
Fully Incremental LCS Computation

Yusuke Ishida1, Shunsuke Inenaga1,
Ayumi Shinohara2,3, and Masayuki Takeda1,4

1 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
{y-ishida, shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

Sendai 980-8579, Japan
ayumi@ecei.tohoku.ac.jp

3 PRESTO, Japan Science and Technology Agency (JST)
4 SORST, Japan Science and Technology Agency (JST)

Abstract. Sequence comparison is a fundamental task in pattern match-
ing. Its applications include file comparison, spelling correction, infor-
mation retrieval, and computing (dis)similarities between biological se-
quences. A common scheme for sequence comparison is the longest com-
mon subsequence (LCS) metric. This paper considers the fully incre-
mental LCS computation problem as follows: For any strings A,B and
characters a, b, compute LCS(aA, B), LCS(A, bB), LCS(Aa, B), and
LCS(A, Bb), provided that L = LCS(A, B) is already computed. We
present an efficient algorithm that computes the four LCS values above,
in O(L) or O(n) time depending on where a new character is added,
where n is the length of A. Our algorithm is superior in both time and
space complexities to the previous known methods.

1 Introduction

Pattern matching is one of the most extensively studied sub-areas of theoret-
ical computer science [1, 2], and one example of the fundamental problems on
pattern matching is sequence comparison [3]. There are a wide range of appli-
cations for sequence comparison, including file comparison [4], spelling correc-
tion [5], information retrieval [6], and computing (dis)similarities between biolog-
ical sequences [7, 8]. Comparing two strings A = a1a2 · · · an and B = b1b2 · · · bm

can be done by computing an alignment between these strings. Standard align-
ment algorithms compute a dynamic programming matrix DP for the opti-
mal alignments between the consecutive prefixes of A and B. Namely, each en-
try DP [i, j] stores the score of the alignment between A[1..j] = a1 · · ·aj and
B[1..i] = b1 · · · bi.

A common scheme of sequence comparison is the longest common subsequence
(LCS) metric [9]. A subsequence of string A is any string obtained by removing
0 or more characters from A, and the LCS of two strings A and B (denoted by
LCS(A,B)) is the longest subsequence that commonly appears in both A and
B. In the LCS measure, matched pairs of characters are assigned score 1 and

Table 1. Comparison of complexities for fully incremental LCS computation provided
that LCS(A, B) is already computed, where n = |A| and m = |B|. Note that L =
LCS(A, B) ≤ min(n, m) always holds. The last row shows the total space requirement
of each algorithm.

Naive DP Modified algorithm of [12] Our algorithm

time for LCS(aA, B) O(mn) O(m + n) O(L)

time for LCS(Aa, B) O(m) O(m) O(L)

time for LCS(A, bB) O(mn) O(m + n) O(n)

time for LCS(A, Bb) O(n) O(n) O(n)

total space complexity O(mn) O(mn) O(nL + m)

unaligned characters are assigned score 0, and the objective is to compute an
optimal alignment that gives the maximum score corresponding to LCS(A,B).

LCS(A,B) can be obtained by computing the DP matrix in O(mn) time.
The DP approach is suitable for on-line incremental computation of the LCS,
in such a situation where upcoming characters are appended to the tails of A
and/or B. In fact, LCS(Aa,B) and LCS(A,Bb) can be easily computed in O(m)
and O(n) time respectively, provided that LCS(A,B) is already computed. This
enables us an efficient processing of e.g. streaming data.

In recent years, the research of computing string alignments to the reversed
direction (from right to left) has been a popular topic of pattern matching.
Examples of motivations are to process log files backdating to the past, and
to compute the alignments between not only the prefixes but also the suffixes
of a biological sequence and another biological sequence [10]. However, a naive
use of the DP approach is not efficient enough: Since prepending a character
a to the head of A can change all the entries of the DP table, we have to re-
compute the whole DP table from scratch, and this obviously takes O(mn) time.
Significant improvement was given by Landau et al. [11] for the edit distance
metric. For the edit distance metric, their algorithm performs in O(m+n) time.
Kim and Park [12] presented a simpler algorithm solving the same problem in the
same complexity. Landau et al. [10] introduced the consecutive suffix alignment
problem and showed two algorithms to solve this problem; the first one runs in
O(nL+m) time and space, and the second one in O(nL) time and space, where
L = LCS(A,B), assuming that the alphabet is fixed. Note that L ≤ min(n,m)
always holds.

This paper treats fully incremental LCS computation where characters are
added to any position of the heads and tails of A and B. In so doing, we pay our
attention to the O(nL+m) algorithm by Landau et al. in [10]. In this paper, we
produce an algorithm for fast, flexible, and efficient computation of LCS. The
result of this work is summarized in Table 1. It is actually possible to apply the
algorithm of Kim and Park [12] to fully incremental LCS computation, which
was originally designed for the edit distance metric. However, as seen in Table 1,
our algorithm is superior to their algorithm in both time and space complexities.

2

2 Preliminaries

Let Σ be a finite alphabet. Throughout this paper we assume that Σ is fixed.
An element of Σ∗ is called a string. For string A = a1a2 · · · an, let |A| denote
its length, namely |A| = n. Let A[i] = ai and A[i..j] = ai · · · aj , where 1 ≤ i ≤
j ≤ n. Then A[1..j] is called a prefix, A[i..j] a substring, and A[i..n] a suffix of
A. Sequence A[i1]A[i2] · · ·A[i�] is called a subsequence of A of length �, where
1 ≤ i1 < i2 . . . < i� ≤ n. Note that any substring of A is a subsequence of A. Let
B = b1b2 · · · bm. A subsequence occurring in both A and B is called a common
subsequence of A and B, and the longest such subsequence is called the longest
common subsequence (LCS) of A and B, which is denoted by LCS(A,B).

A standard technique for computing LCS(A,B) is the dynamic programming
method, where we compute the DP matrix of size (m + 1) × (n + 1) for which
DP [i, j] = LCS(A[1..j], B[1..i]) for 1 ≤ j ≤ n and 1 ≤ i ≤ m. The recurrence of
the DP matrix is the following:

DP [i, j] =




0 if i = 0 or j = 0,

max(DP [i − 1, j],DP [i, j − 1]) if i, j > 0 and A[j] �= B[i],
DP [i − 1, j − 1] + 1 if i, j > 0 and A[j] = B[i].

Therefore, to compute LCS(A,B) = DP [m, n], we need O(mn) time and space.
Pair (i, j) is said to be a match point between A and B, if A[j] = B[i]. Pair

(i, j) is said to be a partition point of DP if DP [i, j] = DP [i−1, j]+1. P denotes
the set of the partition points of DP . Let (i, j) ∈ P and DP [i, j] = v. Then we
write as P [v, j] = i, namely, P [v, j] is the first row index i at column j of DP
which bears v. See Fig. 1 for examples of match points and partition points.

3 The Landau Myers Ziv-Ukelson Algorithm

Assume that, given two strings A,B, we have already computed L = LCS(A,B).
In this section we recall the algorithm of [10] which, for any character a, computes
LCS(aA,B) in amortized O(L) time. This algorithm computes only the partition
points rather than the whole DP matrix, thus saving both time and space.

Let DPAh and PAh denote the DP matrix and the partition point set ob-
tained from DP and P by adding a new character a to the head of A, respectively.
Let n = |A| and m = |B|.
Lemma 1 (Landau et al. [10]). PAh is computed by inserting at most one
new partition point at each column of P .

See Fig. 1 for a concrete example of the above lemma.
In Lemma 2 we will show how to compute in O(1) time the new partition

point for each column. In so doing, we construct the next match table (NM
table) as follows: NM [i , a] returns min{i′ | i′ > i and B[i′] = a}, if such i′

exists. Otherwise, it returns null. For fixed alphabet Σ the size of NM table is
O(m). An example of NM table is shown in Fig. 2.

3

b

b
ba

c

c

d

d d d

0 0 1 1 1 1

0 0 1 1 2 2

0 0 1 1 2

0

2

1 1 2 2 3

b b ba c

b

b
c

d

d d d
1 1 1 1 1

1 1 1 1 1 2 2

1 1 1 2

1 1

2

2 2 3 3

1 1

2 2

3

Fig. 1. DP (left) and DP Ah (right) with A = adbdcd, B = bcbd and a = b. Cells
marked with a circle and rectangle are match and partition points, respectively. Grey
rectangles show the new partition points inserted into DP Ah.

b

0

1
2

3

4

c

b

d

a b c d

null

null

null

null

null

1 2 4

3
3

2 4

4

4
null

null

null

null

null

null

Fig. 2. NM table for string B = bcbd with alphabet Σ = {a, b, c, d}.

Lemma 2 (Landau et al. [10]). Let Ij−1 = PAh[v, j−1] denote the row index
of the new partition point in column j−1 of PAh. Then, the new partition point
Ij at column j of DPAh is computed as follows:

Ij =

{
Ij−1 if PAh[v, j−1] ≤ P [v, j],
min{NM (PAh [v , j−1],A[j]),PAh [v+1 , j−1]} if PAh[v, j−1] > P [v, j].

Note that a special case occurs in Lemma 2 when v is the highest value in
column j − 1 of DPAh, and therefore partition point PAh[v + 1, j − 1] does not
exist. In this case, PAh[v + 1, j− 1] is set to the dummy index m + 1, so that we
can proceed according to the above lemma.

The stop condition of the update procedure is as follows.

Lemma 3 (Landau et al. [10]). If column j of DPAh is identical to colum j
of DP , then all columns j′ > j of DPAh are also identical to columns j′ of DP .

The partition point set P is implemented by a double linked list in order
that insertion of new partition points can be done in O(1) time. The row indices
correspond to the LCS values and the column indices correspond to the positions
of string A, and each cell stores the corresponding row index of B. Fig. 3 shows
an example of the update of P to PAh. It is obvious that the size of the partition
point set is bounded by O(nL). Since insertion of each new partition point can

4

4 1 1 1 1

4 22

4

b cd d d
1

2

3

a
1 1 1 1

22

4

4

4

b ba cd d d
1

3

1

2

3 4

11

3

Fig. 3. Update of P with strings A = dbdcd and B = bcbd to PAh with new character
a = b. Grey circles are the new partition points inserted to PAh.

be done in O(1) time, this set can be constructed in O(nL) time. Since |A| = n,
each incrementation of a new character to the head of A takes the following
time.

Theorem 1 (Landau et al. [10]). Provided that L = LCS(A,B) is already
computed, for any character a, LCS(aA,B) is computable in amortized O(L)
time.

4 A Fully Incremental LCS Computation Algorithm

In this section we produce an efficient algorithm to solve the fully incremental
LCS computation problem, where the problem is to compute the LCS of given
two strings under the condition that characters are added to any of the heads
and tails of the two strings at any time. Namely, we are to compute LCS(aA,B),
LCS(Aa,B), LCS(A, bB), or LCS(A,Bb). The first one, LCS(aA,B), is com-
putable in amortized O(L) time due to Theorem 1 by Landau et al. [10], as
recalled in Section 3. In what follows, we will show how to compute the three
others.

4.1 Computing LCS(A, bB)

Assume we have already computed LCS(A,B). Let DP and P be the DP table
and the partition point set for LCS(A,B), respectively. Let DPBh and PBh

denote the DP matrix and the partition point set for LCS(A, bB) with character
b, respectively. Let n = |A| and m = |B|.

Where partition points are updated. This subsection is devoted to clarify-
ing where partition points are possibly changed in the DP table when comput-
ing LCS(A, bB) from LCS(A,B). Fig. 4 shows an example of updating DP to
DPBh.

Let � = min{j | A[j] = b}. Namely, � is the smallest column index of DPBh

in which a match point exists in the first row. Then we have the following
proposition.

5

a a a a a a a

a

a
b

b

b b b

c

c

c c

0 0 0 0
0 0 0 0

1

4
3

2
0 0 1 1 1 1 1
1 1

1 1 1 1

1 1 1 1
1
1

1
21 2 2 2

2 2 2 2
2 2 2 2

2
2 2
2 2

3 3 3

3 3 3
3

3 3 4 4

4 4 4
4 4 4

4
5

5 5

2

b
a a a a a a a

a

a
b

b

b b b

c

c

c c
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0
0
0
0

1 1

1 1 1 1

1 1 1 1
1

1

11
2 2 2 2 2 2

2 2 2 2

2 2 2 2

2

21

2 2
2
2 3 3 3 3 3

3 3
3

3
3
3

4 4 4 4

4 4

4

4
4

5 5
5 5

5

5

6

6 6

1b 1 1 1 1 1 1 1

Fig. 4. Update of DP to DP Bh with A = aaaabacbabca, B = cbabac, and b = b.
Rectangles show the partition points. In DP Bh on right, dashed rectangles are new
partition points inserted, and circles indicate partition points deleted in updating DP
to DP Bh.

Proposition 1. All the entries of DPBh are identical to those of DP at the
columns smaller than �, except for the first row of DPBh. The scores in the first
row of DPBh are 0 at columns smaller than �, while the scores are 1 at the other
columns.

See Fig. 4 for concrete examples. This proposition means that we do not need
to care about these entries of the DP table. In the following, we only consider
the other entries than these.

Lemma 4. For any column j ≥ �, there exists row index Ej such that

DPBh[i, j] =

{
DP [i, j] + 1 if i < Ej ,

DP [i, j] if i ≥ Ej .

Proof. Similar to the proof of Lemma 1 in [10]. ��
The following lemma is derived from Lemma 4.

Lemma 5. Column j of PBh consists of the partition points in P except for
one possibly eliminated partition point from P , plus the first row index of DPBh

if it has score 1 at column j. Let Ej be the smallest row index such that δEj =
DPBh[Ej , j]−DP [Ej, j] = 0. Then (Ej , j) is the only partition point eliminated
at column j in updating P to PBh.

Proof. It is obvious that the first row index of DPBh becomes a partition point
at each column of PBh, if it has score 1.

In what follows, we will show that (1) (Ej , j) is a partition point of DP ; (2)
(Ej , j) is not a partition point of DPBh.

(1) For contrary, assume (Ej , j) is not a partition point of DP . Then DP [Ej −
1, j] = DP [Ej , j]. Since Ej is the smallest row index such that δEj = 0, by
Lemma 4 we get δEj−1 = 1 which yields DPBh[Ej − 1, j] = DPBh[Ej , j]+ 1
but this contradicts the monotonicity of LCS. Hence (Ej , j) is a partition
point of DP .

6

(2) For contrary, assume (Ej , j) is a partition point of DPBh. Then DPBh[Ej −
1, j] = DPBh[Ej , j]−1. Since Ej is the smallest row index such that δEj = 0,
by Lemma 4 we get δEj−1 = 1 which yields DP [Ej , j] = DP [Ej −1, j] which
contradicts (1) above. Hence (Ej , j) is not a partition point of DPBh.

For any row i < Ej of column j, we have DPBh[i, j] = DP [i, j] + 1 by
Lemma 4. Since the first row at column j of DPBh is a new partition point of
PBh with score 1, the partition point in any rows smaller than Ej are inherited
from P to PBh. Similar arguments hold for the rows greater than Ej . ��
See Fig. 4 for concrete examples of Lemma 5. Each entry marked by a circle is
the partition point eliminated at the column.

According to Lemma 5, at each column j of PBh at most one new partition
point is inserted in the first row, and at most one partition point Ej is eliminated
at a larger row. In updating P to PBh, P is processed from left column to right
column. Now we show where Ej can exist at each column j.

Proposition 2. For any column j − 1 of DP table, let P [v, j − 1] = x. At the
next column j, we have DP [x, j] = v.

Proof. Since DP [x, j−1] is the partition point of score v, we know that DP [x−
1, j − 1] = v − 1. There are two possible cases:

– when (x, j) is a match point.
By the recursion of LCS computation, DP [x, j] = DP [x − 1, j − 1] + 1 = v.

– when (x, j) is not a match point.
Since DP [x − 1, j − 1] = v − 1, DP [x − 1, j] can assume v − 1 or v. Thus,
DP [x, j] = max{DP [x − 1, j],DP [x, j − 1]} = v.

��
Lemma 6. Let (Ej−1, j − 1) and (Ej , j) be the partition points eliminated at
columns j−1 and j in updating P to PBh, respectively. Let DPBh[Ej−1, j−1] =
v. Then we have

Ej−1 ≤ Ej ≤ PBh[v + 1, j − 1].

(see Fig. 5.)

Proof. Since DPBh[Ej−1, j−1] = v, P [v, j−1] = Ej−1. In what follows, we will
consider three kinds of rows and show that Ej can exist in none of them. Recall
that PBh[v, j − 1] < P [v, j − 1] = Ej−1.

– rows smaller than or equal to PBh[v, j − 1].
Consider any partition point (x, j − 1) such that x ≤ PBh[v, j − 1] and let
DP [x, j − 1] = v′. By Proposition 2, DP [x, j] = v′. On the other hand, by
Lemma 4, P [v′, j−1] = PBh[v′+1, j−1] = x. Since DP [PBh[v′+1, j−1], j] =
v′+1 by Proposition 2, we have DPBh[x, j] = DP [x, j]+1 which means that,
for any partition point (x, j − 1), we have (x, j − 1) ∈ PBh, while increasing
its score just by 1. Thus no partition point is eliminated in the range smaller
than PBh[v, j − 1] at column j.

7

DP

jj-1

v' v'

v

v+1

v-1

DPBh

jj-1

v'+1v'+1

v

v

v+1

E

E

P [v+1, j-1]Bh

j

j-1

Fig. 5. The range where a partition point Ej at column j can exist, in updating P to
PBh. Gray entries indicate partition points.

– rows greater than PBh[v, j − 1] and smaller than Ej−1.
The scores of these rows in DP are all v − 1, since DP [Ej−1, j − 1] = v and
(Ej−1, j − 1) is a partition point. We have two cases.
• when there are one or more match points in these rows at column j.

Consider the highest such match point (of the smallest row index) and
let its row index be i. Then there is a partition point (i, j) such that
P [v, j] = i. For any row indices PBh[v, j−1] < i′ < i, we have DP [i′, j−
1] = DP [i′, j] = v − 1 and DPBh[i′, j − 1] = DPBh[i′, j] = v. For any
row indices i ≤ i′′ < Ej−1, we have DP [i′′, j − 1] + 1 = DP [i′′, j] = v
and DPBh[i′′, j − 1] + 1 = DPBh[i′′, j] = v + 1. Thus PBh[v + 1, j] =
P [v, j] = i.

• when there are no match points in these rows at column j.
In this case, there are no partition points in these rows of either DP or
DPBh.

– rows greater than Ej .
Similar to the first case.

Therefore we can conclude that Ej−1 ≤ Ej ≤ PBh[v + 1, j − 1]. ��

Eliminating partition points. In the last subsection we described where the
partition points, which can possibly be eliminated, exist. In this section, we show
how to quickly eliminate such partition points.

Lemma 7. Let (Ej−1, j − 1) and (Ej , j) be the partition points eliminated at
columns j−1 and j in updating P to PBh, respectively. Let DPBh[Ej−1, j−1] =
v. Then we have

Ej =

{
Ej−1 if there is no match point (x, j) s.t. PBh[v, j−1] < x ≤ Ej−1,

P [v+1, j] otherwise.

Proof. We begin with the first case (see Fig. 6). Since (Ej−1, j−1) is the partition
point in DP with score v, by the monotonicity of LCS we have DP [PBh[v, j −

8

DP

jj-1

v

v+1

v-1

v-2

v-1

v

no match point

DPBh

jj-1

E Ejj-1
v

v+1

v

v-1

v

v=

Fig. 6. Ej = Ej−1 if there is no match point between PBh[v, j − 1] and Ej−1.

DP

jj-1

v

v+1

v-1

v-2

v-1

v match point

v+1

DP

jj-1

v

v+1

v

v-1

v

v+1

v+1

Bh

Ej-1

Ej=P[v+1, j]

Fig. 7. Ej = P [v + 1, j] if there is a match point between PBh[v, j − 1] and Ej−1.

1], j] = v−1. Thus for any row index PBh[v, j−1] ≤ i < Ej−1, DP [i, j−1] = v−1.
By Lemma 4 DPBh[i, j− 1] = v for any such i. Recall PBh[v, j] ≤ PBh[v, j − 1].
Since there is no match point (x, j) such that PBh[v, j − 1] < x ≤ Ej−1, we get
the three following properties:

– for any row index P [v, j] ≤ i′ < Ej , DP [i′, j] = v − 1,
– P [v, j] = Ej−1, and
– for any row index PBh[v, j] ≤ i′′ ≤ Ej , DP [i′′, j] = v,

which imply Ej = Ej−1.
Now we focus on the second case (see Fig. 7). Consider minimum row index

x in range PBh[v, j − 1] < x ≤ Ej−1, such that (x, j) is a match point. Then we
know that P [v, j] = x. By Lemmas 4 and 6, we have DPBh[x, j] = v + 1. Hence
Ej = P [v + 1, j] as it is no longer a partition point at column j of DPBh. ��

Note that a spacial case occurs in Lemma 7 when v is the highest value at
column j of DP , and therefore partition point (P [v + 1, j], j) does not exist. In
this case, P [v, j] = PBh[v + 1, j] as usual, but no partition point is eliminated
at column j. The update of P to PBh is stopped at this point, since Lemma 3
also stands for PBh.

9

The initial condition to determine the first column in which a partition point
is eliminated, and in which row the partition point to be eliminated exists, is
given in the following lemma.

Lemma 8. Let � = min{j | A[j] = b}. Then we have

E� =

{
null if there is no partition point at column j in DP ,
P [1, �] otherwise.

Proof. Trivial. ��
In case Ej = null in Lemma 8, there occurs no partition point elimination at
the greater columns than �, either.

Due to the above arguments, it is possible to update each column of P in
constant time using the double-linked list implementation in Section 3. Since we
have to update n columns in the worst case (For instance, consider A = ban and
B = bm. Every time we add b = b to the head of B, n new partition points will
be added, and n old partition points will be eliminated), we conclude that:

Theorem 2. Provided that L = LCS(A,B) is already computed, for any char-
acter b, LCS(A, bB) is computable in O(n) time.

4.2 Computing LCS(Aa, B)

Let DPAt and PAt denote the DP matrix and the partition point set which we
obtain in computing LCS(Aa,B) with character a, respectively.

The following proposition is obvious.

Proposition 3. For each partition point (P [v, j − 1], j − 1),

P [v, j] =

{
NM (P [v − 1 , j],A[j]) if NM (P [v − 1 , j],A[j]) < P [v , j − 1],
P [v, j − 1] otherwise.

It is clear that the scores of all the existing columns of DP are inherited to DPAt

and thus we only need to compute the partition points in the last (new) column
of PAt, which is computable based on Proposition 3. Therefore we obtain the
following result.

Theorem 3. Provided that L = LCS(A,B) is already computed, for any char-
acter a, LCS(Aa,B) is computable in O(L) time.

4.3 Computing LCS(A, Bb)

Let DPBt and PBt denote the DP matrix and the partition point set which we
obtain in computing LCS(A,Bb) with character b, respectively.

It is clear that in updating DP to DPBt the scores of all rows are preserved
and thus we only need to examine whether or not the last (new) row becomes
a new partition point at each column. Let P [j] denote the set of the partition
points at column j of DP . That is, P [j] is a subset of P . Then we have the
following proposition and theorem.

10

Proposition 4. Let partition point max(P [j − 1]) have score v.

– If max(P [j]) has score v + 1, then the last row at column j is not in PBt.
– If max(P [j]) has score v, then there are two sub-cases.

• If the last row at column j of DPBt is a match point, then the last row
at column j is in PBt with score v + 1.

• If the last row at column j of DPBt is not a match point, then there are
two further sub-cases.
∗ If max(PBt[j − 1]) has score v, then the last row at column j is not

in PBt.
∗ If max(PBt[j − 1]) has score v + 1, then the last row at column j is

in PBt with score v + 1.

Theorem 4. Provided that L = LCS(A,B) is already computed, for any char-
acter b, LCS(A,Bb) is computable in O(n) time.

Proof. By Proposition 4 we can compute each partition point in the last row of
DPBt in O(1) time. Since there are n column indices at the last row of DPBt,
it takes O(n) time in total. ��

4.4 Updating NM Table

The algorithms introduced in the last subsections use NM table. Recall that we
construct NM table for alphabet Σ against string B. Thus, when a new character
is added to the head or tail of B, NM table has to be updated accordingly. Let
NM Bt and NM Bh denote the next match tables obtained by updating NM for
LCS(A, bB) and LCS(A,Bb), respectively.

– computing NM Bh .
Let i be the position index of new character b added to the head of B. Then
we have

NM Bh [k , c] =




i if k = i − 1 and c = b,

NM [k + 1 , c] if k = i − 1 and c �= b,

NM [k , c] otherwise.

This means that we only have to update the top row i − 1 of NM Bh . Since
we have assumed that Σ is fixed, it takes O(1) time.

– computing NM Bt .
Let i′ be the position index of new character b appended to the tail of B.
Also, let � be the last occurrence of b in B. Then we have

NM Bt [k , c] =




null if k = i′,
i′ if � ≤ k < i′ and c = b,

NM [k , c] otherwise.

11

Initializing row i′ takes constant time as Σ is fixed. For row � ≤ k < i′ at
column b, in the worst case it takes linear time in the length of B. However,
notice that once any entry is valued with a non-null position, its value will
never change. Since the size of NM is linear in the length of B (once more
recall Σ is fixed), the amortized time complexity for updating NM is O(1).

In conclusion of this whole section, the following theorem stands.

Theorem 5. Given strings A,B of length n, m respectively, and provided that
L = LCS(A,B) is already computed, we can compute, for any character a, b,
LCS(aA,B) in O(L) time, LCS(A, bB) in O(n) time, LCS(Aa,B) in O(L)
time, and LCS(A,Bb) in O(n) time. The total space complexity is O(nL + m).

References

1. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
2. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University

Press (1997)
3. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence align-

ment algorithm for unrestricted cost matrices. In: Proc. 13th SIAM Symposium
on Discrete Algorithms (SODA’02). (2002) 679–688

4. Hunt, J.W., Szymanski, T.G.: An algorithm for differential file comparison. Com-
munications of the ACM 2 (1977) 417–439

5. Amir, A., Eisenberg, E., Porat, E.: Swap and mismatch edit distance. In: 12th
Annual European Symposium on Algorithms (ESA’04). Volume 3221 of LNCS.,
Springer-Verlag (2004) 16–27

6. Wu, S., Manber, U.: Fast text searching allowing errors. Communications of the
ACM 35 (1992) 83–91

7. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research 25 (1997) 3389–3402

8. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: Highly sensitive and fast
homology search. Journal of Bioinformatics and Computational Biology 2 (2004)
417–439

9. Apostolico, A.: String editing and longest common subsequences. In: Handbook
of Formal Languages. Volume 2., Springer-Verlag (1997) 361–398

10. Landau, G.M., Myers, E., Ziv-Ukelson, M.: Two algorithms for LCS consecutive
suffix alignment. In: Proc. 15th Annual Symposium on Combinatorial Pattern
Matching (CPM’04). Volume 3109 of LNCS., Springer-Verlag (2004) 173–193

11. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
Journal of Computing 27 (1998) 557–582

12. Kim, S.R., Park, K.: A dynamic edit distance table. In: Proc. 11th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’00). Volume 1848 of LNCS.,
Springer-Verlag (2000) 60–68

12

