
Simple Linear-Time Off-Line Text Compression
by Longest-First Substitution

Ryosuke Nakamura1, Hideo Bannai1, Shunsuke Inenaga2, and Masayuki Takeda1,3

1 Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
2 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka 819-0395, Japan
3 SORST, Japan Science and Technology Agency (JST)

{r-naka, bannai, shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp

Abstract

We consider grammar based text compression with longest first substitution, where non-overlapping
occurrences of a longest repeating substring of the input text are replaced by a new non-terminal
symbol. We present a new text compression algorithm by simplifying the algorithm presented in [4].
We give a new formulation of the correctness proof introducing the sparse lazy suffix tree data
structure. We also present another type of longest first substitution strategy that allows better com-
pression. We show results of preliminary experiments comparing grammar sizes of the two versions
of the longest first strategy and the most frequent strategy.

1 Introduction

In this paper we consider text compression by longest first substitution (named LFS). Given a
string, we construct a context-free grammar by substituting new characters for the longest factors
that are repeating without overlapping. For example, for w = abaaabbababb$, we construct the
following grammar: S → BaaABA$; A → abb; B → ab, which generates only w. Bentley and
McIlroy [3] gave an algorithm for this compression scheme, but Nevill-Manning and Witten [7]
stated that it does not run in linear time. They also claimed the algorithm by Bentley and McIlroy
can be improved so as to run in linear time, but they only noted a too short sketch for how, which
is unlikely to give a shape to the idea of the whole algorithm.

In [4], details of an algorithm achieving linear time longest-first substitution were given. The
algorithm made extensive use of the suffix tree data structure [9]. However, the algorithm was too
complicated for practical implementations, and moreover, the correctness of the algorithm was not
easy to see. In this paper, we show a simplified algorithm for longest-first substitution which runs
in linear time. The new algorithm is based on the previous algorithm, and uses some properties
of suffix trees shown in the previous paper. This paper presents several new tricks and a new,
simplified formulation of the algorithm by introducing the sparse lazy suffix tree data structure.

Moreover, this paper deals with another type of longest-first text compression (named LFS2),
where we also consider repeating factors of the righthand of the existing production rules. This
method allows better compression since the total grammar size becomes smaller. For the running

string abaaabbababb$, we obtain the following grammar: S → BaaABA$; A → Bb; B → ab. This
paper presents the first algorithm that accomplishes LFS2 in linear time and space.

1.1 Related Work

It is well known that, given a string w, computing the smallest grammar that generates w is
NP-hard [8]. Thus, linear-time greedy strategies for text compression is of significant practical
importance. Larsson and Moffat [6] presented a linear-time algorithm called Re-pair. It recursively
substitutes non-terminal symbols for the factors of length 2 whose non-overlapping occurrences are
the most among the factors of length 2. This strategy is called the most frequent first substitution
(called MFFS). Apostolico and Lonardi [1] presented a text compression technique where factors
of the largest “area” are recursively replaced by non-terminal symbols. Here the area of a factor
refers to the product of the length of the factor by the number of its non-overlapping occurrences
in the input string. To the best of our knowledge, no linear-time algorithm for largest-area-first-
substitution based compression is known.

Figure 1 shows a table that compares the grammar sizes generated by MFFS, LFS, and LFS2.
The input texts files are from the Canterbury Corpus [2].

Size total grammar size
File (Bytes) MFFS LFS LFS2
alice29.txt 152090 38750 88333 45225
asyoulik.txt 125179 35245 74747 41755
cp.html 24603 8006 14559 7977
fields.c 11150 3535 6525 3307
grammar.lsp 3721 1597 2332 1431
kennedy.xls 1029744 165589 291536 166250
lcet10.txt 426754 84923 235112 103602
plrabn12.txt 481861 116128 276714 144078
ptt5 513216 42813 266040 47885
sum 38240 13023 20846 12103
xargs.1 4227 2096 2772 1906

Figure 1. Comparison of the grammar sizes generated by the greedy text compression
algorithms.

2 Preliminaries

2.1 Notations

Let Σ be a finite alphabet of symbols. We assume that Σ is fixed and |Σ| is constant. An element
of Σ∗ is called a string. Strings x, y, and z are said to be a prefix, factor, and suffix of string
w = xyz, respectively.

The length of a string w is denoted by |w|. The empty string is denoted by ε, that is, |ε| = 0.
Also, we assume that all strings end with a unique symbol $ ∈ Σ that does not occur anywhere else
in the strings. Let Σ+ = Σ∗\{ε}. The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|,

and the factor of a string w that begins at position i and ends at position j is denoted by w[i : j]
for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i : j] = ε for j < i, and w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|.
For any strings x,w, let BPw(x) denote the set of the beginning positions of all the occurrences of
x in w. That is, BPw(x) = {i | x = w[i : i + |x| − 1]}.

We say that strings x, y overlap in w if there exist integers i, j such that x = w[i : i + |x| − 1],
y = w[j : j + |y| − 1], and i ≤ j ≤ i + |x| − 1.

Let #occw(x) denote the possible maximum number of non-overlapping occurrences of x in w.
If #occw(x) ≥ 2, then x is said to be repeating in w. We abbreviate a longest repeating factor of w
to an LRF of w. Remark that there can exist more than one LRF for w.

Let Σ and Π be the set of terminal and non-terminal symbols, respectively, so that Σ∩Π = ∅. A
context free grammar G is a formal grammar in which every production rule is of the form A → v,
where A ∈ Π and v ∈ (Σ ∪ Π)∗. The length of production rule A → v, denoted |A| = |v|, is the
length of the string x ∈ Σ∗ derived from the production rule. The size of the production rule is the
number of terminal and non-terminal symbols v contains. Any non-terminal symbol A in G has |A|
positions. We denote A[1] = A and A[i] = • for any 1 < i ≤ |A|. Similarly, any string w ∈ (Σ∪Π)∗

has |w| positions and w[i] ∈ Σ ∪Π ∪ {•} denotes the symbol of the i-th position of w.

2.2 Data Structures

Our text compression algorithm uses a data structure based on suffix trees [9]. The suffix tree
of string w, denoted by STree(w), is defined as follows:

Definition 1 (Suffix Trees) STree(w) is a tree structure such that: (1) every edge is labeled by a
non-empty factor of w, (2) every internal node has at least two child nodes, (3) all out-going edge
labels of every node begin with mutually distinct symbols, and (4) every suffix of w is spelled out in
a path starting from the root node.

Assuming any string w terminates with the unique symbol $ not appearing elsewhere in w, there
is a one-to-one correspondence between a suffix of w and a leaf node of STree(w). It is easy to see
that the numbers of the nodes and edges of STree(w) are linear in |w|. Moreover, by encoding every
edge label x of STree(w) with an ordered pair (i, j) of integers such that x = w[i : j], each edge
only needs constant space. Therefore, STree(w) can be implemented with total of O(|w|) space.
Also, it is well known that STree(w) can be constructed in O(|w|) time (e.g. see [9]).

STree(w) for string w = ababa$ is shown in Figure 2. For any node v of STree(w), str(v) denotes
the string obtained by concatenating the labels of the edges in the path from the root node to node
v. The length of node v, denoted len(v), is defined to be |str(v)|. It is an easy application of the
Ukkonen algorithm [9] to compute the lengths of all nodes while constructing suffix trees. The leaf
node ` such that str(`) = w[i :] is denoted by leaf i, and i is said to be the id of the leaf. Every node
v of STree(w) except for the root node has a suffix link, denoted by suf (v), such that suf (v) = v′

where str(v′) is a suffix of str(v) and len(v′) + 1 = len(v). Linear-time suffix tree construction
algorithms (e.g., [9]) make extensive use of the suffix links.

A sparse suffix tree [5] of w ∈ Σ∗ is a kind of suffix tree which represents only a subset of the
suffixes of w. The sparse suffix tree of w ∈ (Σ ∪ Π)∗ represents a subset {w[i :] | w[i] ∈ Σ}. Let `
be the length of the LRFs of w. A reference node v of the sparse suffix tree of w ∈ (Σ ∪ Π)∗ is a
node such that len(v) ≥ ` + 1, and there is no node u such that str(u) is a proper prefix of str(v)
and len(u) ≥ ` + 1.

Our algorithm uses the following data structure.

1

5

3
2

4

6

a
b

a

$

$

$

$

$

a

a

a

b

b

b

$

Figure 2. STree(w) with w = ababa$. Solid arrows represent edges, and dotted arrows are
suffix links.

Definition 2 (Sparse Lazy Suffix Trees) A sparse lazy suffix tree (SLSTree) of string w ∈
(Σ∪Π)∗, denoted by SLSTree(w), is a kind of sparse suffix tree such that: (1) All paths from the root
node to the reference nodes coincide with those of the sparse suffix tree of w, and (2) Every reference
node v stores an ordered triple 〈min(v), max(v), card(v)〉 such that min(v) = minBPw(str(v)),
max(v) = maxBPw(str(v)), and card(v) =

∣∣BPw(str(v))
∣∣.

Proposition 1 For any string w ∈ Σ∗, SLSTree(w) can be obtained from STree(w) in O(|w|) time.

Proof. By a standard postorder traversal on STree(w), propagating the id of each leaf node. ¤

Since STree(w) can be constructed in O(|w|) time [9], we can build SLSTree(w) in total of O(|w|)
time.

3 Off-Line Compression by Longest-First Substitution

Given a text string w ∈ Σ∗, we here consider a greedy approach to construct a context-free
grammar which generates only w. The key is how to select a factor of w to be replaced by a
non-terminal symbol from Π. Here, we consider the longest-first-substitution approach where we
recursively replace as many LRFs as possible with non-terminal symbols.

Example. Let w = abaaabbababb$. At the beginning, the grammar is of the following simple form
S → abaaabbababb$, where the righthand of the production rule consists only of terminal symbols
from Σ. Now we focus on the righthand of S which has two LRFs aba and abb. Let us here
choose abb for being replaced by non-terminal A ∈ Π, and then we obtain the following grammar:
S → abaaAabA$; A → abb. The other LRF aba of length 3 is no longer present in the righthand
of S. Thus we focus on an LRF ab of length 2. Replacing ab by non-terminal B ∈ Π results in the
following grammar: S → BaaABA$; A → abb; B → ab. Since the righthand of S has no repeating
factor longer than 1, we are done.

Let w0 = w, and let wk denote the string obtained by replacing an LRF of wk−1 with a non-
terminal symbol Ak. LRF (wk−1) denotes the LRF of wk−1 that is replaced by Ak, namely, we
create a new production rule Ak → LRF (wk−1). In the above example, w0 = w = abaaabbababb$,
LRF (w0) = abb, A1 = A, w1 = abaaAabA$, LRF (w1) = ab, A2 = B, and w2 = BaaABA$.

Due to the property of the longest first approach, we have the following observation.

Observation 1 Let A1, . . . , Ak ∈ Π be the non-terminal symbols which replace LRF (w0), . . . ,
LRF (wk−1), respectively. For any 1 ≤ i ≤ k, the righthand of the production rule of Ai contains
none of A1, . . . , Ai−1.

3.1 Algorithm

In this section we show our algorithm which outputs a context free grammar which generates a
given string. Our algorithm heavily uses the SLSTree structure.

3.1.1 Finding LRF Using SLSTrees

Lemma 1 Suppose x is an LRF of wk represented by none of the nodes of SLSTree(wk). Then,
there exists another LRF y of wk that is represented by a node of SLSTree(wk) such that |x| = |y|
and #occwk

(y) ≥ #occwk
(x) = 2. Moreover, x is no longer present in wk+1 after the substitution

for y.

The above lemma implies that it suffices to consider the strings corresponding to the nodes of
SLSTree(wk) as candidates for LRF (wk).

After constructing SLSTree(w0) = SLSTree(w), we create a bin-sorted list of the internal nodes
of SLSTree(w) in the increasing order of their lengths. It can be done in linear time by a standard
traversal on SLSTree(w). We remark that a new internal node v may appear in SLSTree(wk) for
some k ≥ 1. However, we have that len(v) ≤ LRF (wk−1). Thus, we can maintain the bin-sorted
list by inserting node v in constant time .

Using SLSTree(wk), for any node v in the bin-sorted list it is easy to determine whether or not
str(s) is repeating. Let s1, . . . , s` be the children of s. If and only if max{max(si) | 1 ≤ i ≤
`} −min{min(sj) | 1 ≤ j ≤ `} ≥ len(s), str(s) is repeating. The following lemma can be shown in
a similar way as in [4].

Lemma 2 For any node s of SLSTree(wk−1) such that |LRF (wk)| ≤ len(s) ≤ |LRF (wk−1)|, it
takes amortized constant time to check whether or not str(s) is an LRF of wk.

In what follows we show our greedy strategy of selecting which occurrences of an LRF we replace
with a new non-terminal symbol.

The following lemma can be shown by a similar idea mentioned in [4].

Lemma 3 For any non-repeating factor x of wk, BPwk
(x) forms a single arithmetic progression.

Therefore, for any non-repeating factor x of wk, BPwk
(x) can be expressed by an ordered triple

consisting of minimum element minBPwk
(x), maximum element maxBPwk

(x), and cardinality∣∣BPwk
(x)

∣∣.
The following lemma is a direct adaptation from [4].

Lemma 4 Let s be any node of SLSTree(wk) that is at most as long as the LRFs of wk, and
let s1, . . . , s` be the children of s. Then BPwk

(str(s)) is a disjoint union of BPwk
(str(s1)), . . . ,

BPwk
(str(s`)), each forming a single arithmetic progression.

Lemma 5 Let s be the node of SLSTree(wk) such that str(s) is an LRF of wk, and s′ be any
child of s. Then, BP(str(s′)) contains at most two positions corresponding to non-overlapping
occurrences of str(s) in wk.

Proof. Assume for contrary that BP(str(s′)) contains three occurrences of str(s), and let them be
i1, i2, i3 in the increasing order. Then we have

i3 − (i1 + len(s)− 1) ≥ i3 − i2 ≥ len(s) ≥ 1,

which implies that w[i1 : i1 + len(s)] and w[i3 : i3 + len(s)] are non-overlapping. Moreover, since
len(s′) > len(s) and from Lemma 4, we have w[i1 : i1 + len(s)] = w[i3 : i3 + len(s)]. However, this
contradicts that str(s) is an LRF. ¤

From Lemma 5, each child s′ of node s such that str(s) is an LRF, corresponds to at most two
non-overlapping occurrences of str(s). Thus, by checking all children s1, . . . , s`, we can greedily
obtain occurrences of str(s) to be replaced, and it takes amortized constant time for each node s.

Note that we have to select occurrences of str(s) so that no occurrences of str(s) remain in the
text string, and at least two occurrences of str(s) are selected. We remark that we can greedily
choose at least max{2, #occ(str(s))/2} occurrences.

3.1.2 Updating SLSTree(wi−1
k) to SLSTree(wi

k)

Let L be the set of the greedily selected occurrences of LRF (wk) in wk. For any 0 ≤ i ≤ |L|,
wi

k denote the string obtained after replacing the first i occurrences of LRF (wk) with non-terminal
symbol Ak+1. Namely, w0

k = wk and w
|L|
k = wk+1.

In this section we show how to update SLSTree(wi−1
k) to SLSTree(wi

k). Let p be the beginning
position of the i-th largest occurrence in L. Assume that we have SLSTree(wi−1

k), and that we have
replaced wi−1

k [p : p+ |LRF (wk)|−1] with non-terminal symbol Ak+1 such that |Ak+1| = |LRF (wk)|.
We now have wi

k, and we have to update SLSTree(wi−1
k) to SLSTree(wi

k).
To obtain SLSTree(wi

k), the most intuitive way is to remove all the suffixes of wi−1
k from the tree

and insert all the suffixes of wi
k into it. However, since only the nodes not longer than LRF (wk)

are important for SLSTree(wi
k), only the suffixes wi−1

k [p − t :] such that 1 ≤ t ≤ |LRF (wk)| and
wi−1

k [r] ∈ Σ for any p− t ≤ r < p, have to be removed and only the suffixes wi
k[p− t :] have to be

inserted into the tree.

Proposition 2 For any wi
k[p− t :], there is a node s in SLSTree(wi

k) such that str(s) = wi
k[p− t :

p− 1] and s has an edge labeled with wi
k[p :] = Akw

i
k[p + |Ak| :] and leading to leaf p−t. Moreover,

this edge never exists in SLSTree(wi−1
k).

Lemma 6 For each t, we can locate node s such that str(s) = wi
k[p−t : p−1] in amortized constant

time.

Let v be the reference node in the path from the root to some leaf p−t. Assume that leaf p−t

is removed from the subtree of v, and redirected to node s in the same path, such that str(s) =
wi

k[p − t : p − 1]. In order to update SLSTree(wi−1
k) to SLSTree(wi

k), we have to maintain triple
〈min(v), max(v), card(v)〉 for node v. One may be concerned that if p − t is neither min(v) or
max(v) and card(v) ≥ 4 in SLSTree(wi−1

k), the occurrences of str(v) in SLSTree(wi
k) do not form

a single arithmetic progression any more. However, we have the following lemma. For any factor
y of wi

k, let Deadwi
k
(y) = BPwi−1

k
(y)\BPwi

k
(y), namely, Deadwi

k
(y) denotes the occurrences of y in

wi−1
k that overlap with the i-th greedily selected occurrence of LRF (wk) in wk.

str(v)

str(v)

m

n

a b

a' b'

m+|str(v)|-1

n+|str(v)|-1

w[a:b]

w[a': b']

w

Figure 3. Illustration of proof for Lemma 7.

Lemma 7 Let v be any reference node of SLSTree(wi
k) such that #occwi

k
(str(v)) = 1. For any

integer m,n, if m,n ∈ BPwi
k
(str(v)), then there is no integer r such that m < r < n and r ∈

Deadwi
k
(str(v)). (See Figure 3.)

Proof. Assume for contrary that there exists integer r such that r ∈ Deadwi
k
(str(v)) and m < r < n.

Since r ∈ Deadwi
k
(str(v)), there exist integers a, b such that a ≤ r ≤ b, and b−a+1 = 2|LRF (wk)|.

For any integer j such that a ≤ j ≤ b and j ∈ BPwi−1
k

(str(v)), we have j ∈ Deadwi
k
(str(v)). Since

m,n /∈ Deadwi
k
(str(v)), m < a < b < n. As str(v) is non-repeating, n < m + len(v) − 1. Since

m < a < b < m + len(v)− 1, w[a : b] is a factor of str(v). Therefore, there exist two integers a′, b′

such that w[a′ : b′] = w[a : b]. Since m < a < b < n < a′ < b′ < n + len(v)− 1, w[a : b] is repeating
and |w[a : b]| = b − a + 1 = 2|LRF (wk)| > |LRF (wk)|. It contradicts that LRF (wk) is an LRF of
wk. ¤

Recall that p is the beginning position of the i-th largest greedily selected occurrence of LRF (wk)
in wk. Also, for any 1 ≤ t ≤ |LRF (wk)| such that wi−1

k [r] ∈ Σ for every p − t ≤ r < p, we have
removed leaf p−t from the subtree rooted at the reference node v and have reconnected it to node
s such that str(s) = wi

k[p− t : p− 1]. According to the above lemma, if min(v) < p− t < max(v),
leaf j for every p− t ≤ j ≤ max(v) is removed from the subtree of v. After processing leaf p−t, then
max(v) is updated to p− t− d where d = (min(v)+max(v))/card(v) is the step of the progression,
and card(v) is updated to (max(v)− (p− t))/d + 1.

Notice that leaf p+h for every 0 ≤ h ≤ |LRF (wk)| − 1 has to be removed from the tree, since
wi

k[p + h] /∈ Σ and therefore this leaf node should not exist in SLSTree(wi
k). Removing each leaf

can be done in constant time. Maintaining the information about the triple for the arithmetic
progression of the reference nodes can be done in the same way as mentioned above.

The following lemma states how to locate each reference node.

Lemma 8 Let p be the i-th greedily selected occurrence of LRF (wk) in wk. For any integer ` such
that wi−1

k [`] ∈ Σ, let v(`) denote the reference node of SLSTree(wi−1
k) in the path from the root

spelling out suffix wi−1
k [` :]. For each j such that p− |LRF (wk)| ≤ j ≤ p + |LRF (wk)| − 1, we can

locate the reference node v(j) in amortized constant time.

Proof. Let ` = |LRF (wk)|. We find v(p − `) by spelling out wi−1
k [p − ` :] from the root in O(`)

time, since there can be at most ` + 1 nodes in the path from the root to v(p− `).
Suppose we have found v(j − 1). We find v(j) as follows. Let u(j − 1) be the parent node of

v(j − 1). We have len(u(j − 1)) ≤ ` and len(v(j − 1)) ≤ ` + 1. We go to suf (u(j − 1)). Since
len(suf (u(j − 1))) + 1 = len(u(j − 1)), we have len(suf (u(j − 1))) ≤ ` + 1. Thus, we can find v(j)
by going down the path starting from suf (u(j − 1)) and spelling out wi−1

k [j − 1 + len(u(j − 1)) :
j − 1 + len(v(j − 1))] = wi−1

k [j + len(suf (u(j − 1))) : j − 1 + len(v(j − 1))]. (See also the left
illustration of Figure 4.)

u(j-1)

v(j-1)

|LRF(wk)|

leafj-1 leafj

v(j)

|LRF(wk)|

leafj-1

leafj = v(j)

leafp-1 = v(p-1)

Ah

u(j-1)

v(j-1)

|LRF(wk)|

w[p-1]

Ah

Figure 4. The left figure illustrates how to find v(j) from v(j − 1). The right one illustrates
a special case where v(j) = leaf j . Once v(j) = leaf j , it stands that v(k) = leaf k for any
j ≤ k ≤ p− 1.

A special case happens when there exists a node s in the path from the root to leaf j , such that
len(s) = ` and the edge from s in the path starts with some non-terminal symbol Ah with h < k.
Namely, wi

k[j + `] = Ah. Due to the property of the longest first approach, we have |Ah| ≥ `.
Thus vj = leaf j . Moreover, for any j ≤ k ≤ p− 1, v(k) = leaf k. (See also the right illustration of
Figure 4.) It is thus clear that each v(k) can be found in constant time. Since |Ah| ≥ ` = LRF (wk),
the leaves corresponding to wi−1

k [p + x− 1 :] with 1 ≤ x ≤ ` do not exist in SLSTree(wi−1
k). ¤

From the above discussions, we conclude that:

Theorem 1 For any string w ∈ Σ∗, the proposed algorithm for text compression by longest first
substitution runs in O(|w|) time using O(|w|) space.

Pseudo-codes of our algorithms are shown in Algorithms 1, 2 and, 3.

3.2 Reducing Grammar Size

In the above sections we considered text compression by longest first substitution, where we
construct a context free grammar G that generates only a given string w. By Observation 1, for
any production rule Ak → xk of G, xk contains only terminal symbols from Σ. In this section, we
take the factors of xk into consideration for candidates of LRFs, and also replace LRFs appearing
xk. This way we can reduce the total size of the grammar. In so doing, we consider an LRF of
string zk = wkx1$1 · · ·xk$k, where z0 = w0 = w and each $i appears nowhere else in zk.

Example. Let w = w0 = z0 = abaaabbababb$0. We replace an LRF abb with A, and obtain
the following grammar: S → abaaAabA$0; A → abb. Then, w1 = abaaAabA$0 and LRF (z0) =
abb. Now, z1 = abaaAabA$0abb$1. We replace an LRF ab of z1 with a non-terminal B, getting
S → BaaABA$0; A → Bb; B → ab. Then, w2 = BaaABA$0 and LRF (z1) = ab. Now,
z2 = BaaABA$0Bb$1ab$2. Since there is no LRF of length more than 1 in z2, we are done.

We call this new method of text compression LFS2.

Theorem 2 Given a string w, the LFS2 strategy compresses w in linear time and space.

Algorithm 1: Recursively find longest repeating factors.
Input: String w ending with a unique symbol
Output: Set of grammar rules which produce w, greedily selected by substituting longest

repeating factors
SLSTree := sparse lazy suffix tree of w; bins := bin-sorted nodes; len := |w|; rules := ∅;1

while true do2

while (n = bins.getNextOfLength(len)) = null do3

if len ≤ 2 then return rules;4

foreach x ∈ bins(len) do update x.min, x.max, x.card from children;5

len--;6

update n.min, n.max, n.card from children;7

if n.max − n.min ≥ n.pathlen /* n is repeating factor */ then8

nonTerm := new non-terminal symbol;9

rules := rules ∪ {nonTerm → n.path };10

gso := getGreedilySelectedOccurrences(n);11

updateSLSTree(w, n.pathlen, nonTerm, gso, SLSTree, bins);12

13

14

Algorithm 2: updateSLSTree
Input: (w, LRFlen, nonTerm, gso, SLSTree, bins)
foreach occpos ∈ gso do1

for pos = max{1, occpos− LRFlen} to min{|w|, occpos + LRFlen− 1} do2

v := find first node on path to leaf pos such that v.pathlen > LRFlen;3

delete leaf pos; maintain v.card, v.min, v.max;4

if pos < occpos && notDead(pos) then5

s := find/create node on path to leaf pos such that s.pathlen = occpos− pos;6

if s was newly created then bins(s.pathlen).addNode(s);7

recreate leaf pos:〈min, max, card〉 = 〈pos, pos, 1〉; add edge (s, nonTerm, pos);8

if pos > occpos then w[pos] = •; markDead(pos);9

w[occpos] := nonTerm; markDead(occpos);10

return11

Proof. We modify the algorithm proposed in the previous sections. If we have a generalized SLSTree
for set {wk, x1$1, . . . , xk$k} of strings, we can find an LRF of zk = wkx1$1 · · ·xk$k. It follows from
the property of the longest first substitution strategy that |xi| ≥ |xj | for any i < j. Therefore,
any new node inserted into the generalized SLSTree for {wk, x1$1, . . . , xk−1$k−1} is shorter than
the reference nodes of the tree. Thus, using the Ukkonen on-line algorithm [9], we can obtain
the generalized SLSTree of {wk, x1$1, . . . , xk$k}, by inserting the suffixes of each xk$k into the
generalized SLSTree of {wk, x1$1, . . . , xk−1$k−1} in O(|xk$k|) time. It is easy to see that the total
length of x1$1, . . . , xk$k, . . . is O(|w|). ¤

Algorithm 3: getGreedilySelectedOccurrences
Input: LRFnode
Output: Set of greedily selected occurrences of LRFnode.path
gso := ∅;1

foreach c ∈ LRFnode.children do2

occ := 0;3

if notDead(c.min) then occ := c.min;4

else occ := find first occurrence of LRFnode.path after c.min+ endOfDeadArea[c.min];5

if occ 6= 0 && notDead(occ + LRFnode.pathlen−1) then6

gso := gso ∪ {occ};7

for pos = occ to occ + LRFnode.pathlen−1 do8

markEndOfDeadArea(pos, occ + LRFnode.pathlen−1);9

occ := occ + LRFnode.pathlen;10

if notDead(occ) && notDead(occ + LRFnode.pathlen−1) then gso := gso ∪ {occ};11

12

return gso;13

References

[1] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution. Proc. IEEE,
88(11):1733–1744, 2000.

[2] R. Arnold and T. Bell. A corpus for the evaluation of lossless compression algorithms. In Proc. Data
Compression Conference ’97 (DCC’97), pages 201–210, 1997.

[3] J. Bentley and D. McIlroy. Data compression using long common strings. In Proc. Data Compression
Conference ’99 (DCC’99), pages 287–295. IEEE Computer Society, 1999.

[4] S. Inenaga, T. Funamoto, M. Takeda, and A. Shinohara. Linear-time off-line text compression by longest-
first substitution. In Proc. SPIRE’03, volume 2857 of LNCS, pages 137–152. Springer-Verlag, 2003.

[5] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In Proc. COCOON’96, volume 1090 of LNCS, pages
219–230. Springer-Verlag, 1996.

[6] N. J. Larsson and A. Moffat. Offline dictionary-based compression. Proc. IEEE, 88(11):1722–1732, 2000.
[7] C. G. Nevill-Manning and I. H. Witten. Online and offline heuristics for inferring hierarchies of repetitions

in sequences. Proc. IEEE, 88(11):1745–1755, 2000.
[8] J. Storer, NP-completeness Results Concerning Data Compression, Technical report 234, Department

of Electrical Engineering and Computer Science, Princeton University, 1977.
[9] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

