
A Practical Algorithm to Find the Best Episode

Patterns

Masahiro Hirao, Shunsuke Inenaga, Ayumi Shinohara,
Masayuki Takeda, and Setsuo Arikawa

Department of Informatics, Kyushu University 33, Fukuoka 812-8581, JAPAN
{hirao, s-ine, ayumi, takeda, arikawa}@i.kyushu-u.ac.jp

Abstract. Episode pattern is a generalized concept of subsequence pat-
tern where the length of substring containing the subsequence is bounded.
Given two sets of strings, consider an optimization problem to find a best
episode pattern that is common to one set but not common in the other
set. The problem is known to be NP-hard. We give a practical algorithm
to solve it exactly.

1 Introduction

In these days, a lot of text data or sequential data are available, and it is quite
important to discover useful rules from these data. Finding a good rule to separate
two given sets, often referred as positive examples and negative examples, is a
critical task in Discovery Science as well as Machine Learning.

In [4], Hirao et al. considered subsequence patterns as rules. A subsequence
pattern s matches with a string t if s can be obtained by deleting zero or more
characters from t. They introduced a practical algorithm to find a best subse-
quence pattern that separates positive examples from negative examples, and
showed some experimental results. A drawback of subsequence patterns is that
they are not suitable for classifying long strings over small alphabet, since a
short subsequence pattern matches with almost all long strings.

In this paper, we consider episode patterns, which were originally introduced
by Mannila et al. [5]. An episode pattern 〈v, k〉, where v is a string and k is an
integer, matches with a string t if v is a subsequence for some substring u of t
with |u| ≤ k. Episode pattern is a generalization of subsequence pattern since
subsequence pattern v is equivalent to episode pattern 〈v,∞〉. We give a practical
solution to find a best episode pattern which separates a given set of strings
from the other set of strings. We propose a practical implementation of exact
search algorithm that practically avoids exhaustive search. The key idea is to
introduce some heuristics to reduce the search space based on the combinatorial
properties of episode patterns, and to utilize an efficient data structure that
helps to determine whether an episode pattern matches with a fixed string, at
the cost of preprocessing time and space requirement to construct it.

2 Preliminaries

Let N be the set of integers. Let Σ be a finite alphabet, and let Σ∗ be the set
of all strings over Σ. For a string w, we denote by |w| the length of w. For a set
S ⊆ Σ∗ of strings, we denote by |S| the number of strings in S, and by ||S|| the
total length of strings in S. We say that a string v is a prefix (substring, suffix,
resp.) of w if w = vy (w = xvy, w = xv, resp.) for some strings x, y ∈ Σ∗. We say
that a string v is a subsequence of a string w if v can be obtained by removing
zero or more characters from w. We denote by v 	str w that v is a substring of
w, and by v 	seq w that v is a subsequence of w. An episode pattern is a pair of
a string v and an integer k, and we define the episode language Leps(〈v, k〉) by

Leps(〈v, k〉) = {w ∈ Σ∗ | ∃u 	str w such that v 	seq u and |u| ≤ k}.
We formulate the problem by following our previous paper [4]. Readers should

refer to [4] for basic idea behind this formulation. We say that a function f from
[0, xmax]× [0, ymax] to real numbers is conic if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

We assume that f is conic and can be evaluated in constant time in the sequel.
The following is the optimization problem to be tackled.

Definition 1 (Finding the best episode pattern according to f).
Input Two sets S, T ⊆ Σ∗ of strings.
Output An episode pattern 〈v, k〉 that maximizes the value f(x〈v,k〉, y〈v,k〉),

where x〈v,k〉 = |S ∩ Leps(〈v, k〉)| and y〈v,k〉 = |T ∩ Leps(〈v, k〉)|.
We remark that the problem is NP-hard, since it is a generalization of finding
the best subsequence pattern [4].

From the conicality of function f and the property of episode patterns, we
can prove the following lemmas.

Lemma 1 ([4]). For any 0 ≤ x < x′ ≤ xmax and 0 ≤ y < y′ ≤ ymax, we have

f(x, y) ≤ max{f(x′, y′), f(x′, 0), f(0, y′), f(0, 0)}.
Lemma 2. For any two episode patterns 〈v, l〉 and 〈w, k〉, if v 	seq w and l ≥ k
then Leps(〈v, l〉) ⊇ Leps(〈w, k〉).
By Lemma 1 and 2, we have the next lemma, that plays a key role in our
algorithm which will be described in Section 4.

Lemma 3. For any two episode patterns 〈v, l〉 and 〈w, k〉, if v 	seq w and l ≥ k
then f(x〈w,k〉, y〈w,k〉) ≤ max{f(x〈v,l〉, y〈v,l〉), f(x〈v,l〉, 0), f(0, y〈v,l〉), f(0, 0)}.

2

9876543210 a a b a a b a b b

b b
b

b ba a

ab ab
a

ab

Fig. 1. EDASG(t), where t = aabaababb. Solid arrows denote the forward edges, and
broken arrows denote the backward edges.

3 Episode Directed Acyclic Subsequence Graphs

We first analyze the complexity of episode pattern matching: given an episode
pattern 〈v, k〉 and a string t, determine whether t ∈ Leps(〈v, k〉) or not. This
problem can be answered by filling up the edit distance table between v and t,
where only insertion operation with cost one is allowed. It takes Θ(mn) time
and space using a standard dynamic programming method, where m = |v| and
n = |t|.

For a fixed string, automata-based approach is useful. We use the Episode
Directed Acyclic Subsequence Graph (EDASG) for string t, which was recently
introduced by Tróıček in [8]. A Directed Acyclic Subsequence Graph (DASG) [2]
for a string t is a finite automaton that accepts all subsequences of t. An EDASG
is a directed graph which combines two DASGs for t and the reversed string tR. It
contains two kinds of edges, forward edges corresponding to DASG(t), and back-
ward edges corresponding to DASG(tR). As an example, EDASG(aabaababb) is
shown in Fig. 1. When examining if an episode pattern 〈abb, 4〉 matches with t
or not, we start from the initial state 0 and arrive at state 6, by traversing the
forward edges spelling abb. It means that the shortest prefix of t that contains
abb as a subsequences is t[0 : 6] = aabaab, where t[i : j] denotes the substring
ti+1 . . . tj of t. Moreover, the difference between the state numbers 6 and 0 corre-
sponds to the length of matched substring aabaab of t, that is, 6− 0 = |aabaab|.
Since it exceeds the threshold 4, we move backwards spelling bba and reach state
1. It means that the shortest suffix of t[0 : 6] that contains abb as a subsequence
is t[1 : 6] = abaab. Since 6 − 1 > 4, we have to examine other possibilities. It is
not hard to see that we have only to consider the string t[2 : ∗]. Thus we con-
tinue the same traversal started from state 2, that is the next state of state 1.
By forward traversal spelling abb, we reach state 8, and then backward traversal
spelling bba bring us to state 4. In this time, we found the matched substring
t[4 : 8] = abab which contains the subsequence abb, and the length 8 − 4 = 4
satisfies the threshold. Therefore we report the occurrence and terminate the
procedure.

With the use of EDASG(t), episode pattern matching can be answered quickly
in practice, although the worst case behavior is still O(mn). An on-line linear-
time algorithm for constructing EDASG(t) for a string t ∈ Σ∗ was proposed
in [8].

3

For strings v, t ∈ Σ∗, we define the threshold value θ of v for t by θ = min{k ∈
N | t ∈ Leps(〈v, k〉)}. If no such value, let θ = ∞. Note that t �∈ Leps(〈v, k〉) for
any k < θ, and t ∈ Leps(〈v, k〉) for any θ ≤ k. It is not difficult to see that the
EDASGs are useful to compute the threshold value of v for a fixed t. We have
only to repeat the above forward and backward traversal up to the end, and
return the minimum length of the matched substrings.

From now on, for a set S of strings and a string v, we consider the numerical
sequence {xk}∞k=0, where xk = |S∩Leps(〈v, k〉)|. It clearly follows from Lemma 2
that the sequence is non-decreasing. Moreover, notice that 0 ≤ xk ≤ |S| for any
k, and xl = xl+1 = xl+2 = · · ·, where l is the length of the longest string in S.
It implies that {xk}∞k=0 consists of at most min{|S|, l} distinct values. Hence we
can represent {xk}∞k=0 as a list of pairs (k, xk) such that xk−1 �= xk. The length
of the list is bounded by min{|S|, l}. We call this list a compact representation
of the sequence {xk}∞k=0 (CRS, for short).

We now show how to compute CRS for each v and a fixed S. Observe that xk

increases only at the threshold values of v for some t ∈ S. For each string ti ∈ S,
we compute the threshold value θi of v for ti, and sort these threshold values in
increasing order. From these sorted values, we can construct the CRS in linear
time. To be summarized, if we use the counting sort, we can compute the CRS
for v ∈ Σ∗ in O(|S|ml + |S|) = O(||S||m) time where m = |v|. We emphasize
that the time complexity of computing the CRS of {xk}∞k=0 is the same as that
of computing xk for a single k (0 ≤ k ≤ ∞), by our method. In the next section,
we use a data structure StringSet which supports the method to compute the
CRS for any given string v.

4 Algorithm

The basic structure of the algorithm is similar to that in [4].
Fig. 2 shows our algorithm to find a best episode pattern from given two sets

of strings, according to the function f . Optionally, we can specify the maximum
length of episode patterns by the parameter �. Here, we use a data structure
PriorityQueue that supports the following methods.
– bool empty() : return true if the queue is empty.
– void push(string w, double priority) : push a string w into the queue with
priority priority.

– (string, double) pop() : pop and return a pair (string, priority), where
priority is the highest in the queue.

At line 16 marked by (*), we can simultaneously compute k′ and val by
using CRSs x̄ and ȳ in O(|x̄| + |ȳ|) time. By Lemma 3, we can use the value
upperBound to prune branches in the search tree computed at line 20 marked by
(**). Note that x〈v,∞〉 and y〈v,∞〉 can be extracted from x̄ and ȳ in constant time,
respectively. The next theorem guarantees the completeness of the algorithm.

Theorem 1. Let S and T be sets of strings, and � be a positive integer. The
algorithm FindBestEpisode(S, T , �) will return an episode pattern that maxi-

4

1 string FindBestEpisode(StringSet S, T , int �)
2 string prefix , v;
3 episodePattern maxSeq ; /* pair of string and int */
4 double upperBound = ∞, maxVal = −∞, val ;
5 int k′;
6 CompactRepr x̄, ȳ; /* CRS */
7 PriorityQueue queue; /* Best First Search*/
8 queue.push(””, ∞);
9 while not queue.empty() do
10 (prefix , upperBound) = queue.pop();
11 if upperBound < maxVal then break;
12 foreach c ∈ Σ do
13 v = prefix+ c; /* string concatenation */
14 x̄ = S.crs(v);
15 ȳ = T .crs(v);
16 (*) k′ = argmaxk{f(x〈v,k〉, y〈v,k〉)} and val = f(x〈v,k′〉, y〈v,k′〉);
17 if val > maxVal then
18 maxVal = val ;
19 maxEpisode = 〈v, k′〉;
20 (**) upperBound = max{f(x〈v,∞〉, y〈v,∞〉), f(x〈v,∞〉, 0),

f(0, y〈v,∞〉), f(0, 0)};
21 if upperBound > maxVal and |v| < � then
22 queue.push(v, upperBound);
23 return maxEpisode ;

Fig. 2. Algorithm FindBestEpisode. In our pseudocode, the break statement is to
jump out of the closest enclosing loop.

mizes f(x〈v,k〉, y〈v,k〉), with x〈v,k〉 = |S∩Leps(〈v, k〉)| and y〈v,k〉 = |T∩Leps(〈v, k〉)|,
where v varies any string of length at most � and k varies any integer.

5 Conclusion

We developed a practical algorithm to find the best episode pattern to sepa-
rate given two sets of strings. Episode pattern is a generalization of subsequence
pattern, and the search space of episode patterns is much larger than that of sub-
sequence patterns. Nevertheless, our algorithm enabled to find the best episode
pattern efficiently: the running time will not be much slower than that for finding
subsequence patterns.

It is challenging to apply our approach to find the best pattern in the sense
of pattern languages introduced by Angluin [1], where the related consistency
problems are shown to be very hard [6]. Fujino et al. showed an another approach
to find the best proximity pattern [3]. It may be interesting to combine these

5

approaches into one. We are now in the process of installing our algorithm into
the core of the decision tree generator in the BONSAI system [7].

References

1. D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21(1):46–62, Aug. 1980.

2. R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, Jan. 1991.

3. R. Fujino, H. Arimura, and S. Arikawa. Discovering unordered and ordered phrase
association patterns for text mining. In Proc. of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, volume 1805 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, Apr. 2000.

4. M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. A practical al-
gorithm to find the best subsequence patterns. In Proc. of The Third International
Conference on Discovery Science, volume 1967 of Lecture Notes in Artificial Intel-
ligence, pages 141–154. Springer-Verlag, Dec. 2000.

5. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episode in se-
quences. In U. M. Fayyad and R. Uthurusamy, editors, Proc. of the 1st International
Conference on Knowledge Discovery and Data Mining, pages 210–215. AAAI Press,
Aug. 1995.

6. S. Miyano, A. Shinohara, and T. Shinohara. Polynomial-time learning of elementary
formal systems. New Generation Computing, 18:217–242, 2000.

7. S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa.
Knowledge acquisition from amino acid sequences by machine learning system BON-
SAI. Transactions of Information Processing Society of Japan, 35(10):2009–2018,
Oct. 1994.

8. Z. Trońıček. Episode matching. In Proc. of 12th Annual Symposium on Com-
binatorial Pattern Matching, Lecture Notes in Computer Science, pages 143–146.
Springer-Verlag, July 2001.

6

