx−1 = {u | ux ∈ S} and x−1S = {u |
xu ∈ S}.

Definition 2 Let w ∈ Σ∗. The equivalence relations ≡L
w and ≡R

w on Σ∗ are
defined by

x ≡L
w y ⇔ Prefix (w)x−1 = Prefix (w)y−1,

x ≡R
w y ⇔ x−1Suffix (w) = y−1Suffix (w).

The equivalence class of a string x ∈ Σ∗ with respect to ≡L
w (resp. ≡R

w) is
denoted by [x]Lw (resp. [x]Rw).

Note that all strings that are not in Factor(w) form one equivalence class under
≡L

w. This equivalence class is called the degenerate class. All other classes are
called non-degenerate. Similar arguments hold for ≡R

w.

Proposition 1 (Blumer et al. [5]) Let w ∈ Σ∗ and x, y ∈ Factor(w). If
x ≡L

w y, then either x is a prefix of y, or vice versa. If x ≡R
w y, then either x

is a suffix of y, or vice versa.

Definition 3 For any string x ∈ Factor(w),
w−→x (resp.

w←−x ) denotes the longest

member of [x]Lw (resp. [x]Rw). We call
w−→x (resp.

w←−x ) the representative of [x]Lw
(resp. [x]Rw).

What
w−→x (resp.

w←−x ) means intuitively is that
w−→x (resp.

w←−x ) is the string ob-
tained by extending x in [x]Lw (resp. [x]Rw) as long as possible. Each equivalence
class in ≡L

w (≡R
w) other than the degenerate class has a unique longest member.

More formally:

Proposition 2 (Inenaga et al. [21], Inenaga [18]) Let w ∈ Σ∗. For any

5



string x ∈ Factor(w), there uniquely exist strings α, β ∈ Σ∗ such that
w−→x = xα

and
w←−x = βx.

Example 1 Let w = coco. Then
w−→ε = ε,

w−→c =
w−→co = co,

w−→coc =
w−−→coco = coco,

w−→o = o, and
w−→oc =

w−→oco = oco.

Example 2 Let w = coco. Then
w←−ε = ε,

w←−c = c,
w←−o =

w←−co = co,
w←−oc =

w←−coc =

coc, and
w←−oco =

w←−−coco = coco.

Proposition 3 (Inenaga [18]) Let w ∈ Σ∗ and x ∈ Factor(w). Assume
w−→x = x. Then, for any y ∈ Suffix (x),

w−→y = y.

We are now introducing a new equivalence class derived from
w−→
(·) and

w←−
(·).

Definition 4 For any string x ∈ Factor(w), let
w←→x be the string βxα (α, β ∈

Σ∗) such that
w−→x = xα and

w←−x = βx.

What
w←→x = βxα implies is that:

(1) every time x occurs in w, it is preceded by β and followed by α.
(2) α and β are the longest strings satisfying (1).

Definition 5 Let x, y ∈ Σ∗. We write x ≡w y if,

(1) x, y ∈ Factor(w) and
w←→x =

w←→y , or
(2) x /∈ Factor(w) and y /∈ Factor(w).

The equivalence class of a string x ∈ Σ∗ with respect to ≡w is denoted by [x]w.

For any string x ∈ Factor(w),
w←→x is the unique longest member of [x]w, and

is called the representative of [x]w.

Example 3 Let w = coco. Then
w←→ε = ε,

w←→c =
w←→co =

w←→o = co, and
w←→coc =

w←−→coco =
w←→oc =

w←→oco = coco.

Lemma 1 (Blumer et al. [5]) The equivalence relation ≡w is the transitive
closure of the relation ≡L

w ∪ ≡R
w.

It follows from the lemma above that:

Corollary 1 For any string x ∈ Factor(w),

w←→x =

w−−→
(

w←−x ) =

w←−−
(

w−→x ).

6



Note that, for a string w ∈ Σ∗, |Factor(w)| = O(|w|2). For example, consider

string anbn. However, considering set S = {x | x ∈ Factor(w) and x =
w−→x },

we have |S| = O(|w|) for any w ∈ Σ∗. Similar arguments hold with
w←−x and

w←→x . The following lemma gives tighter upper-bounds.

Lemma 2 (Blumer et al. [4,5]) Assume that |w| > 1. The number of non-
degenerate equivalence classes in ≡L

w (or ≡R
w) is at most 2|w|−1. The number

of non-degenerate equivalence classes in ≡w is at most |w| + 1.

4 Index Structures for Text Strings

In this section, we recall four index structures, the suffix trie, the suffix tree,
the directed acyclic word graph (DAWG), and the compact directed acyclic
word graph (CDAWG) for a string w ∈ Σ∗ denoted by STrie(w), STree(w),
DAWG(w), and CDAWG(w), respectively. All these structures represent every
string x ∈ Factor(w). We define them as edge-labeled graphs (V,E) with
E ⊆ V × Σ+ × V where the second component of each edge represents its
label. We also define the suffix links of each index structure. Suffix links are
kinds of failure function often utilized for time-efficient construction of the
index structures [36,30,34,4,5,13].

4.1 Suffix Tries

Definition 6 STrie(w) is the tree (V,E) such that

V = {x | x ∈ Factor(w)},
E = {(x, a, xa) | x, xa ∈ Factor(w) and a ∈ Σ},

and its suffix links are elements of the set

F = {(ax, x) | x, ax ∈ Factor(w) and a ∈ Σ}.

Each string x ∈ Factor(w) has a one-to-one correspondence to a certain node
in STrie(w). STrie(coco) and STrie(cocoa) are displayed in Fig. 2 together
with their suffix links.

7



oc

o

c

c

o

o

oc

o

c

c

o

o

a

a

a

a

a

Fig. 2. STrie(coco) on the left, and STrie(cocoa) on the right. The solid arrows
represent the edges, while the dotted arrows denote the suffix links.

4.2 Suffix Trees

Definition 7 STree(w) is the tree (V,E) such that

V = {
w−→x | x ∈ Factor(w)},

E =


(

w−→x , aβ,
w−→xa)

∣∣∣∣∣∣∣
x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa


 ,

and its suffix links are elements of the set

F = {(
w−→ax,

w−→x ) | x, ax ∈ Factor(w), a ∈ Σ, and
w−→ax = a ·

w−→x }.

The node set of STree(w) is a subset of that of STrie(w), as seen in the
definitions. It means that a string in Factor(w) might be represented on an
edge in STree(w). In this case, we say that the string is represented by an
implicit node. Conversely, every string in the node set V of STree(w) is said
to be represented by an explicit node. For example, in STree(coco) of Fig. 3,
string c is represented by an implicit node, while string co is on an explicit
node.

STree(w) can be seen as the compacted version of STrie(w) with “
w−→
(·) opera-

tion”. See STrie(cocoa) in Fig. 2 and STree(cocoa) in Fig. 3.

Theorem 1 (McCreight [30]) Let w ∈ Σ∗ with |w| > 1. Let STree(w) =
(V,E). Then |V | ≤ 2|w| − 1 and |E| ≤ 2|w| − 2.

8



oc
o

c

c

o

o

o
c
o

c

c

o

o

a

a
a

a

a

Fig. 3. STree(coco) on the left, and STree(cocoa) on the right. The solid arrows
represent the edges, while the dotted arrows denote the suffix links.

4.3 DAWGs

Definition 8 DAWG(w) is the directed acyclic graph (V,E) such that

V = {[x]Rw | x ∈ Factor(w)},
E = {([x]Rw, a, [xa]Rw) | x, xa ∈ Factor(w) and a ∈ Σ},

and its suffix links are elements of the set

F = {([ax]Rw, [x]Rw) | x, ax ∈ Factor(w), a ∈ Σ, and [ax]Rw �= [x]Rw}.

The node [ε]Rw is called the source node of DAWG(w). A node of out-degree
zero is called a sink node of DAWG(w). DAWG(w) has exactly one sink node

for any w ∈ Σ∗. We define the length of a node [x]Rw by |
w←−x |.

As seen in the definition, each node of DAWG(w) is a non-degenerate equiva-
lence class with respect to≡R

w. In Fig. 4, one can see that nodes of STrie(cocoa)
are ‘merged’ in DAWG(cocoa) by the equivalence class under ≡R

w. In this
sense, DAWG(w) can be seen as the minimized version of STrie(w) with
“[(·)]Rw operation”.

Theorem 2 (Blumer et al. [4]) Let w ∈ Σ∗ with |w| > 1. Let DAWG(w) =
(V,E). Then |V | ≤ 2|w| − 1 and |E| ≤ 3|w| − 3.

9



o
c

o

c

o

o
c

o

c

o

a

a

a

Fig. 4. DAWG(coco) on the left, and DAWG(cocoa) on the right. The solid arrows
represent the edges, while the dotted arrows denote the suffix links.

4.4 CDAWGs

Definition 9 CDAWG(w) is the directed acyclic graph (V,E) such that

V = {[
w−→x ]Rw | x ∈ Factor(w)},

E =


([

w−→x ]R
w
, aβ, [

w−→xa]R
w
)

∣∣∣∣∣∣∣
x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa


 ,

and its suffix links are elements of the set

F =


([

w−→ax]R
w
, [

w−→x ]R
w
)

∣∣∣∣∣∣∣
x, ax ∈ Factor(w), a ∈ Σ,
w−→ax = a ·

w−→x , and [
w−→x ]R

w
�= [

w−→ax]R
w


 .

The node [
w−→ε ]Rw is called the source node of CDAWG(w). A node of out-degree

zero is called a sink node of CDAWG(w). CDAWG(w) has exactly one sink

node for any w ∈ Σ∗. We define the length of a node [
w−→x ]Rw by

∣∣∣∣
w←−−

(
w−→x )

∣∣∣∣ = |
w←→x |.

It follows from the definition that CDAWG(w) is the minimization of STree(w)
with “[(·)]Rw operation”. In fact, CDAWG(cocoa) in Fig. 5 can be obtained
by ‘merging’ the isomorphic subtrees in STree(cocoa). CDAWG(w) can also

be seen as the compaction of DAWG(w) with “
w−→
(·) operation”, as seen in

DAWG(cocoa) in Fig. 4 and CDAWG(cocoa).

Theorem 3 (Blumer et al. [5], Crochemore and Vérin [13])
Let w ∈ Σ∗ with |w| > 1. Let CDAWG(w) = (V,E). Then |V | ≤ |w| + 1 and
|E| ≤ 2|w| − 2.

10



oc
o

c
o

oc
o

c
o
a

a

a

Fig. 5. CDAWG(coco) on the left, and CDAWG(cocoa) on the right. The solid
arrows represent the edges, while the dotted arrows denote the suffix links.

5 General Idea of On-Line Construction Algorithms

5.1 On-Line Construction of Suffix Tries

In this section we recall the on-line algorithm to construct suffix tries given by
Ukkonen [34], which is so intuitive that one can understand the basic concept
of on-line algorithms.

For a string x ∈ Factor(w), let suf (x) denote the node reachable via the
suffix link of the node x. It derives from Definition 6 that suf (x) = y for
some y ∈ Factor(w) such that x = ay for some character a ∈ Σ. In case
that x = ε, let suf (ε) =⊥ where ⊥ is an auxiliary node called the bottom
node. We suppose that there exists edge (⊥, a, ε) for any character a ∈ Σ.
Assuming that the bottom node ⊥ corresponds to the inverse a−1 for any
character a ∈ Σ, edge (⊥, a, ε) is consistently defined as well as other edges
since a−1 · a = ε. The auxiliary node ⊥ allows us to formalize the algorithm
avoiding the distinction between the empty suffix and other non-empty suffixes
(in other words, between the root node and other nodes). We leave suf (⊥)
undefined.

Suppose we have STrie(w) with some w ∈ Σ∗. We now consider updating
STrie(w) to STrie(wa) with an arbitrary character a ∈ Σ. What is necessary
here is to insert suffixes of wa into STrie(w).

Definition 10 For an arbitrary string w ∈ Σ∗ and character a ∈ Σ, the
longest repeated suffix (LRS) of wa is the longest element of the set Factor(w)∩
Suffix (wa).

The LRS of string w is denoted by LRS (w).

Example 4 The LRS of string coco is co. The LRS of string cocoa is ε.

11



It is guaranteed that the LRS always exists for any string w ∈ Σ∗ since the
empty string ε belongs to the set Factor(w) ∩ Suffix (wa) for any character
a ∈ Σ.

Let w ∈ Σ∗ with |w| = n, and a ∈ Σ. Let u1, u2, . . . , un, un+1, un+2 be the
suffixes of string wa sorted in decreasing order of their lengths, that is, u1 = wa
and un+2 = ε. These suffixes are divided into the following two groups as
follows, by LRS (wa).

(1) u1, . . . , u� where u�+1 = LRS (wa).
(2) u�+1, . . . , un+2.

It follows from the definition of LRS (wa) that the suffixes in the group (2) are
already represented in STrie(wa). Therefore, there is no need to newly insert
any suffixes of the group (2) into STrie(w).

Let v1, . . . , vn+1 be the suffixes of w sorted in decreasing order of their lengths,
that is, v1 = w and vn+1 = ε. Notice that vka = uk for any k with 1 ≤ k ≤ n+1.
The on-line algorithm starts with inserting into STrie(w) the longest suffix u1

of wa, which is wa itself. To do so, the algorithm creates a new edge labeled
with a from the node v1 = w to a new node, which turns out to represent
wa = u1. It then focuses on the node that represents v2. Note that it is
feasible in constant time to move from node v1 to node v2 by using the suffix
link suf (v1). We then create a new edge (v2, a, u2), and the suffix link of node
u1 is connected to u2, namely, suf (u1) = u2. We continue this operation until
encountering LRS (wa) = u�+1, and the resulting structure is STrie(wa). The
node with respect to LRS (wa) = u�+1 is called the end point of STrie(wa).
This way suffix tries can be constructed in on-line fashion. However, since the
space requirement of STrie(w) is quadratic in |w|, this on-line algorithm does
not run in linear time.

Theorem 4 (Ukkonen [34]) Assume Σ is a fixed alphabet. For any string
w ∈ Σ∗, STrie(w) can be constructed on-line and in O(|w|2) time, using
O(|w|2) space.

On-line construction of STrie(cocoa) is illustrated in Fig. 6.

5.2 On-Line Construction of Suffix Trees

This section is devoted to recalling Ukkonen’s on-line algorithm to construct
suffix trees [34].

12



oc

o

c

c

o

o

a
oc

o

c

c

o

o

a

a

a

a

Σ Σ

oc

o

c

c

Σ

oc

o

Σ

c

ΣΣ
c co cocε

cocoacoco

Fig. 6. On-line construction of STrie(w) with w = cocoa.

5.2.1 Suffix Trees Redefined

For any string w, let STree ′(w) denote the tree obtained by removing all inter-
nal nodes of out-degree one from STree(w). STree ′(coco) and STree ′(cocoa)
are shown in Fig. 7. Actually, Ukkonen’s suffix tree construction algorithm [34]
builds STree ′(w), not STree(w), since STree ′(w) is suitable in on-line string-
processing scheme, as to be shown in the sequel.

To give a formal definition of STree ′(w), we introduce a relation Xw over Σ∗

such that

Xw = {(x, xa) | x∈Factor(w) and a∈Σ is unique such that xa∈Factor(w)},
and let ≡′L

w be the equivalence closure of Xw, i.e., the smallest superset of Xw

that is symmetric, reflexive, and transitive.

Proposition 4 (Inenaga [18]) For any string w ∈ Σ∗, ≡L
w is a refinement

of ≡′L
w, namely, every equivalence class under ≡′L

w is a union of one or more
equivalence classes in ≡L

w.

For a string x ∈ Factor(w), let
w

=⇒
x denote the longest string in the equivalence

class to which x belongs under the equivalence relation ≡′L
w.

Example 5 Let w = coco. Then
w

=⇒
ε = ε,

w
=⇒
c =

w
=⇒
co =

w
==⇒
coc =

w
===⇒
coco = coco,

and
w

=⇒
o =

w
=⇒
oc =

w
==⇒
oco = oco.

13



oc
o
c

c

o
o

o
c
o

c

c

o

o

a

a
a

a

a

Fig. 7. STree ′(coco) on the left, and STree ′(cocoa) on the right. The solid arrows
represent the edges, while the dotted arrows denote the suffix links.

Compare the above example with Example 1 for
w−→
(·).

Proposition 5 (Inenaga [18]) For any string x ∈ Σ∗,
w−→x is a prefix of

w
=⇒
x .

If
w−→x �=

w
=⇒
x , then

w−→x ∈ Suffix (w).

Proposition 6 (Inenaga [18]) If set Suffix (w)−{ε} satisfies the prefix prop-

erty,
w

=⇒
x =

w−→x for any string x ∈ Factor(w).

We are now ready to define STree ′(w).

Definition 11 STree ′(w) is the tree (V,E) such that

V = {
w

=⇒
x | x ∈ Factor(w)},

E =


(

w
=⇒
x , aβ,

w
=⇒
xa)

∣∣∣∣∣∣∣
x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ, and

w
=⇒
x �=

w
=⇒
xa


 ,

and its suffix links are elements of the set

F = {(
w

=⇒
ax,

w
=⇒
x ) | x, ax ∈ Factor(w), a ∈ Σ, and

w
=⇒
ax = a ·

w
=⇒
x }.

This definition is the same as the one obtained by replacing “
w−→
(·) operation”

with “

w
=⇒
(·) operation” in Definition 7. Therefore, it follows from Proposition 6

that:

Corollary 2 If Suffix (w)−{ε} has the prefix property, STree ′(w) = STree(w).

Even in case that the set Suffix (w) − {ε} does not have the prefix property,

14



w a
a aa yy y

Fig. 8. Illustration for the proof of Lemma 7.

STree ′(w$) is identical to STree(w$) where $ is a special character that occurs
nowhere in w.

As previously stated, Ukkonen’s algorithm constructs STree ′(w) since STree ′(w)
is suitable in on-line manner. The reasons are as follows.

Proposition 7 Let w ∈ Σ∗ and a ∈ Σ. Let z = LRS (w). Let y ∈ Suffix (z).

Assume
w−→y = y, and there uniquely exists a character a ∈ Σ such that ya ∈

Factor(w). Then,
wa−→y = ya.

Proof. Since y ∈ Suffix (z), ya ∈ Suffix (za). Because a is the only charac-
ter such that ya ∈ Factor(w), it is also the only character such that ya ∈
Factor(wa). Consequently we have Prefix (wa)(y)−1 = Prefix (wa)(ya)−1, which
implies that y ≡L

wa ya. It is clear that ya is the longest element of [ya]L
wa

= [y]L
wa

,

meaning that
wa−→ya =

wa−→y = ya. (See Fig. 8). �

This proposition implies that an explicit node of STree(w) may become im-
plicit in STree(wa). The maintenance of converting all of such explicit nodes
into implicit nodes would take quadratic time in aggregate. This causes diffi-
culty in updating STree(w) into STree(wa) in amortized constant time. How-
ever, we have the following proposition for STree ′(w).

Proposition 8 Let w ∈ Σ∗ and a ∈ Σ. Let z = LRS (w). Let y ∈ Suffix (z).

Assume
w

=⇒
y = y. Then

wa
=⇒
y = y for any a ∈ Σ.

Proof. From the assumption that
w

=⇒
y = y, there exist at least two distinct char-

acters b, c such that yb, yc ∈ Factor(w). It is obvious that yb, yc ∈ Factor(wa)

for any a ∈ Σ, and thus we have
wa
=⇒
y = y. �

According to this proposition, in converting STree ′(w) into STree ′(wa) we
do not need the maintenance that is required in converting STree(w) into
STree(wa) due to Proposition 7. This is why STree ′(w) is suitable for on-line
algorithm if we want it to run in linear time.

15



oc
o

c
c

o
o

Σ
coco

oc
o

c

c

o

o

a

aa

Σ

o
c
o
c

c

Σ
coc

oc
o

Σ
co

c

Σ
c

Σ
ε

oc
o

c

c

o

o

a

a
a

a

Σ
a
oc

o

c

c

o

o

a

a
a

a

Σ

oc
o

c

c

o

o

a

a

Σ

cocoa

Fig. 9. On-line construction of STree ′(w) with w = cocoa. The star represents the
active point for each step.

5.2.2 Ukkonen’s Algorithm

Informal Description of the Algorithm.

Unlike the case of suffix tries mentioned in Section 5.1, Ukkonen’s on-line
suffix tree construction algorithm runs in linear time.

Theorem 5 (Ukkonen [34]) Assume Σ is a fixed alphabet. For any string
w ∈ Σ∗, STree ′(w) can be constructed on-line and in O(|w|) time, using O(|w|)
space.

We here summarize Ukkonen’s suffix tree construction algorithm in the com-
parison with the previous suffix trie algorithm. Fig. 9 illustrates on-line con-
struction of STree ′(cocoa).

Focus on the update of STree ′(co) to STree ′(coc). Differently from that of
STrie(co) to STrie(coc), the edges leading to the leaf nodes are automatically
extended with the new character c in STree ′(coc). This is feasible by the idea
of so-called open edges.

See the first and second steps of the update of STree ′(coco) to STree ′(cocoa).
The gray star mark indicates the active point from which a new edge is created
in each step. After the new edge (co, a, coa) is inserted, the active point moves
to the implicit node for string o. In case of the suffix trie, it is possible to move
there by traversing the suffix link of node co. However, there is yet to be the
suffix link of node co in the suffix tree. Thereof, Ukkonen’s algorithm simulates
the traversal of the suffix link as follows: First, it goes up to the explicit parent

16



node ε of node co which already has its suffix link. After that, it moves to
the bottom node ⊥ via the suffix link of the root node, and then advances
along the path spelling out co. (Note that the string co corresponds to the
label of the edge the active point went up backward.) This way, in Ukkonen’s
algorithm the active point moves via ‘implicit’ suffix links. Since the suffix
links of leaf nodes are never utilized in Ukkonen’s algorithm, none of them are
created.

Formal Description of the Algorithm.

Ukkonen’s on-line suffix tree construction algorithm is based on the on-line
algorithm to build suffix tries recalled in Section 5.1. As stated in Definition 11,
an edge of STree ′(w) is labeled by a string α ∈ Factor(w). The key idea to
achieve a linear-space implementation of the suffix tree is to label each edge

(
w

=⇒
x , α,

w
==⇒
xα ) in STree ′(w) by (k, p), such that w[k : p] = α.

An implicit node y ∈ Factor(w) can be represented by an ordered pair (
w

=⇒
x , α)

of an explicit node
w

=⇒
x and a string α ∈ Factor(w) such that y =

w
=⇒
x · α. The

ordered pair (
w

=⇒
x , α) is called a reference pair for the implicit node y. Note that

explicit nodes can also be represented by reference pairs. There can be one or

more reference pairs for a node y. The reference pair (
w

=⇒
x , α) for y in which

|α| is minimized is called the canonical reference pair for y. The reference

pair can also be represented using the integers h, p, as (
w

=⇒
x , (h, p)) such that

w[h : p] = α.

Suppose we have STree ′(w) with some w ∈ Σ∗. We now consider updating
STree ′(w) to STree ′(wa) with an arbitrary character a ∈ Σ. What is necessary
here is to insert suffixes of wa into STree ′(w). The group (1) of the suffixes
of wa, mentioned in the previous section, can moreover be divided into two
sub-groups as follows, by LRS (w).

(1-a) u1, . . . , uk where uk+1 = LRS (w) · a.
(1-b) uk+1, . . . , u�.

We remark that all the suffixes of the group (1-a) are those represented by
the leaf nodes in STree ′(w). Note that, for any i with 1 ≤ i ≤ k, we have

w
=⇒
vi = vi and

wa
=⇒
ui = ui. Moreover, via = ui (see Section 5.1). This means that,

intuitively, every leaf node of STree ′(w) is also a leaf node in STree ′(wa). This
fact is crucial to Ukkonen’s algorithm in order that it is able to automatically
insert the suffixes in the group (1-a) into STree ′(wa), by means of open edges

which will be recalled below. Suppose that (
w

=⇒
x , α,

w
=⇒
xα) is an edge of STree ′(w)

17



where
w

=⇒
xα is a leaf node. Let p be the integer such that w[p : |w|] = α. Then

we actually implement the edge label by (p,∞), where its implication is “a
leaf node is always a leaf node.”. This way we need no explicit insertion of the
suffixes of w in the group (1-a).

For a suffix uj of group (1-b) where k + 1 ≤ j ≤ �, the location in STree ′(w)
from which uj is inserted is called the active point of uj in STree ′(w). Note
that the active point for uk+1 is the end point of STree ′(w). As well as the
case of on-line construction of suffix tries, we insert the suffixes uk+1, . . . , u� of
wa into STree ′(w) in decreasing order of their lengths. To do so, we focus on
the locations of the suffixes vk+1, . . . , v� of w from which a new edge labeled
by the new character a is created. Assume we are now inserting suffix uj into
STree ′(w) for some k +1 ≤ j ≤ �. There are the two following cases regarding
the active point.

(Case 1) The active point is on an explicit node vj . In this case,

w
=⇒
vj =

wa
=⇒
vj = vj .

Then a new edge (
wa
=⇒
vj , α,

wa
=⇒
vjα) is created, where α is a at the moment. Note

wa
=⇒
vjα =

wa
=⇒
vja = vja = uj. In order for the implementation of an open edge, the

edge is actually labeled by (n+1,∞), where |wa| = n+1 and wa[n+1] = a.

After that, the active point moves to the explicit node suf (
w

=⇒
vj ) =

w
=⇒
vj+1 =

vj+1, in order to insert the next suffix uj+1 of wa.
(Case 2) The active point is on an implicit node vj . In this case,

w
=⇒
vj �= vj but

wa
=⇒
vj = vj .

Let (
w

=⇒
x , α) be the canonical reference pair for the active point, namely,

w
=⇒
x ·α = vj. Focus on the edge (

w
=⇒
x , αβ,

w
==⇒
xαβ) with some non-empty string β.

The implicit node representing vj is located on this edge. The edge is then

replaced by (separated into) the edges (
wa
=⇒
x , α,

wa
=⇒
xα) and (

wa
=⇒
xα, β,

wa
==⇒
xαβ) where

wa
=⇒
xα = vj is a new explicit node. Then a new edge (

wa
=⇒
xα, γ,

wa
==⇒
xαγ) is created,

where γ = a at the moment. Note
wa

==⇒
xαγ =

wa
==⇒
vja = vja = uj. In order for the

implementation of an open edge, the edge is actually labeled by (n + 1,∞),
where |wa| = n + 1 and wa[n + 1] = a.

After that, we need to move to the (implicit or explicit) node correspond-
ing to vj+1, the next active point, but the table suf is yet to be computed

for the node
wa
=⇒
xα that has been created just now. Thus we once move to its

parent node
wa
=⇒
x for which suf (

wa
=⇒
x ) must have already been computed. Let

18



suf (
wa
=⇒
x ) =

wa
=⇒
y . Then

wa
=⇒
y is explicit. Note that

wa
=⇒
y · α = vj+1. We go down

from the node
wa
=⇒
y while spelling out α, to obtain the canonical reference

pair for the active point vj+1. The node vj+1 either is already, or will in this

step become, explicit. suf (
wa
=⇒
xα) = suf (

wa
=⇒
vj ) is connected to vj+1. This way

the algorithm ‘simulates’ the suffix-link-traversal of suffix tries.

A pseudo-code for Ukkonen’s algorithm is shown in Fig. 10. Function canonize
is a routine to canonize a given reference pair. Function check end point is one
that returns true if a given reference pair is the end point, and false otherwise.
Function split edge splits an edge into two, by creating a new explicit node at
the position to which the given reference pair corresponds.

6 On-Line Construction of CDAWGs

In this section we give an on-line algorithm to construct CDAWGs. In order to
achieve a linear-time algorithm, we shall need CDAWGs that are defined on

the basis of

w
=⇒
(·) rather than

w−→
(·), like in case of suffix trees recalled in Section 5.2.

6.1 CDAWGs Redefined

Definition 12 CDAWG ′(w) is the directed acyclic graph (V,E) such that

V = {[
w

=⇒
x ]Rw | x ∈ Factor(w)},

E =


([

w
=⇒
x ]Rw, aβ, [

w
=⇒
xa]Rw)

∣∣∣∣∣∣∣
x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ, and

w
=⇒
x �=

w
=⇒
xa


 ,

and its suffix links are elements of the set

F =


([

w
=⇒
ax]Rw, [

w
=⇒
x ]Rw)

∣∣∣∣∣∣∣
x, ax ∈ Factor(w), a ∈ Σ,

w
=⇒
ax = a ·

w
=⇒
x , and [

w
=⇒
x ]Rw �= [

w
=⇒
ax]Rw


 .

In Fig. 7 and 11, one can see that nodes of STree ′(cocoa) are ‘merged’ in
CDAWG ′(cocoa) by the equivalence class under≡R

w. In this sense CDAWG ′(w)
can be seen as the minimized version of STree ′(w) with “[(·)]Rw operation”.

19



Algorithm for on-line construction of STree ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes root and ⊥;
2 for j := 1 to m do create edge (⊥, (−j,−j), root);
3 suf (root) := ⊥;
4 (s, k) := (root , 1); i := 0;
5 repeat
6 i := i + 1;
7 (s, k) := update(s, (k, i));
8 until w[i] = $;

function update(s, (k, p)): pair of integers;
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p− 1), c) do
3 if k ≤ p− 1 then r := split edge(s, (k, p− 1)); /* implicit case. */
4 else r := s; /* explicit case. */
5 create node r′; create edge (r, (p,∞), r′);
6 if oldr �= nil then suf (oldr) := r;
7 oldr := r;
8 (s, k) := canonize(suf (s), (k, p− 1));
9 if oldr �= nil then suf (oldr) := s;

10 return canonize(s, (k, p));

function check end point(s, (k, p), c): boolean;
1 if k ≤ p then /* implicit case. */
2 let (s, (k′, p′), s′) be the w[k]-edge from s;
3 return (c = w[k′ + p− k + 1]);
4 else return (there is a c-edge from s);

function canonize(s, (k, p)): pair of node and integers;
1 if k > p then return (s, k); /* explicit case. */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 while p′ − k′ ≤ p− k do
4 k := k + p′ − k′ + 1; s := s′;
5 if k ≤ p then find the w[k]-edge (s, (k′, p′), s′) from s;
6 return (s, k);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′);
4 return r;

Fig. 10. Ukkonen’s on-line algorithm for constructing suffix trees.

The node [
w

=⇒
ε ]Rw is called the source node of CDAWG ′(w). A node of out-degree

zero is called a sink node of CDAWG ′(w). CDAWG ′(w) has exactly one sink

node for any w ∈ Σ∗, which is [
w

=⇒
w ]R

w
. We define the length of a node [

w
=⇒
x ]R

w
by

∣∣∣∣
w←−−

(
w

=⇒
x )

∣∣∣∣, namely, by the length of the representative of [
w

=⇒
x ]Rw. For examples, the

20



o
c
o
c
o

c
o

oc
o

c
o
a

a

a

Fig. 11. CDAWG ′(coco) on the left, and CDAWG ′(cocoa) on the right. The solid
arrows represent the edges, while the dotted arrows denote the suffix links.

length of the source node is 0 since

∣∣∣∣
w←−−

(
w

=⇒
ε )

∣∣∣∣ = |
w←−ε | = |ε| = 0, and the length of

the sink node is |w| since

∣∣∣∣
w←−−

(
w

=⇒
w )

∣∣∣∣ = |
w←−w | = |w|.

Definition 12 equals the one obtained by replacing “
w−→
(·) operation” with “

w
=⇒
(·)

operation” in Definition 9. Therefore, it follows from Proposition 6 that:

Corollary 3 If set Suffix (w) − {ε} has the prefix property, CDAWG ′(w) =
CDAWG(w).

Even if Suffix (w) − {ε} does not have the prefix property, CDAWG ′(w$) is
identical to CDAWG(w$) where $ is a special character that occurs nowhere
in w.

As well as the case with suffix trees, according to Propositions 8 and 7,
CDAWG ′(w) is more suitable to treat in on-line manner. This is why we
gave Definition 12 above, which our on-line algorithm actually constructs.

6.2 Our Algorithm

Informal Description of the Algorithm.

Before delving into the technical detail of the algorithm for on-line construc-
tion of CDAWGs, we informally describe how a CDAWG is built on-line.
See Fig. 12 that shows on-line construction of CDAWG ′(cocoa), in compar-
ison with Fig. 9 displaying on-line construction of STree ′(cocoa). Compare
CDAWG ′(co) and STree ′(co). While strings co and o are separately repre-
sented in STree ′(co), they are in the same node in CDAWG ′(co). The desti-
nation of any open edge of a CDAWG is all the same, the sink node. Open

21



Σ

c

ΣΣ

ε

oc
o

Σ

o
c
o
c
o

c
o

Σ

oc
o
c c

Σ

o
c
o

c
o

c
o
a

a

Σ

o

c
o

c
o
a

a

c
o
a

Σ

oc
o

c
o
a

a

Σ

oc
o

c
o
a

a

a

cocoa

cocococcoc

Fig. 12. On-line construction of CDAWG ′(w) with w = cocoa. The star mark
represents the active point for each step.

edges of a CDAWG are also automatically extended, as well as those of a suffix
tree (see CDAWG ′(coc) and CDAWG ′(coco)).

Focus on the first step of the update of CDAWG ′(coco) to CDAWG ′(cocoa).
String co there gets to be explicitely represented, and the active point is on im-
plicit node o. In case of the construction of STree ′(cocoa), edge (ε, ocoa, ocoa)
is split into two edges (ε, o, o) and (o, coa, ocoa), and then an open edge
(o, a, oa) is newly created (see Fig. 9). However, in case of the CDAWG, edge
(ε, ocoa, ocoa) is redirected to node co, and the label is simultaneously mod-
ified. Since strings co and o are equivalent under the equivalence relation
≡R

cocoa, they are merged into a single node in CDAWG ′(cocoa).

Formal Description of the Algorithm.

The algorithm presented in this section for on-line construction of CDAWGs
behaves similarly to Ukkonen’s on-line suffix tree construction algorithm. Let
w ∈ Σ∗ with |w| = n, and a ∈ Σ. Remember the set of the suffixes of w
are divided into three sub-groups as mentioned in Sections 5.1 and 5.2. Let
u1, u2, . . . , un, un+1, un+2 be the suffixes of string wa sorted in decreasing order
of their lengths, and let v1, v2, . . . , vn, vn+1 be the suffixes of string w sorted in
decreasing order of their lengths. Namely, via = ui for any i with 1 ≤ i ≤ n+1.

22



Assume u�+1 = LRS (wa) and vk+1 = LRS (w). The difference between on-line
suffix tree construction and on-line CDAWG construction is summarized as
follows:

- All the suffixes in the group (1) are equivalent under ≡R
wa. Thus all of them

are represented by the same node [
wa
=⇒
u1 ]R

wa
= [

wa
=⇒
u� ]

R
wa

, which is in fact the sink
node of CDAWG ′(wa). Namely, the destinations of the open edges are all the

same. Moreover,
w

=⇒
vi = vi and

wa
=⇒
ui = ui for any i with 1 ≤ i ≤ k. According

to these properties, we can generalize the idea of open edges as follows. For
any open edge (s, (p,∞), t) of CDAWG ′(w) where t denotes the sink node,
we actually implement it as (s, (p, e), t) where e is a global variable that
indicates the length of the current string, which is now |w| = n. When a
new character a is added after w, we can extend all open edges only with
increasing the value of e by 1. Thus e = n + 1 now. Obviously, it only takes
O(1) time.

- Recall (Case 2) regarding the position of the active point, mentioned in
Section 5.2. Assume the active point is now on the implicit node representing
a suffix vj of w in CDAWG ′(w). Then, there can be a suffix vh such that
h �= j and vh ≡R

wa vj. In such case, they become merged into a single

explicit node [
wa
=⇒
vj ]R

wa
, during the update of CDAWG ′(w) to CDAWG ′(wa).

The equivalence test is performed on the basis of Lemma 3 to be given in
the sequel.

- Consider two distinct strings x, y ∈ Factor(w) such that
w

=⇒
x = x and

w
=⇒
y = y.

Assume that x ≡R
w y, that is, they are represented by the same explicit

node [x]R
w

= [y]R
w

in CDAWG ′(w). Note that, however, x and y might not
be equivalent under ≡R

wa. This means that when CDAWG ′(w) is updated
to CDAWG ′(wa), then the node has to be separated into two nodes [x]Rwa

and [y]Rwa if x �≡R
wa y. Here we can assume |x| > |y| without loss of gen-

erality. Since this node separation happens only when x /∈ Suffix (wa) and
y ∈ Suffix (wa), we can do this procedure after we find the end point. The
condition of the node separation will be given later on, in Lemma 4.

Merging Implicit Nodes.

As mentioned above, two or more nodes implicit in CDAWG ′(w) can be
merged into one explicit node in CDAWG ′(wa). For a concrete example, we
show in Fig. 13 CDAWG ′(w) and CDAWG ′(wa) with w = abcabcab and
a = a. It can be observed that the implicit nodes for abcab, bcab, and cab

are merged into a single explicit node, and the implicit nodes for ab and b are
also merged into another single explicit node in CDAWG ′(wa). The examina-
tion of whether to merge implicit nodes can be done by testing the equivalence
of two nodes under the equivalence relation ≡R

wa. Here, we will often use the

23



b
a
b

c
a
b

c
a
b

c
a
b

c
a
b
a

c
a
b
a

c
a
b
a

a

aa

a a

b
a
b

c
a
b

c
a
b

c
a
b

c
a
b

c
a
b

c
a
b

c

a
b

b
a

c
a

b

b

c
a
b

a

a

a
c

c

a

a

b

b

b
a

c

c
a

b

b

b
a

c

c
a
b

b
a

Fig. 13. Comparison of conversions. One is from STree ′(w) to STree ′(wa), while the
other is from CDAWG ′(w) to CDAWG ′(wa) for w = abcabcab and a = a. The
black circles represent implicit nodes to be merged in the next step, connected by
implicit suffix links corresponding to the traversal by the active point.

notation of
w−→
(·) rather than

w
=⇒
(·) in order to refer to such a node which is implicit

in CDAWG ′(w) but becomes explicit in CDAWG ′(wa). The equivalence test
can be performed on the basis of the following proposition and lemma.

Proposition 9 Let w ∈ Σ∗. For any string x ∈ Factor(w), let z =
w←→x . Then,

x occurs within z exactly once.

Proof. By Corollary 1 we have
w←→x =

w←−−
(

w−→x ). Note that there exist strings α, β ∈

Σ∗ such that

w←−−
(

w−→x ) =
w←−xα = βxα. According to Proposition 2, strings α, β have

to be unique, which means that x can appear in w exactly once. �

Lemma 3 Let w ∈ Σ∗. For any strings x, y ∈ Factor(w) with y ∈ Suffix (x),

x ≡R
w y ⇔ [

w−→x ]Rw = [
w−→y ]Rw.

24



Σ

c

c

a

a

b

b

b
a

c

c
a

b

b

b
a

c

c
a
b

b
a

abcabcab abcabcaba

Σ

c

c

a

a

b

b

b
a

c

c
a

b

b

b
a

c

c
a
b

b
a

aa
a

Σ

c

c

a

a

b

b

b
a

c

c
a

b

b

b
a

c

c
a
b

b
a

a
a

aa

Σ

c

c

a

a

b

b

b
a

c
a

b

b

c

c
a
b

b
a

a

a
a

Σ

c

c

a

a

b

b

b
a

c
a

b

b

c
a
b

a

a

Σ

c

c

a

a

b

b

b
a

c
a

b

b

c
a
b

a

a

a

Σ

c

a
b

b
a

c
a

b

b

c
a
b

a

a

a

Σ

c

a
b

b
a

c
a

b

b

c
a
b

a

a

a

Fig. 14. Detailed conversion from CDAWG ′(w) to CDAWG ′(wa) for w = abcabcab
and a = a.

Proof. If x ≡R
w y, we have

w←−x =
w←−y by Definition 3. By Corollary 1, we know

w−−→
(

w←−x ) =

w←−−
(

w−→x ) and

w−−→
(

w←−y ) =

w←−−
(

w−→y ), which yield

w←−−
(

w−→x ) =

w←−−
(

w−→y ). Again by Definition 3,

we have [
w−→x ]R

w
= [

w−→y ]R
w
.

Conversely, suppose [
w−→x ]Rw = [

w−→y ]Rw. Recall that
w←→x =

w←−−
(

w−→x ) by Corollary 1 and
w←−−

(
w−→x ) is the unique longest member of [

w−→x ]R
w
. Similarly,

w←→y is the unique longest

member of [
w−→y ]Rw. Thus we have

w←→x =
w←→y . Let z =

w←→x =
w←→y . Then z = αxβ

for some strings α and β. Since y is a suffix of x, there exists a string δ such
that x = δy. We thus have z = αδyβ. This occurrence of y in z must be

the only one due to Proposition 9. Since
w←→y = αδyβ, we conclude that every

occurrence of y within w must be preceded by δ. Thus we have x ≡R
w y. �

For any string x ∈ Factor(w), the equivalence class [
w−→x ]Rw is the closest explicit

child of x in CDAWG(w). Thus we can test the equivalence of two suffixes
x, y of w with Lemma 3.

25



The matter is that, for a string x ∈ Suffix (w),
w−→x might not be explicit in

CDAWG ′(w). Namely, on the equivalence test, we might refer to the node

[
w

=⇒
x ]Rw instead of [

w−→x ]Rw. Nevertheless, it does not actually happen in our on-line
manner in which suffixes are processed in decreasing order of their length. See
CDAWG ′(w) shown on the right of Fig. 13, where w = abcabcab. The black
points are the implicit nodes the active point traverses in the next step via

‘implicit’ suffix links. In CDAWG ′(w), [

w
==⇒
cab]Rw = [

w
=⇒
ab]Rw = [

w
=⇒
w ]Rw. However, in

CDAWG ′(wa), cab �≡R
wa ab where a = a. See Fig. 14 in which the detail of the

update of CDAWG ′(w) to CDAWG ′(wa) is displayed. Notice that there is no
trouble on merging the implicit nodes.

Separating Explicit Nodes.

When CDAWG ′(w) is updated to CDAWG ′(wa), an explicit node [
w

=⇒
x ]Rw with

x ∈ Factor(w) might become separated into two explicit nodes [
wa
=⇒
x ]Rwa and

[
wa
=⇒
y ]Rwa if x /∈ Suffix (wa), y ∈ Suffix (x), and y ∈ Suffix (wa). It is inher-

ently the same ‘phenomenon’ as the node separation occurring in the on-line
construction of DAWGs [4]. Hereby we briefly recall the essence of the node
separation of DAWGs. For w ∈ Σ∗ and a ∈ Σ, ≡R

wa is a refinement of ≡R
w.

Furthermore, we have the following lemma.

Lemma 4 (Blumer et al. [4]) Let w ∈ Σ∗ and a ∈ Σ. Let z = LRS (wa).

For a string x ∈ Factor(w) assume x =
w←−x , that is, x is the representative of

[x]Rw. Then,

[x]Rw =




[x]Rwa ∪ [z]Rwa, if z ∈ [x]Rw and x �= z;

[x]Rwa, otherwise.

As stated in the above lemma, we need only to care about the node [x]Rw where
z ∈ [x]Rw and z = LRS (wa). Namely, at most one node can be separated when

a DAWG is updated with a new character. If z �=
w←−x , it is separated into two

nodes [x]Rwa and [z]Rwa when DAWG(w) is updated to DAWG(wa) (the former

case). If z =
w←−x , the node is not separated (the latter case). We examine

whether z =
u←−x or not by checking the length of

w←−x and z, as follows. Let

y ∈ Factor(w) be the string such that
w←−y · a = z. Note that there exists an

26



Σ

o
c

o

c

o

a

a

a

cocoa cocoao
Σ

o
c

o

a

a

o

c
oa a

c

Fig. 15. Update of DAWG(u) to DAWG(ua), where u = cocoa and a = o.

edge ([y]Rw, a, [x]Rw). Then,

z =
w←−x ⇔ length([y]R

w
) + |a| = length([x]R

w
), and

z �=
w←−x ⇔ length([y]R

w
) + |a| < length([x]R

w
).

If we define the length of the bottom node ⊥ by −1, no contradiction occurs
even in case that z = ε.

Fig. 15 shows the conversion from DAWG(w) to DAWG(wa) with w = cocoa

and a = o. The LRS of the string cocoao is o, therefore we focus on edge
([ε]Rw, o, [o]Rw). Since length([ε]Rw) + |o| = 1 < length([o]Rw) = 2, node [o]Rw is
separated into two nodes [co]R

wa
and [o]R

wa
, as seen in DAWG(wa) of Fig. 15.

Now we go back to the update of CDAWG ′(w) to CDAWG ′(wa). The test
of whether to separate a node when a CDAWG is updated can also be done
on the basis of Lemma 4 in a very similar way. Since only explicit nodes

can be separated, we only need to care about the case that z =
wa
=⇒
z where

z = LRS (wa).

Lemma 5 Let w ∈ Σ∗. Let z = LRS (w). Then, if z =
w

=⇒
z ,

w
=⇒
x =

w−→x for any
string x ∈ Factor(w).

Proof.

(1) When x ∈ Suffix (z). Then we have x ∈ Suffix (w) because z = LRS (w).

From the definition of

w
=⇒
(·), therefore, it is obvious that

w
=⇒
x = x. Since x ∈

Suffix (w),
w−→x = x from Proposition 3. Hence we have

w
=⇒
x =

w−→x .
(2) When x /∈ Suffix (z). We here have two sub-cases to consider:
(2-a) When x is a longer suffix of w than z. Since x occurs in w exactly once

and x ≡L
w xα for any non-empty string α, we have

w−→x = x. Moreover, x

27



is not followed by any character in w, which means that
w

=⇒
x = x. Thus we

have
w−→x =

w
=⇒
x .

(2-b) When x is not a suffix of w. If there exist two distinct characters a, b

such that xa, xb ∈ Factor(w), then
w

=⇒
x = x from the definition. Moreover,

x �≡L
w xa since some occurrences of x in w are followed by b. Therefore we

have
w−→x = x, and thus

w
=⇒
x =

w−→x .

Now assume there exists a unique non-empty string β such that
w

=⇒
x =

xβ. If xβ ∈ Suffix (w), then it falls into either Case (1) or (2-a). We now

consider the case that xβ /∈ Suffix (w). Since
w

=⇒
x = xβ, there exist two

distinct characters a, b such that xβa, xβb ∈ Factor(w), and it falls into
the former part of Case (2-b).

Consequently, we have
w

=⇒
x =

w−→x in any cases. �

This lemma guarantees that the representative of [
w

=⇒
x ]Rw is equal to

w←→x if the
preconditions in the lemma are satisfied. We can therefore execute the node

separation test as follows: If z �=
w←→x , it is separated into two nodes [x]R

wa

and [z]Rwa when CDAWG ′(w) is updated to CDAWG ′(wa) (the former case). If

z =
w←→x , the node [x]Rw is not separated (the latter case). We examine if z =

w←→x
or not by the length of

w←→x and z in the following way. Let y ∈ Factor(w) be

the string such that
w←→y ·α = z for some string α ∈ Factor(w). Note that there

exists an edge ([y]R
w
, α, [x]R

w
). Then,

z =
w←→x ⇔ length([y]R

w
) + |α| = length([x]R

w
), and

z �=
w←→x ⇔ length([y]Rw) + |α| < length([x]Rw).

Fig. 16 shows the update of CDAWG ′(w) to CDAWG ′(wa), where w = cocoa

and a = o. The LRS of the string cocoao is o, therefore we focus on edge

([
w

=⇒
ε ]R

w
, o, [

w
=⇒
o ]R

w
). Since length([

w
=⇒
ε ]R

w
) + |o| = 1 < length([

w
=⇒
o ]R

w
) = 2, node [

w
=⇒
o ]R

w

is separated into two nodes [
wa
=⇒
co]R

wa
and [

wa
=⇒
o ]R

wa
, as seen in CDAWG ′(wa) of

Fig. 16.

Pseudo-Code.

Our on-line algorithm to construct CDAWGs is described in Fig. 17 and
Fig. 18. Function extension returns the explicit child node of a given node
(implicit or explicit). Function redirect edge redirects a given edge to a given
node, with modifying the label of the edge accordingly. Function split edge is

28



Σ

oc
o

c
o
a

a

a

cocoa cocoao
Σ

oc
o

c
o
aa

a
o

oo

c
o
a
o

a
o

Fig. 16. Update of CDAWG ′(u) to CDAWG ′(ua), where u = cocoa and a = o.

the same as the one used in Ukkonen’s algorithm of Fig. 10, except that it also
computes the length of nodes. Function separate node separates a given node
into two, if necessary. It is essentially the same as the separation procedure
for DAWG(w) given by Blumer et al. [4], except that implicit nodes are also
treated.

Complexity of the Algorithm.

Theorem 6 Assume Σ is a fixed alphabet. For any string w ∈ Σ∗, the pro-
posed on-line algorithm to construct CDAWG ′(w) runs in O(|w|) time.

Proof. The linearity proof is in a sense the combination of that for the on-
line algorithm for DAWGs [4] and that for the on-line algorithm for suffix
trees [34]. We divide the time requirement into two components, both turn
out to be linear. The first component consists of the total computation time
by canonize. The second component consists of the rest.

Let x ∈ Factor(w). We define the suffix chain started at x on w, denoted by
SCw(x), to be the sequence of (possibly implicit) nodes reachable via suffix
links from the (possibly implicit) node associated with x to the source node in
CDAWG ′(w), as in [4]. We define its length by the number of nodes contained
in the chain, and let |SCw(x)| denote it. Let k1 be the number of iterations of
the while loop of update and let k2 be the number of iterations in the repeat-
until loop in separate node, when CDAWG(w) is updated to CDAWG(wa). By
a similar argument as in [4], it can be derived that |SCwa(wa)| ≤ |SCw(w)| −
(k1 +k2)+2. Initially |SCw(w)| = 1 because w = ε, and then it grows at most
two (possibly implicit) nodes longer in each call of update. Since |SCw(w)|
decreases by an amount proportional to the sum of the number of iterations
in the while loop and in the repeat-until loop on each call of update, the second
time component is linear in the length of the input string.

For the analysis of the first time component we have only to consider the

29



Algorithm for on-line construction of CDAWG ′(w$)
in alphabet Σ = {w[−1], w[−2], . . . , w[−m]}.
/* $ is the end-marker appearing nowhere in w. */
1 create nodes source, sink , and ⊥;
2 for j := 1 to m do create a new edge (⊥, (−j,−j), source);
3 suf (source) := ⊥;
4 length(source) := 0; length(⊥) := −1;
5 e := 0; length(sink) := e;
6 (s, k) := (source, 1); i := 0;
7 repeat
8 i := i + 1; e := i; /* e is a global variable. */
9 (s, k) := update(s, (k, i));

10 until w[i] = $;

function update(s, (k, p)): pair of node and integers;
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 c := w[p]; oldr := nil;
2 while not check end point(s, (k, p− 1), c) do
3 if k ≤ p− 1 then /* implicit case. */
4 if s′ = extension(s, (k, p− 1)) then
5 redirect edge(s, (k, p− 1), r);
6 (s, k) := canonize(suf (s), (k, p− 1));
7 continue;
8 else
9 s′ := extension(s, (k, p− 1));

10 r := split edge(s, (k, p− 1));
11 else /* explicit case. */
12 r := s;
13 create edge (r, (p, e), sink);
14 if oldr �= nil then suf (oldr) := r;
15 oldr := r;
16 (s, k) := canonize(suf (s), (k, p− 1));
17 if oldr �= nil then suf (oldr) := s;
18 return separate node(s, (k, p));

Fig. 17. Main routine, function update, and function check end point of the
on-line algorithm to construct CDAWGs.

number of iterations in the while loop in canonize. By considering the calls
of canonize executed in the while loop in update, it results in that the total
number of the iterations is linear (by the same argument as in [34]). Thus we
shall consider the number of iterations of the while loop in canonize called in
separate node. There are two cases to consider:

(1) When the end point is on an implicit node. Then the computation in
canonize takes only constant time.

(2) When the end point is on an explicit node. Let z be the LRS of w, which
corresponds to the end point. Consider the last edge in the path spelling
out z from the source node to the explicit node, and let the length of
its label be k (≥ 1). The total number of iterations of the while loop of
canonize in the call of separate node is at most k. Since the value of k
increases at most by 1 each time a new character is scanned, the time

30



function extension(s, (k, p)): node;
/* (s, (k, p)) is a canonical reference pair. */
1 if k > p then return s; /* explicit case. */
2 find the w[k]-edge (s, (k′, p′), s′) from s;
3 return s′;

function redirect edge(s, (k, p), r);
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 replace the edge by edge (s, (k′, k′ + p− k), r);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the w[k]-edge from s;
2 create node r;
3 replace the edge by (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′);
4 length(r) := length(s) + (p− k + 1);
5 return r;

function separate node(s, (k, p)): pair of node and integer;
1 (s′, k′) := canonize(s, (k, p));
2 if k′ ≤ p then return (s′, k′); /* implicit case. */
3 /* explicit case. */
4 if length(s′) = length(s) + (p− k + 1) then return (s′, k′);
5 create node r′ as a duplication of s′ with the out-going edges;
6 suf (r′) := suf (s′); suf (s′) := r′;
7 length(r′) := length(s) + (p− k + 1);
8 repeat
9 replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);

10 (s, k) := canonize(suf (s), (k, p− 1));
11 until (s′, k′) �= canonize(s, (k, p));
12 return (r′, p + 1);

Fig. 18. Other functions for the on-line algorithm to construct CDAWGs. Since
function check end point and function canonize used here are identical to those
shown in Fig. 10, they are omitted.

requirement of the while loop of canonize in separate node is bounded by
the total length of the input string.

As a result of the above discussion, we can finally conclude that the first and
second components take overall linear time. �

7 Construction of CDAWGs for a Set of Strings

In the previous chapters we discussed on-line construction of index structures
for a single string w ∈ Σ∗. On the other hand, we now consider such case that
we are given a set S of strings as an input. The suffix trie, suffix tree, DAWG,
and CDAWG for S can all be well-defined. Any index structure for S must
represent all strings in Factor(S).

Blumer et al. [5] introduced DAWGs for a set of strings, and presented an algo-

31



rithm that builds DAWG(S) in O(‖S‖) time. They also introduced CDAWGs
for a set of strings. Their algorithm for construction of CDAWG(S) runs in
linear time in the input size (namely, in O(‖S‖) time), but not in time linear
in the output size because it first builds DAWG(S) and then converts it to
CDAWG(S) by deleting internal nodes of out-degree one and concatenating
their edges accordingly. Kosaraju [26] introduced the suffix tree for a set S of
strings, often referred to the generalized suffix tree for S. A slight modifica-
tion of Ukkonen’s algorithm recalled in Section 5.2 is capable of constructing
STree ′(S) in O(‖S‖) time.

In this section, we give the first algorithm which builds CDAWG ′(S) in O(‖S‖)
time, and directly. Let S = {w1, w2, . . . , wk}, where k = |S|. Then we consider
set S ′ = {wi$i | wi ∈ S and $i /∈ Factor(S) for any 1 ≤ i ≤ |S|}. Notice that
S ′ has the prefix property, and thus, CDAWG ′(S ′) = CDAWG(S ′) for any
S. CDAWG ′(S ′) can be constructed by a slight modification of the algorithm
proposed in the previous section. We use a global variable ei for each string
in S ′, where 1 ≤ i ≤ |S|, which indicates the ending position of the open
edges for each string. The set S ′ is input in the form of a single stream s =
w1$1w2$2 · · ·wk$k. Whenever we encounter an end-marker $i in the input, we
stop increasing the value of ei. Then we create the new (i + 1)-th sink node,
and start increasing the value of ei+1 each time a new character is scanned
until encountering $i+1. Hereby we have the following:

Theorem 7 Assume Σ is a fixed alphabet. For any set S of strings, the pro-
posed algorithm directly constructs CDAWG ′(S ′) on-line and in O(‖S ′‖) time,
using O(‖S ′‖) space.

Fig. 19 shows construction of CDAWG ′(S ′), where S ′ = {cocoa$1, cola$2}.

8 Conclusion

The compact directed acyclic word graph (CDAWG) of a string w is a space-
economical index structure that represents all factors of w. CDAWGs have so
far been studied in literature such as [5,13].

In this paper we presented an on-line linear-time algorithm for constructing
CDAWGs for a single string. The algorithm can easily be extended to con-
struction of CDAWGs for a set of strings, running in linear time with respect
to the total length of the strings in the set. A CDAWG can be obtained by
compacting the corresponding DAWG or minimizing the corresponding suffix
tree; however, our approach permits us to save time and space simultaneously,
since the CDAWG can be built directly. Moreover, in our on-line manner the
CDAWG for wa can be built simply by updating the CDAWG of w with the

32



Σ

oc
o

c
o
a

a

a
$1

$1

$1

$1

cocoa$1

o

o
a

a

a
$1

$1

$1

$1

Σ

c
o

c

cocoa$1,c

Σ

oc
o

c
o
a

a

a
$1

$1
$1

$1

cocoa$1,co

cocoa$1,col

Σ

oc
o

c
o
a

a

a
$1

$1
$1

$1
l

l

cocoa$1,cola

Σ

oc
o

c
o
a

a

a
$1

$1
$1

$1
l

l

a

a

cocoa$1,cola$2

Σ

oc
o

c
o
a

a

a

$1

$1
$1

$1

l

l

a

a

$2

$2

$2

$2

Fig. 19. Construction of CDAWG ′(S′) for S′ = {cocoa$1, cola$2}.

new character a, in contrast with Crochemore and Vérin’s off-line algorithm
in [13] which needs to reconstruct it from scratch.

There have been made further work on CDAWGs. In [20,22] a generic al-
gorithm to construct suffix tries, suffix trees, DAWGs, and CDAWGs was
considered. The CDAWG of a trie was introduced in [19], where the trie is
a tree structure representing a set of strings. An algorithm to construct the
CDAWG for a given trie was also given in that paper, which runs in time
proportional to the number of nodes in the trie. In [21], an on-line algorithm
that builds symmetric CDAWGs (SCDAWGs) was introduced. The SCDAWG
of a string w was first introduced in [5], which represents all factors of both
w and its reversed string. Moreover, a liner-time algorithm to construct and
maintain CDAWGs for a sliding window was given in [24]. An application of
CDAWGs for a sliding window is the prediction by partial matching (PPM)
style statistical data compression model [8,7].

Not only are CDAWGs attractive as an index structure, but also the underly-
ing equivalence relation is useful in data mining and machine discovery from
textual databases. In fact, the equivalence relation has played a central role in
supporting expert researchers working on evaluating and interpreting literary
knowledge mined from anthologies of classical Japanese poems [32].

33



References

[1] A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithm
on Words, volume 12 of NATO Advanced Science Institutes, Series F, pages 85–
96. Springer-Verlag, 1985.

[2] A. Apostolico and S. Lonardi. A speed-up for the commute between subword
trees and DAWGs. Information Processing Letters, 83(3):159–161, 2002.

[3] M. Baĺık. Implementation of DAWG. In Proc. The Prague Stringology Club
Workshop ’98 (PSCW’98), pages 26–35. Czech Technical University, 1998.

[4] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical
Computer Science, 40:31–55, 1985.

[5] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM,
34(3):578–595, 1987.

[6] M. T. Chen and J. Seiferas. Efficient and elegant subword tree construction.
In Combinatorial Algorithm on Words, volume 12 of NATO Advanced Science
Institutes, Series F, pages 97–107. Springer-Verlag, 1985.

[7] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts
for PPM. In Proc. Data Compression Conference ’95 (DCC’95), pages 52–61.
IEEE Computer Society, 1995.

[8] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and
partial string matching. IEEE Trans. Commun., 32(4):396–402, 1984.

[9] M. Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63–86, 1986.

[10] M. Crochemore. Reducing space for index implementation. Theoretial Computer
Science, 292(1):185–197, 2003.

[11] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

[12] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

[13] M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In
Structures in Logic and Computer Science, volume 1261 of Lecture Notes in
Computer Science, pages 192–211. Springer-Verlag, 1997.

[14] G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: PAT trees
and PAT arrays. Information retrieval: data structures and algorithms, pages
66–82, 1992.

[15] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proc. of 32nd ACM
Symposium on Theory of Computing (STOC’00), pages 397–406, 2000.

34



[16] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York, 1997.

[17] J. Holub and B. Melichar. Approximate string matching using factor automata.
Theoretical Computer Science, 249:305–311, 2000.

[18] S. Inenaga. Bidirectional construction of suffix trees. Nordic Journal of
Computing, 10(1):52–67, 2003.

[19] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Construction
of the CDAWG for a trie. In Proc. The Prague Stringology Conference ’01
(PSC’01), pages 37–48. Czech Technical University, 2001.

[20] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-line
construction of compact directed acyclic word graphs. Technical Report DOI-
TR-CS-183, Department of Informatics, Kyushu University, 2001.

[21] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-line
construction of symmetric compact directed acyclic word graphs. In Proc. of
8th International Symposium on String Processing and Information Retrieval
(SPIRE’01), pages 96–110. IEEE Computer Society, 2001.

[22] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Unification
of algorithms to construct index structures for texts. Technical Report DOI-
TR-CS-196, Department of Informatics, Kyushu University, 2001.

[23] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and
G. Pavesi. On-line construction of compact directed acyclic word graphs. In
Proc. 12th Annual Symposium on Combinatorial Pattern Matching (CPM’01),
volume 2089 of Lecture Notes in Computer Science, pages 169–180. Springer-
Verlag, 2001.

[24] S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. Compact directed acyclic
word graphs for a sliding window. In Proc. 9th International Symposium
on String Processing and Information Retrieval (SPIRE’02), volume 2476 of
Lecture Notes in Computer Science, pages 310–324. Springer-Verlag, 2002.

[25] J. Kärkkäinen. Suffix cactus: A cross between suffix tree and suffix array. In
Proc. 6th Annual Symposium on Combinatorial Pattern Matching (CPM’95),
volume 973 of Lecture Notes in Computer Science, pages 191–204. Springer-
Verlag, 1995.

[26] S. R. Kosaraju. Fast pattern matching in trees. In Proc. 30th IEEE Symp. on
Foundations of Computer Science, pages 178–183, 1989.

[27] S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice
and Experience, 29(13):1149–1171, 1999.

[28] V. Mäkinen. Compact suffix array - a space-efficient full-text index. Fundamenta
Infomaticae, 56(1-2):191–210, 2003.

[29] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

35



[30] E. M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262–272, 1976.

[31] K. Sadakane. Compressed text databases with efficient query algorithms based
on the compressed suffix array. In Proc. of 11th International Symposium on
Algorithms and Computation (ISAAC’00), volume 1969 of Lecture Notes in
Computer Science, pages 410–421. Springer-Verlag, 2000.

[32] M. Takeda, T. Matsumoto, T. Fukuda, and I. Nanri. Discovering characteristic
expressions from literary works. Theoretial Computer Science, 292(2):525–546,
2003.

[33] E. Ukkonen. Approximate string matching over suffix trees. In Proc. 4th
Annual Symposium on Combinatorial Pattern Matching (CPM’93), volume 684
of Lecture Notes in Computer Science, pages 228–242. Springer-Verlag, 1993.

[34] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[35] E. Ukkonen and D. Wood. Approximate string matching with suffix automata.
Algorithmica, 10(5):353–364, 1993.

[36] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual
Symposium on Switching and Automata Theory, pages 1–11, 1973.

36


