
A new family of string classifiers
based on local relatedness

Yasuto Higa1, Shunsuke Inenaga2,1, Hideo Bannai1, and Masayuki Takeda1,3

1 Department of Informatics, Kyushu University, Japan
{y-higa,shunsuke.inenaga,bannai,takeda}@i.kyushu-u.ac.jp

2 Japan Society for the Promotion of Science
3 SORST, Japan Science and Technology Agency (JST)

Abstract. This paper introduces a new family of string classifiers based
on local relatedness. We use three types of local relatedness measure-
ments, namely, longest common substrings (LCStr’s), longest common
subsequences (LCSeq’s), and window-accumulated longest common sub-
sequences (wLCSeq’s). We show that finding the optimal classier for given
two sets of strings (the positive set and the negative set), is NP-hard for
all of the above measurements. In order to achieve practically efficient
algorithms for finding the best classifier, we investigate pruning heuris-
tics and fast string matching techniques based on the properties of the
local relatedness measurements.

1 Introduction

In recent years, we have witnessed a massive increase in the amount of string
data available in many different domains, such as text data on the Internet, and
biological sequence data. Finding meaningful knowledge in the form of string
patterns from such data sets has become a very important research topic. In
this light, we and others have been studying the problem of finding the optimal
pattern which distinguishes between a positive set of strings and a negative set of
strings [1–11]. The optimal pattern discovery problem aims to find the highest
scoring pattern with respect to a certain scoring function, usually preferring
patterns which are contained in all or most strings in the positive data set, but
not contained in all or most strings of the negative data set,

In previous work, the classification models are mainly based on distance,
where a string is classified to be consistent with a pattern when the string con-
tains a substring that is within a certain fixed distance of the pattern, and not
consistent otherwise. In this paper, we consider a classification model based on
relatedness, where a string is classified to be consistent with the string classifier
when it is locally more similar to the classifier than a certain fixed relatedness,
and not consistent otherwise. Although the two seem to be equivalent concepts
that are simply worded differently, the latter gives rise to a new, richer family
of string classifiers.

We study and show the subtle differences between them from an algorith-
mic perspective. We consider three types of relatedness measurements, namely,

longest common substrings (LCStr’s), longest common subsequences (LCSeq’s),
and window-accumulated longest common subsequences (wLCSeq’s). We show
that finding the optimal classier for given two sets of strings is NP-hard for all
of the above measurements. In order to achieve practically efficient algorithms
for finding the best classifier, we investigate pruning heuristics and fast string
matching techniques based on the properties of the local relatedness measure-
ments. Our preliminary experiments on DNA sequence data showed that the
algorithm for the wLCSeq measurement runs in acceptable amount of time.

2 Preliminaries

2.1 Notations

Let N be the set of non-negative integers. Let Σ be a finite alphabet, and let
Σ∗ be the set of all strings over Σ. The length of string s is denoted by |w|. The
empty string is denoted by ε, that is, |ε| = 0. For set S ⊆ Σ∗ of strings, we
denote by |S| the number of strings in S, and by ||S|| the total length of strings
in S.

Strings x, y and z are said to be a prefix, substring, suffix of string s = xyz,
respectively. Let Substr(s) be the set of the substrings of string s. When string
x is a substring of string s, then s is said to be a superstring of x. The i-th
character of string s is denoted by s[i] for 1 ≤ i ≤ |s|, and the substring that
begins at position i and ends at position j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|.
We say that string q is a subsequence of string s if q = s[i1] · · · s[i|q|] for some
1 ≤ i1 < · · · < i|q| ≤ |s|. Let Subseq(s) be the set of the subsequences of string s.
When string x is a subsequence of string s, then s is said to be a supersequence
of x.

For two strings p, s ∈ Σ∗, if q ∈ Substr(p) ∩ Substr(s), then q is called a
common substring of p and s. When no common substrings of p and s are longer
than q, q is called a longest common substring (LCStr for short) of p and s. Then
we denote lcstr(p, s) = |q|. It is easy to see that lcstr(p, s) ≤ min{|p|, |s|}.

Similarly, if q ∈ Subseq(p)∩Subseq(s), then q is called a common subsequence
of p and s. When no common subsequences of p and s are longer than q, q is
called a longest common subsequence (LCSeq for short) of p and s. Then we
denote lcseq(p, s) = |q|. It is easy to see that lcseq(p, s) ≤ min{|p|, |s|}.

2.2 Relatives of a String

The functions lcstr and lcseq are relatedness measures that quantify the affinities
between two strings. Further, we consider an extended version of lcseq , window-
accumulated LCSeq measure, where we compute the lcseq values for p against all
substrings of s of length ≤ d (d is a positive integer). The new measure wlcseqd

is defined as follows.

wlcseqd(p, s) = max{lcseq(p, t) | t ∈ Substr(s) and |t| ≤ d}.

We note that when d is long enough then wlcseqd(p, s) = lcseq(p, s).
Let δ be one of the measures lcstr , lcseq , and wlcseqd. A k-relative of a string

p under δ is any string s with δ(s, p) ≥ k. The set of k-relatives of p is denoted
by Reδ(p; k). That is,

Reδ(p; k) = {s ∈ Σ∗ | δ(p, s) ≥ k}.
Definition 1. The language class w.r.t. Reδ(p; k) for each δ is as follows.

LCSTRL = {Relcstr (p; k) | p ∈ Σ∗ and k ∈ N}
LCSEQL = {Relcseq(p; k) | p ∈ Σ∗ and k ∈ N}

wLCSEQLd = {Rewlcseqd

(p; k) | p ∈ Σ∗ and k ∈ N}
Remark 1. In [3] the subsequence pattern discovery problem was discussed,
where a pattern p ∈ Σ∗ matches any supersequence of p. We note that LCSEQL
subsumes the languages of the subsequence patterns since Relcseq(p; |p|) is ex-
actly the set of supersequences of p.

Remark 2. In [2] the pattern discovery problem for the window-accumulated
subsequence patterns (episode patterns) was addressed, where a window-accumu-
lated subsequence pattern is formally an ordered pair 〈p, d〉 ∈ Σ∗ × N and
matches a string s if there is a substring t of s such that |t| ≤ d and p ∈ Subseq(t).
Then, one can see that wLCSEQLd generalizes the languages of window-accumu-
lated subsequence patterns since we have Rewlcseqd

(p; |p|) is identical to the
language of the window-accumulated subsequence pattern 〈p, d〉.

3 Finding Best String Classifiers

3.1 Score Function

Suppose Π is a set of descriptions over some finite alphabet, and each π ∈ Π
defines a language L(π) ⊆ Σ∗. Let good be a function from Π×2Σ∗×2Σ∗ to the
real numbers.The problem we consider in this paper is: Given two sets S, T ⊆
Σ∗ of strings, find a description π ∈ Π that maximizes score good(π, S, T).
Intuitively, score good(π, S, T) expresses the ‘goodness’ of π as a classifier for
S and T . The definition of good varies with applications. For example, the χ2

values, entropy information gain, and Gini index are often used. Essentially,
these statistical measures are defined by the number of strings that satisfy the
rule specified by π. Any of the above-mentioned measures can be expressed by
the following form:

good(π, S, T) = f(xπ, yπ, |S|, |T |),
where xπ = |S ∩ L(π)| and yπ = |T ∩ L(π)|.

When S and T are fixed, xmax = |S| and ymax = |T | are regarded as constants.
On this assumption, we abbreviate the function to f(xπ, yπ). In the sequel, we as-
sume that f is pseudo-convex (also called conic in the previous work [3]) and can

x max= |S|

y max = |T|

(x,y)

(x',y')

0

Fig. 1. Illustration of the domain of score function f . For pseudo-convex score func-
tions, the highest score of an arbitrary point in the rectangle defined by the four
highlighted points is the maximum score of the four points (Lemma 1).

be evaluated in constant time. We say that a function f from [0, xmax] × [0, ymax]
to real numbers is pseudo-convex if

– for any 0 ≤ y ≤ ymax, there exists an x1 such that
• f(x, y) ≥ f(x′, y) for any 0 ≤ x < x′ ≤ x1, and
• f(x, y) ≤ f(x′, y) for any x1 ≤ x < x′ ≤ xmax.

– for any 0 ≤ x ≤ xmax, there exists a y1 such that.
• f(x, y) ≥ f(x, y′) for any 0 ≤ y < y′ ≤ y1, and
• f(x, y) ≤ f(x, y′) for any y1 ≤ y < y′ ≤ ymax.

The following is an important property of pseudo-convex functions.

Lemma 1 ([6]). For any 0 ≤ x < x′ ≤ xmax and 0 ≤ y < y′ ≤ ymax,

f(x′, y′) ≤ max{f(x, y), f(x, ymax), f(xmax, y), f(xmax, ymax)}.

3.2 Problem and Complexities

In this paper we consider the following problem for each relatedness measure δ.

Definition 2 (Finding best string classifier under δ according to f).

Input: Two finite sets S, T ⊆ Σ∗ of strings, and a positive integer k.
Output: A string p ∈ Σ∗ that maximizes score f(xπ, yπ), where π = 〈p, k〉, and

xπ = |S ∩Reδ(p; k)| and yπ = |T ∩Reδ(p; k)|.

Theorem 1. The optimization problem of Definition 2 under lcstr is NP-hard.

Proof. Reduction from MINIMUM SET COVER. (Given graph G = (V, E), a
set C = {C1, . . . , Cm} where each Ci ⊆ V for each 1 ≤ i ≤ m, and integer c,
does there exist a subset C ′ ⊆ C such that |C ′| ≤ c and any vertex in V is
contained in at least one member of C ′?) Consider the function

f(x, y) =
{

0 if x < xmax

ymax − y otherwise (x = xmax)

and create an instance of finding the best string classifier under lcstr as follows.
Let k = dlog2 me, and let ī denote the k-bit binary representation of integer
i ≤ m. S will consist of |V | strings, each string corresponding to a node in
V . For each v ∈ V , define sv =

∑
i:v∈Ci

$ī. Let x =
∑

s∈X #s, where X =
{sv[i..(i+k−1)] | v ∈ V, 1 ≤ i ≤ |sv|−k+1,∃j (i ≤ j ≤ i+k−1), s.t. sv[j] = $},
that is, x is the concatenation of all length k substrings of strings in S that
contain the character $, each preceded by #. We define T = {̄ix | 1 ≤ i ≤ m},
where each string corresponds to the member Ci ∈ C. Then, the existence of a
set cover C ′ = {Ci1 , . . . , Cic

} of size c implies the existence of a string p giving
f(xπ, yπ) = ymax − c and vice versa: Suppose C ′ is a cover of V , and consider
p = ī1¢ī2 · · · ¢īc. Since each v ∈ V is contained in some member Cij ∈ C ′, each
sv ∈ S will share the length k substring īj with p. Noting that the character ‘¢’
is not contained in any strings of S or T , p can only share length k substrings
via each īj (1 ≤ j ≤ c). Therefore, p will only be a k-relative to the c strings
{̄ijx|Cij ∈ C ′} ⊆ T . On the other hand, suppose p is a string that is a k-relative
of all strings in S but for only c strings in T . Notice that p can only be a k-
relative of strings in S or T by sharing length k substrings that correspond to
some ī (1 ≤ i ≤ m), since otherwise: (1) if the length k substring contained $,
then p would also be a k-relative of x and hence all strings in T , and (2) if the
length k substring contained #, then p would not be a k-relative of any string
in S. For each different ī that p contains, a unique string īx ∈ T also becomes
a k-relative of p. Therefore, p will contain exactly c substrings ī1, . . . īc, where
each sv ∈ S will contain at least one īj (1 ≤ j ≤ c). This implies a set cover of
size c consisting of Cij (1 ≤ j ≤ c). ut
Theorem 2. The optimization problem of Definition 2 under lcseq is NP-hard.

Proof. Reduction from MINIMUM SET COVER (See Theorem 1). Consider f
as in Theorem 1. Consider the alphabet Σ = {σ1, . . . , σm}. Let k = 1, S =∑

σi:v∈Ci
, T = {σ1, . . . , σm} (σi 6= σj for i 6= j). Since k = 1, a string containing

character σi will be a relative of a string s if and only if s also contains the
character σi. Therefore, the existence of a string p giving f(xπ, yπ) = ymax − c
implies the existence of a set cover C ′ = {Ci1 , . . . , Cic} of size c, and vice versa.

ut
Recall that when d is long enough, we have wlcseqd(p, d) = lcseq(p, s). Thus,

the optimization problem for the lcseq measure is a special case of that for the
wlcseqd measure. Hence we get the following result.

Theorem 3. The optimization problem of Definition 2 under wlcseqd is NP-
hard.

Since the optimization problem of finding the best π is NP-hard for all types
of the similarity measures, we inherently face exponentially many candidates for
the best string classifier. The two keys to a practically efficient computation of
the best π are: reducing the number of candidates (pruning), and quickly counting
xπ and yπ for each candidate π (fast string matching).

3.3 Branch-and-Bound Algorithms

Let δ be one of the measures lcstr , lcseq , and wlcseqd. Consider given k. Note
that, for any string p of length less than k, we always have Reδ(p; k) = ∅. On
the other hand, we need to care about all the |Σ|k strings of length k, because
all of those strings have a possibility of being a ‘seed’ of the best string with the
highest score. Then, we examine longer candidates by appending new characters
to the right of the |Σ|k strings. The next lemma states a useful property on
Reδ(p; k).

Lemma 2. Let k be any positive integer. For any two strings p, p′ in Σ∗, if p
is a prefix of p′, then Reδ(p′; k) ⊇ Reδ(p; k).

The following pruning lemma are derived from Lemmas 1 and 2.

Lemma 3. Let k be any positive integer. For any two strings p, p′ such that p
is a prefix of p′, let π = 〈p, k〉 and π′ = 〈p′, k〉. Then,

f(xπ′ , yπ′) ≤ max{f(xπ, yπ), f(xπ, ymax), f(xmax, yπ), f(xmax, ymax)},

where xπ = |S ∩Reδ(p; k)| and yπ = |T ∩Reδ(p; k)|.
What remains is how to compute the numbers xπ and yπ of strings s in S

and T , respectively, such that δ(p, s) ≥ k, where π = 〈p, k〉.
Firstly, we consider the case of δ = lcstr .

Definition 3 (Computing local relatedness under measure lcstr).

Given: A finite set S ⊆ Σ∗ of strings, and a positive integer k.
Query: A string p ∈ Σ∗.
Answer: The cardinality of Relcstr (p; k) ∩ S.

Theorem 4. The problem of computing local relatedness under the measure
lcstr can be solved in O(|p|) time using O(|S|) extra space after O(‖S‖) time
and space preprocessing.

Proof. We build the directed acyclic word graph (DAWG) [12] from the strings in
S. We note that the nodes of DAWG represent the equivalence classes under some
equivalence relation defined on Substr(S) =

⋃
s∈S Substr(s). Each equivalence

class can be written as {x′y | x′ is a suffix of x} for some strings x, y with xy ∈
Substr(S), and therefore it can contain at most one string t of length k. For every
node v containing such string t, we associate v with the list of ID’s of strings in S
that are superstrings of t. Such a data structure can be built only in O(‖S‖) time

and space. To compute the cardinality of Relcstr (p; k) for every candidate p, we
use this data structure as a finite-state sequential machine. The machine makes
state-transitions scanning the characters of p one by one. Whenever the machine
is in a state (node) such that the corresponding equivalence class contains no
string of length ≤ k, it makes “failure transition” navigated by the suffix links.
If the current state has outputs, then it implies that all the strings s listed in
the outputs satisfy lcstr(p, s) ≥ k. The number of failure transitions executed is
bounded by the number of ordinary state transitions executed, and is therefore
at most |p|. The cardinality is thus computed in O(|p|) time. ut
We can therefore compute xπ and yπ in O(|p|) time using O(|S| + |T |) extra
space after O(‖S‖+ ‖T‖) time and space preprocessing.

Secondly, we consider δ = lcseq . We do not preprocess the input S and T ,
and simply compute lcseq(p, s) against all strings s in S ∪ T . Each lcseq(p, s)
is computable in O(|p| · |s|) time by a standard dynamic programming (DP)
method. Section 4 explains the DP method. We can compute xπ and yπ in
O(|p| · (‖S‖+ ‖T‖)) time.

Lastly, we will devote the next full section to the case of δ = wlcseqd, as this
case needs to be explained in details.

4 Computing Local Relatedness under wlcseqd

Given two strings p, s, a standard technique for computing lcseq(p, s) is the
dynamic programming method, where we compute the DP matrix of size (|p|+
1) × (|s| + 1) for which DP [i, j] = lcseq(p[1..i], s[1..j]) for 1 ≤ i ≤ |p| and
1 ≤ j ≤ |s|. The recurrence for computing the DP matrix is the following:

DP [i, j] =





0 if i = 0 or j = 0,

max(DP [i− 1, j],DP [i, j − 1]) if i, j > 0 and p[i] 6= s[j],
DP [i− 1, j − 1] + 1 if i, j > 0 and p[i] = s[j].

Therefore, to compute lcseq(p, s) = DP [|p|, |s|], we need O(|p| · |s|) time and
space. Pair (i, j) is said to be a partition point of DP , if DP [i, j] = DP [i−1, j]+1.
P denotes the set of the partition points of DP . Remark that P is a compressed
form of DP , and the size of P is O(L|s|), where L = lcseq(p, s). See Fig. 2 for
an example of a DP matrix and its partition points. The partition point set P
is implemented by double-linked lists as shown in Fig. 3, where the cells are
vertically sorted by the lcseq values, and the values in the cells represent the
corresponding row indices.

The problem considered in this section is the following.

Definition 4 (Computing local relatedness under measure wlcseqd).

Given: A finite set S ⊆ Σ∗ of strings, and a positive integer k.
Query: A string p ∈ Σ∗.
Answer: The cardinality of Rewlcseqd

(p; k) ∩ S.

c b a c b a a b a

0 0 0 0 0 0 0 0 0 0

b 0 0 1 1 1 1 1 1 1 1

c 0 1 1 1 2 2 2 2 2 2

d 0 1 1 1 2 2 2 2 2 2

a 0 1 1 2 2 2 3 3 3 3

b 0 1 2 2 2 3 3 3 4 4

a 0 1 2 3 3 3 4 4 4 5

Fig. 2. The DP matrix for lcseq(p, s), where p = bcdaba and s = cbacbaaba. Note
lcseq(p, s) = DP [|p|, |s|] = DP [6, 9] = 5. The colored entries represent the partition
points of the DP matrix.

21

c b a c b a a b a

1 1 1 1 1 1 1 1

5 4 2 2 2 2 2 2

6 6 5 4 4 4 4

6 6 5 5

6

2

3

4

5

Fig. 3. Double-linked list implementation of the partition point set P for the DP matrix
of Fig. 2. The cells are sorted vertically by the lcseq values, and the values in the cells
represent the corresponding row indices.

The above problem can be solved by computing the length of the LCSeq of
p and every d-gram of s ∈ S, and by counting the number of strings s in S for
which the maximum LCSeq length is not less than k. Here, we need to compute
lcseq(p, s[j..j + d− 1]) for every position 1 ≤ j ≤ |s| − d+ 1 of each string s ∈ S.
If näıvely computing the DP matrices for all pairs p, s[j..j + d− 1], it takes total
of O(d|p| · ‖S‖) time and O(d|p|) space. However, we can establish the following
lemma that leads us to a more efficient solution.

Theorem 5. The problem of computing local relatedness under the measure
wlcseqd can be solved in O(d‖S‖) time using O(`d) extra space, where

` = max{lcseq(p, s[j..j + d− 1]) | s ∈ S and 1 ≤ j ≤ |s| − d + 1}.

Proof. Let us concentrate on one string s in S. For any 1 ≤ h ≤ h′ ≤ |s|, let
DPh

h′ and Ph
h′ denote the DP matrix and the corresponding partition point set

for lcseq(p, s[h..h′]), respectively. For any 1 ≤ j ≤ |s| − d + 1, let r = j + d− 1.

Now we are computing P j
r for j = |s| − d + 1, . . . , 2, 1, in the decreasing order of

j. Namely, we compute the partition point set for a sliding window of width d
(See Fig. 4). Computing P j

r from P j+1
r+1 is done in two rounds. Firstly, compute

P j
r+1 from P j+1

r+1 , then compute P j
r from P j

r+1.
Let `s = max{lcseq(p, s[j..r]) | 1 ≤ j ≤ |s| − d + 1} . The second step

of computing P j
r from P j

r+1 can be done in O(`s) time based on the following
observations. It follows from the property of DP matrices that for any 1 ≤ i ≤ |p|
and j ≤ h ≤ r, we have DP j [i, h] = DP j+1[i, h]. Therefore, we can compute
P j

r from P j
r+1 by simply deleting the (r + 1)-th column of P j

r+1. The number
of entries in that column is at most lcseq(p, s[j..r + 1]) = lcseq(p, s[j..j + d]) ≤
lcseq(p, s[j..j + d− 1]) + 1 ≤ `s + 1. Thus it can be done in O(`s) time.

The first step of computing P j
r+1 from P j+1

r+1 , can be done efficiently based
on the algorithm of Landau et al. [13]. They presented an algorithm which,
given two strings p and s, computes P j

|s| representing lcseq(p, s[j..|s|]) for every
j = |s|, . . . , 2, 1. It runs in total of O(L|s|) time and space, where L = lcseq(p, s),
by implementing the partition point set with a double linked list (see Fig. 3).
Combining this algorithm with the method mentioned in the above paragraph,
we are able to compute P j

r+1 from P j+1
r+1 .

Now let us clarify the complexities for computing lcseq(p, s[j..r]) for all
j = |s| − d + 1, . . . , 1. The space consumption is clearly O(`sd), since the size of
P j

r is bounded by O(`sd). Regarding the time complexity, as mentioned above,
deleting the last column takes O(`s) time. When adding a new column, in
the worst case, a new partition point is inserted into each of the d columns
of P j+1

r+1 . Insertion of these new partition points can be done in O(d) time in
aggregate [13], by the double-linked list implementation. Thus, the time cost is
O(`s|s|+ d|s|) = O(d|s|), since `s ≤ min{|p|, d}. In conclusion, the whole space
requirement is O(max{`s | s ∈ S} · d) = O(`d), and the total time requirement
is O(

∑
s∈S(d|s|)) = O(d‖S‖). ut

Therefore, we can compute xπ and yπ for wlcseqd measure in O(d(‖S‖+ ‖T‖))
time using O(`′d) space, where `′ = max{lcseq(p, s[j..j + d − 1]) | s ∈ S ∪
T and 1 ≤ j ≤ |s| − d + 1}. We remark that `′ ≤ min{|p|, d}.

5 Discussions

The problem of finding the optimal string classifier for two given sets S, T of
strings, has been extensively studied in the recent years. The pursuit of better
classification had been done mostly by enriching the ‘pattern class’ in which the
best pattern is searched for. This paper suggested a new family of string classifiers
based on local relatedness measures, lcstr , lcseq , and wlcseqd. A big difference
between the previous ones and our new family is that our string classifier does
not necessarily appear as a pattern in the strings in S. Namely, the classifier can
be composed of a superstring or supersequence of the strings in S. Therefore,
when there do not exist good patterns which classify S and T , our new approach
is expected to give us a good classifier that may lead to a more meaningful

P
j

u

j j+d

s

p
j+d-1

Fig. 4. Illustration for computing P j
j+d−1 representing lcseq(p, s[j..j + d− 1]) for every

1 ≤ j ≤ n− d + 1, in a sliding window manner.

knowledge. Preliminary experiments conducted on DNA sequence data showed
that the optimal string classifier discovery algorithm for the wlcseqd measure
runs in acceptable amount of time for modest settings of k and d. Experiments
supporting practical effectiveness of our method, remain as our future work.

References

1. Arimura, H., Wataki, A., Fujino, R., Arikawa, S.: A fast algorithm for discovering
optimal string patterns in large text databases. In: International Workshop on
Algorithmic Learning Theory (ALT’98). Volume 1501 of LNAI., Springer-Verlag
(1998) 247–261

2. Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: A practical al-
gorithm to find the best episode patterns. In: Proc. 4th International Conference
on Discovery Science (DS2001). Volume 2226 of LNAI., Springer-Verlag (2001)
435–440

3. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algo-
rithm to find the best subsequence patterns. Theoretical Computer Science 292(2)
(2002) 465–479

4. Shinohara, A., Takeda, M., Arikawa, S., Hirao, M., Hoshino, H., Inenaga, S.: Find-
ing best patterns practically. In: Progress in Discovery Science. Volume 2281 of
LNAI., Springer-Verlag (2002) 307–317

5. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering
best variable-length-don’t-care patterns. In: Proceedings of the 5th International
Conference on Discovery Science. Volume 2534 of LNAI., Springer-Verlag (2002)
86–97

6. Shinozaki, D., Akutsu, T., Maruyama, O.: Finding optimal degenerate patterns in
DNA sequences. Bioinformatics 19 (2003) ii206–ii214

7. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Information and Computation 185 (2003) 41–55

8. Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most
classificatory patterns for very expressive pattern classes. In: 6th International

Conference on Discovery Science (DS 2003). Volume 2843 of LNCS., Springer-
Verlag (2003) 486–493

9. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: Finding
optimal pairs of patterns. In: 4th International Workshop on Algorithms in Bioin-
formatics (WABI 2004). Volume 3240 of LNBI., Springer-Verlag (2004) 450–462

10. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An
O(N2) algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 1(4) (2004) 159–170
(special issue for selected papers of WABI 2004).

11. Inenaga, S., Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano,
S.: Finding optimal pairs of cooperative and competing patterns with bounded
distance. In: The 7th International Conference on Discovery Science (DS 2004).
Volume 3245 of LNAI., Springer-Verlag (2004) 32–46

12. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)
13. Landau, G.M., Myers, E., Ziv-Ukelson, M.: Two algorithms for LCS consecu-

tive suffix alignment. In: Proc. Fifteenth Annual Combinatorial Pattern Matching
Symposium (CPM2004). Volume 3109 of LNCS., Springer-Verlag (2004) 173–193

