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ABSTRACT: Suffix trees are a well-known and widely-studied data structure highly useful for
string matching. The suffix tree of a string w can be constructed in O(n) time and space, where
n denotes the length of w. Larsson achieved an efficient algorithm to maintain suffix trees for
a sliding window. It contributes to prediction by partial matching (PPM) style statistical data
compression scheme. Compact directed acyclic word graphs (CDAWGs) are a more space-
economical data structure for indexing strings. In this paper we propose a linear-time algorithm
to maintain CDAWGs for a sliding window.
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1 Introduction

Due to rapid advance in information technology and global growth of computer net-
works, various data are available today. This benefit, on the other hand, can turn out
to be a serious matter that we have to sacrifice a large amount of memory space for
the storage of huge data. Data compression is the practical technique to save memory
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space required to store the information we need. Since string is the most fundamental
and basic form of data, string matching plays central tasks in many data compression
schemes. A straightforward method for matching strings would be to construct an
index structure for the full text to be compressed. It is, however, easy to imagine that
indexing the whole string requires too much space for the storage. This fact implies
that an index structure needs to be dynamic in order to be suitable for processing part
of the text, so that we can treat huge text data with a limited amount of space.

Suffix trees are a highly efficient data structure, therefore being extensively used in
various applications in string matching [19, 16, 1, 5, 8]. The suffix tree of a string w,
denoted by STree(w), represents all factors of w and can be constructed in linear time
and space. The on-line algorithm by Ukkonen [18] processes a given string w left to
right, and at each j-th phase it maintains STree(w[1 : j]), where w[1 : j] denotes the
prefix of w of length j. Larsson [14] modified Ukkonen’s algorithm so as to maintain
STree(w[i : j]) with 0 ≤ i ≤ j ≤ |w|, for any factor of length j − i + 1 = M . The
width M of indexed factors is called the window size. That is, Larsson presented an
algorithm to maintain a suffix tree for a sliding window mechanism where the values
of i and j are incremented.

Larsson addressed that an application of suffix trees for a sliding window is the
prediction by partial matching (PPM) style statistical data compression model [4, 17].
PPM∗ [3] is an improvement that allows unbounded context length. PPM∗ employs a
tree structure called the context trie, which supports indexes of the input string. The
drawback of PPM∗ is, however, its too much computational resources in both time and
space, which weakens its practical usefulness. In particular, the context trie occupies
major part of the space requirement. Larsson’s suffix tree for a sliding window offered
a variant of PPM∗, feasible in practice since its space requirement is bounded by the
window size M and the running time is linear in the length of the input string w.

In this paper, we take another approach to reducing the space requirement in PPM∗-
style statistical compression. We propose an algorithm to maintain compact directed
acyclic word graphs (CDAWGs) for a sliding window, which performs in linear time
and space. CDAWGs require less space than suffix trees in both theory and prac-
tice [2, 6]. In our previous work [11], we presented an on-line algorithm that con-
structs CDAWG(w) in linear time and space. Moving the rightmost position of a
sliding window can be accomplished by the algorithm. In case of a suffix tree, it is
also rather straightforward to advance the leftmost position of a sliding window: ba-
sically we have only to remove the leaf node and its in-coming edge corresponding
to the longest suffix. However, since a CDAWG is a graph, the matter is much more
complex and technically difficult. Thus more detailed and precise discussions are nec-
essary. In addition, we have to ensure that no edge labels refer to positions outside a
sliding window. To guarantee it, Larsson utilized the technique of credit issuing first
introduced in [7], which takes amortized constant time. We introduce an extended
version of credit issuing that is modified to be suitable for treating CDAWGs.

A preliminary version of this article appeared in [12].
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2 Compact Directed Acyclic Word Graphs

2.1 Definitions

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. Strings x, y, and z are said to be a prefix, factor, and suffix of string
w = xyz, respectively. The sets of the prefixes, factors, and suffixes of a string w
are denoted by Prefix(w), Factor(w), and Suffix(w), respectively. The empty string is
denoted by ε, that is, |ε| = 0. Let Σ+ = Σ∗−{ε}. The factor of a string w that begins
at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For
convenience, let w[i : j] = ε for j < i. Let S ⊆ Σ∗. The cardinality of S is denoted
by |S|. For any string x ∈ Σ∗, Sx−1 = {u | ux ∈ S} and x−1S = {u | xu ∈ S}.
We define equivalence relations ≡L

w and ≡R
w on Σ∗ by

x ≡L
w y ⇔ Prefix(w)x−1 = Prefix(w)y−1,

x ≡R
w y ⇔ x−1Suffix(w) = y−1Suffix(w),

respectively. Let [x]Lw and [x]Rw denote the equivalence classes of a string x ∈ Σ∗ under
≡L

w and ≡R
w , respectively. The longest elements in the equivalence classes [x]Lw and

[x]Rw for x ∈ Factor(w) are called their representatives and denoted by
w−→x and

w←−x ,
respectively. For any string x ∈ Factor(w), there uniquely exist strings α, β ∈ Σ∗

such that
w−→x = xα and

w←−x = βx.
We now introduce a relation Xw over Σ∗ such that

Xw = {(x, xa) | x ∈ Factor(w) and a ∈ Σ is unique such that xa ∈ Factor(w)},

and let ≡′L
w be the equivalence closure of Xw, i.e., the smallest superset of Xw that is

symmetric, reflexive, and transitive. It can be readily shown that≡L
w is a refinement of

≡′L
w, namely, every equivalence class under≡′L

w is a union of one or more equivalence

classes in ≡L
w. For a string x ∈ Factor(w), let

w
=⇒
x denote the longest string in the

equivalence class to which x belongs under the equivalence relation ≡′L
w.

Note that
w−→x and

w
=⇒
x are not always equal. For example, consider the case that

w = abab and x = ab, where
w−→x = ab but

w
=⇒
x = abab. More formally:

PROPOSITION 2.1 ([10])
Let w ∈ Σ∗. For any string x ∈ Factor(w),

w−→x is a prefix of
w

=⇒
x . If

w−→x �=
w

=⇒
x , then

w−→x ∈ Suffix(w).

In the following, we define the suffix tree and the CDAWG of w, denoted by
STree(w) and CDAWG(w), respectively. We define them as edge-labeled graphs
(V, E) with E ⊆ V × Σ+ × V where the second component of each edge represents
its label. We also give definitions of the suffix links, frequently used for time-efficient
construction of the index structures [19, 16, 18, 2, 6, 11, 9].
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FIG. 1: The left and right figures are STree(cocoa) and CDAWG(cocoa), respec-
tively. Solid arrows represent edges, and dotted arrows represent suffix links.

DEFINITION 2.2
STree(w) is the tree (V, E) such that

V = {
w

=⇒
x | x ∈ Factor(w)},

E = {(
w

=⇒
x , aβ,

w
=⇒
xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w
=⇒
xa = xaβ,

w
=⇒
x �=

w
=⇒
xa},

and its suffix links are the set

F = {(
w

=⇒
ax,

w
=⇒
x ) | x, ax ∈ Factor(w), a ∈ Σ,

w
=⇒
ax = a ·

w
=⇒
x }.

DEFINITION 2.3
CDAWG(w) is the dag (V, E) such that

V = {[
w

=⇒
x ]Rw | x ∈ Factor(w)},

E = {([
w

=⇒
x ]Rw, aβ, [

w
=⇒
xa ]Rw) | x, xa ∈Factor(w), a ∈Σ, β ∈Σ∗,

w
=⇒
xa = xaβ,

w
=⇒
x �=

w
=⇒
xa},

and its suffix links are the set

F = {([
w

=⇒
ax ]Rw, [

w
=⇒
x ]Rw) | x, ax ∈ Factor(w), a ∈ Σ,

w
=⇒
ax = a ·

w
=⇒
x , [

w
=⇒
x ]Rw �= [

w
=⇒
ax ]Rw}.

One can see that CDAWG(w) is the “minimization” of STree(w) due to the “[(·)]Rw
operation”. Compare STree(w) with CDAWG(w) for w = tt cocoa shown in FIG. 1.

The nodes [
w

=⇒
ε ]R

w
= [ε]R

w
and [

w
=⇒
w ]R

w
= [w]R

w
are called the source node and the sink

node of CDAWG(w), respectively. For any x ∈ Factor(w) such that x =
w

=⇒
x , x is

said to be represented by the explicit node [
w

=⇒
x ]Rw. If x �=

w
=⇒
x , x is said to be on an

implicit node. The implicit node is represented by a reference pair ([
w

=⇒
z ]Rw, y) such
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that z ∈ Prefix(x), y ∈ Σ∗ and
w

=⇒
z · y = x. When |y| is minimum, the pair ([

w
=⇒
z ]R

w
, y)

is called the canonical reference pair of x. Note that an explicit node can also be
represented by a reference pair.

The out-degree of a node v of a suffix tree (or of a CDAWG) is denoted by OutDeg(v).

PROPOSITION 2.1 implies that, for a string x ∈ Factor(w),
w−→x is not always repre-

sented on an explicit node in CDAWG(w). Actually, in CDAWG(coco) displayed at

FIG. 2, string
w−→co = co is on an implicit node, where w = coco.

To implement CDAWG(w) using only O(|w|) space, labels of edges are represented
by two integers indicating their beginning and ending positions in w, respectively.

Suppose that ([
w

=⇒
x ]R

w
, y, [

w
=⇒
z ]R

w
) is an edge of CDAWG(w). Then the edge label y is

actually represented by a pair (i, j) of integers such that w[i : j] = y. A reference
pair can be represented in a similar way.

2.2 On-Line Algorithm to Construct CDAWGs

We here recall the on-line algorithm to construct CDAWGs, introduced in our previ-
ous work [11]. By that algorithm we can move ahead the rightmost position of the
sliding window. The algorithm is based on Ukkonen’s on-line suffix tree construction
algorithm [18]. It updates CDAWG(w) to CDAWG(wa) by inserting suffixes of wa
into CDAWG(w) in decreasing order of their lengths. Let z be the longest string in
Factor(w)∩Suffix(wa). Then z is called the longest repeated suffix of wa and denoted
by LRS(wa). Let z′ = LRS(w). Let |wa| = l and u1, u2, . . . , ul, ul+1 be the suffixes
of wa ordered in their length, that is, u1 = wa and ul+1 = ε. We categorize these
suffixes of wa into the following three groups.

(Group 1) u1, . . . , ui−1

(Group 2) ui, . . . , uj−1 where ui = z′a
(Group 3) uj , . . . , ul+1 where uj = z

Note all suffixes in Group 3 have already been represented in CDAWG(w). Let
v1, . . . , vi−1 be the suffixes of w such that, for any 1 ≤ k ≤ i − 1, vka = uk. Then
we can insert all the suffixes of Group 1 into CDAWG(w) by appending the character
a at the end of edges leading to the sink node. Moreover, we can update those edges
in constant time, by setting the ending position of the labels so to refer to a global
variable e indicating the length of the scanned part of the input string. In this case,
e = l. It therefore results in that we have only to care about those in Group 2. We
start from the locus corresponding to z′ = vi in CDAWG(w), which is called the
active point. If the active point is on an edge (on an implicit node), a new explicit
node is created and from there a new edge labeled by a is inserted leading to the sink
node. The locus of vi+1 can be found by following the suffix link and possibly some
downward edges. For an example, see the first and second phase of the conversion of
CDAWG(coco) to CDAWG(cocoa) in FIG. 2.

Assume vi+1 is also on an edge (on an implicit node) when it is found. Sometimes
the edge can be redirected to the node created when ui was inserted (see the third
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phase of the conversion of CDAWG(coco) to CDAWG(cocoa) in FIG. 2). For the
detailed condition of whether the edge should be merged or not, see [11]. After the
last suffix uj−1 is inserted to the CDAWG, all suffixes of wa are represented in the
CDAWG.

We now pay attention to LRS(wa) = z = uj . Consider the case that
wa
=⇒
uj = uj ,

that is, the case that uj is now represented in an explicit node. Then we have to
check whether or not uj is the representative of [uj ]Rwa. If not, the explicit node is
separated into two explicit nodes [x]Rwa and [uj ]Rwa, where x ∈ [uj ]Rw and x �= uj . See
CDAWG(cocoao) for an example of this.

THEOREM 2.4 ([11])
For any string w ∈ Σ∗, CDAWG(w) can be constructed on-line and in O(|w|) time
and space.

The on-line construction of CDAWG(w) with w = cocoao is shown in FIG. 2.

3 Suffix Trees for a Sliding Window

In this section we briefly recall Larsson’s algorithm for maintaining suffix trees for a
sliding window of width M > 0 [14]. Let i (resp. j) be the leftmost (resp. rightmost)
position of the window sliding in w, that is, j − i + 1 = M . To move the sliding
window ahead, we need to increment i and j. Incrementing j can be accomplished by
Ukkonen’s on-line algorithm. On the other hand, incrementing i means to delete the
leftmost character of the currently scanned string, that is, to convert STree(bw) into
STree(w) with some b ∈ Σ and w ∈ Σ∗. We focus on the path of STree(bw) which
spells out bw from the root node. This path is called the backbone of STree(bw). Let

x be the longest string in Prefix(bw) − {bw} such that
bw−→x = x. The locus of x in

STree(bw) is called the deletion point and denoted by DelPoint(bw). On the other

hand, let z be the longest string in Prefix(bw)− {bw} such that
bw
=⇒
z = z. The string z

is called the last node in the backbone and denoted by LastNode(bw).
We first consider the case that DelPoint(bw) = LastNode(bw). Now assume that

OutDeg(
bw
=⇒
x ) ≥ 3. Then there exists an edge (

bw
=⇒
x , y,

bw
=⇒
bw) in STree(bw) where y ∈ Σ+

and xy = bw. Then,
w

=⇒
x = x and OutDeg(

w
=⇒
x ) ≥ 2. This implies that, only by

removing this edge from STree(bw), we can obtain STree(w). An example is shown
in FIG. 3.

Now we assume OutDeg(
bw
=⇒
x ) = 2 in case DelPoint(bw) = LastNode(bw). We

delete the edge (
bw
=⇒
x , y,

bw
=⇒
bw) from STree(bw) such that y ∈ Σ+ and xy = bw, in order

to obtain STree(w) as well. Then the explicit node for x has to become implicit, since
w

=⇒
x �= x due to the fact that OutDeg(x) is now 1 (by the definition no internal node

of out-degree one must not exist in a suffix tree). As a result we obtain STree(w). An
example can be seen in FIG. 4.
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FIG. 2: The on-line construction of CDAWG(w) with w = cocoao. The dotted lines
represent the suffix links. The gray star indicates the active point of each step.

When DelPoint(bw) �= LastNode(bw), it follows from PROPOSITION 2.1 that x ∈
Suffix(bw). Moreover, x = LRS(bw), as to be proven by LEMMA 4.3 in Section 4.1.

Namely, the active point is on the locus for x in STree(bw). Let (
bw
=⇒
s , y,

bw
=⇒
bw) be the

edge on which x is represented. Let
bw
=⇒
s · t = x, where t ∈ Prefix(y). We shorten

the edge to (
w

=⇒
s , t,

w
=⇒
x ), and move the active point to the locus for the one-character

shorter suffix of x. Let v be the suffix of bw which is one-character longer than
LRS(bw) = x. Then, as seen in the example shown in FIG. 5, a new suffix link is
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FIG. 3: To the left is STree(cocoacob), in which the thick edge is to be deleted.
To the right is the resulting structure, STree(ocoacob). The gray star indicates the
active point for each.

created from the leaf node v to
w

=⇒
x .

One can see that any of the above-mentioned procedure takes only constant time.
The detection of DelPoint(w) after the conversion of STree(bw) to STree(w) is also
feasible in constant time simply by moving via the suffix link of the leaf node that is
deleted in the conversion. In the example of FIG. 5, we start from the leaf node of
cocoacoc and traverse its suffix link, arriving at the leaf node of ocoacoc. After
the suffix link is updated with a new character added to the right of the current string
ocoacoc, we check the incoming edge of the leaf node. If the active point is on it,
the edge is going to be shortened, and otherwise, deleted.

The last thing we have to care is that every edge label of a suffix tree is actually
implemented by a pair of integers that indicate beginning and ending positions of a
substring of the input string. Namely, we have to guarantee that no edge labels refer
to positions that are already out of the sliding window. Otherwise we will not be able
to maintain a suffix tree in O(M) space where M is the window size. Larsson utilized
the technique called credit issuing, introduced by Fiala and Greene [7], with which
we can in linear time maintain the labels of edges appropriately. As a consequence
Larsson achieved the following:

THEOREM 3.1 ([14])
Let w ∈ Σ∗ and M be the window size. Larsson’s algorithm runs in O(|w|) time
using O(M) space.

4 CDAWGs for a Sliding Window

In this section, we consider the maintenance of a CDAWG for a sliding window. Ad-
vancing the rightmost position of the window can be done by the on-line algorithm
recalled in Section 2.2. Thus the matter is to move ahead the leftmost position of the
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FIG. 4: The upper left is STree(cocoacoa). The upper right is the tree obtained
by deleting the thick edge from the suffix tree. The lower is the resulting structure,
STree(ocoacoa), in which the explicit node of out-degree one has become implicit.
The gray star indicates the active point for each.

window.

4.1 Edge Deletion

Given CDAWG(w), we also focus on its backbone, the path spelling out w from the
source node. Let x = DelPoint(w). If DelPoint(w) = LastNode(w), we remove the

edge ([
w

=⇒
x ]Rw, y, [

w
=⇒
w ]Rw) such that xy = w. However, notice that this method might

remove other suffixes of w from the CDAWG. More precise arguments follow.

LEMMA 4.1
Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x = z. Let s be
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FIG. 5: To the left is STree(cocoacoc), in which the thick edge is to be shortened.
To the right is the resulting structure, STree(ocoacoc). The gray star indicates the
active point for each.

any string in [
w

=⇒
x ]Rw = [

w
=⇒
z ]Rw. Then there uniquely exists a string y ∈ Σ+ such that

sy ∈ Suffix(w).

PROOF. Since x = DelPoint(w), there uniquely exists a character a ∈ Σ such that

xa ∈ Factor(w) and
w−→xa = w. Let y be the string such that xy = w with y ∈ Σ+,

where the first character of y is a. Let s be an arbitrary element in [x]Rw. Since x ∈
Prefix(w),

w←−x = x. Thus s ∈ Suffix(x), which implies sy ∈ Suffix(w).

In case that DelPoint(w) �= LastNode(w), we have the following.

LEMMA 4.2
Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x �= z. Let s be any

string in [
w

=⇒
z ]Rw. Then there uniquely exist strings t, u ∈ Σ+ such that st ∈ Suffix(x)

and stu ∈ Suffix(w).

PROOF. Since
w

=⇒
z = z,

w−→z = z. By the assumption that z �= x, we have z ∈ Prefix(x).

Since x = DelPoint(w), there uniquely exists a character a ∈ Σ such that
w−→za = x.

Thus there is a unique string t ∈ Σ+ such that zt = x. Since z ∈ Prefix(w), z =
w←−z .

Therefore, for any string s ∈ [z]Rw it holds that st ∈ Suffix(x). Moreover, there

uniquely exists a character b ∈ Σ such that
w−→
xb = w. Let u ∈ Σ+ be the string

satisfying
w−→
xb = xu. Now we have ztu = w, and for any s ∈ [z]Rw, it holds that

stu ∈ Suffix(w).

LEMMA 4.3
Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Assume x �= z. Then
x = LRS(w).
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PROOF. Since x �= z,
w

=⇒
x �=

w−→x . Hence
w−→x = x ∈ Suffix(w) by PROPOSITION 2.1.

It is not difficult to show that x occurs in w just twice. Let y = ax with a ∈ Σ, such
that y ∈ Suffix(w). Assume, for a contradiction, y = LRS(w). On the assumption,
y appears in w at least twice. If y /∈ Prefix(w), y must also occur in w as neither a
prefix nor a suffix of w. It turns out that x appears three times in w: a contradiction.
If y ∈ Prefix(w), x is of the form a�. Then y = DelPoint(w), which contradicts the
assumption that x = DelPoint(w). Consequently, x = LRS(w).

According to the above three lemmas, we obtain the following theorem.

THEOREM 4.4
Let w ∈ Σ+, x = DelPoint(w), and z = LastNode(w). Let k = |[

w
=⇒
z ]Rw|. Suppose

u1, u2, . . . , uk be the suffixes of w arranged in decreasing order of their length, where
u1 = w.

1. When x = z: Let xy = w. Assume that the edge ([
w

=⇒
x ]Rw, y, [

w
=⇒
w ]Rw) is deleted

from CDAWG(w).

2. When x �= z: Let zt = x and ztu = w. Assume that the edge ([
w

=⇒
z ]Rw, tu, [

w
=⇒
w ]Rw)

of CDAWG(w) is shortened into the edge ([
w

=⇒
z ]Rw, t, [

w
=⇒
x ]Rw).

In both cases, the suffixes u1, . . . , uk are removed from the CDAWG.

What the above theorem implies is that after deleting or shortening the last edge
in the backbone of CDAWG(w), the leftmost position of a sliding window “skips” k
characters at once. Let DelSize(w) = k. The next question is the exact upper bound
of DelSize(w). Fortunately, we achieve a reasonable result such that DelSize(w) is at
most about half of |w|. A more precise evaluation will be performed in Section 4.4.

One may wonder weather or not it is possible to delete only the leftmost character
of w in (amortized) constant time. We strongly believe the answer is “No”. The reason
is as follows. Let |w| = n where w ∈ Σ∗. Let u1, u2, . . . , un+1 be all the suffixes of
w arranged in decreasing order of their length. In [13], it has been proven that the total
number of nodes necessary to keep CDAWG(ui) for every 1 ≤ i ≤ n + 1 is Θ(n2),
even if we minimize the CDAWGs so to share as many nodes and edges as possible.
Therefore, the amortized time complexity to delete the leftmost character of w would
be proportional to n.

4.2 Maintaining the Structure of CDAWG

Suppose the last edge of the backbone of CDAWG(w) is deleted or shortened right
now. Let k = DelSize(w). Let u = w[k + 1 : n] where n = |w|. We sometimes need
to modify the structure of the current graph, so that it exactly becomes CDAWG(u).
Let x = DelPoint(w) of CDAWG(w).

Firstly, we consider when OutDeg([
w

=⇒
x ]R

w
) ≥ 3 in the first case of THEOREM 4.4.

In this case,
u

=⇒
x = x and OutDeg([

u
=⇒
x ]Ru ) ≥ 2. It does not contradict DEFINITION 2.3,

and thus no more maintenance is required. An example of the case is shown in FIG. 6.
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FIG. 6: On the left, CDAWG(cocoacob) is shown. The thick edge is to be deleted.
The resulting structure is CDAWG(coacob), shown on the right. The gray star indi-
cates the active point for each.

Secondly, we consider when OutDeg([
w

=⇒
x ]Rw) = 2 in the first case of THEOREM 4.4.

Let ([
w

=⇒
r ]Rw, s, [

w
=⇒
x ]Rw) be an arbitrary in-coming edge of the node [

w
=⇒
x ]Rw in CDAWG(w).

Assume
w

=⇒
r = r, that is, rs ∈ Suffix(x). Let ([

w
=⇒
x ]Rw, t, [

w
=⇒
w ]Rw) be the edge which is to

be the sole remaining out-going edge of the node [
u

=⇒
x ]Ru after the deletion. Notice that,

however,
u

=⇒
x = u. Thus the edge ([

w
=⇒
r ]Rw, s, [

w
=⇒
x ]Rw) is modified to ([

u
=⇒
r ]Ru , st, [

u
=⇒
u ]Ru ).

The total time required in the operations is proportional to the number of in-coming

edges of the node [
w

=⇒
x ]Rw in CDAWG(w). It is bounded by DelSize(w).

Moreover, we might need a maintenance of the active point. Let v = LRS(w).

Supposing that v ∈ Prefix(xt), v is represented on the edge ([
w

=⇒
x ]Rw, t, [

w
=⇒
w ]Rw) in

CDAWG(w). The active point is actually referred to as the pair ([
w

=⇒
x ]Rw, p), where p ∈

Prefix(t) and xp = v. The reference pair is modified to ([
u

=⇒
r ]Ru , sp) in CDAWG(u).

Note that
u←−r · sp = v. An example of the case is shown in FIG. 7.

Thirdly, we consider the second case in THEOREM 4.4. In this case the last edge in

the backbone ([
w

=⇒
z ]Rw, tu, [

w
=⇒
w ]Rw) is shortened to ([

u
=⇒
z ]Ru , t, [

u
=⇒
x ]Ru ) = ([

u
=⇒
z ]Ru , t, [

u
=⇒
u ]Ru )

in CDAWG(u). It implies that x �= LRS(u), although x = LRS(w). The active

point of CDAWG(w) is represented by ([
w

=⇒
z ]R

w
, t), since zt = x (by LEMMA 4.3).

Let SufLink([
w

=⇒
z ]Rw) = [

w
=⇒
s ]Rw. Assuming

w
=⇒
s = s, s is the longest string such that

s ∈ Suffix(z) and s /∈ [
w

=⇒
z ]Rw. Notice that LRS(u) = st. Hereby, the reference pair of

the active point is changed to ([
u

=⇒
s ]Ru , t). If [

u
=⇒
s ]Ru is the explicit parent node nearest
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FIG. 7: On the left, CDAWG(cocoacoa) is shown, where the thick edge is to be
deleted. The center is the intermediate structure in which the edge is deleted. After
the modifications, we obtain CDAWG(coacoa), shown on the right. The gray star
indicates the active point for each.
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FIG. 8: On the left, CDAWG(cocoacoc) is shown. The thick edge is to be short-
ened. The resulting structure is CDAWG(coacoc), shown on the right. The gray star
indicates the active point for each.

the locus of st, we are done. If not, the reference pair is canonized to ([
u

=⇒
r ]Ru , p) such

that s ∈ Prefix(
u

=⇒
r ), st =

u
=⇒
r · p, and |p| is minimum. An example of the case is

shown in FIG. 8.

4.3 Detecting DelPoint(u)

Suppose that after the edge deletion or shortening of CDAWG(w), we got CDAWG(u),
where u ∈ Suffix(w). The problem is how to locate DelPoint(u) in CDAWG(u).
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A naive solution is to traverse the backbone of CDAWG(u) from the source node.
However, it takes O(|u|) time, which leads to quadratic time complexity in total.

Our approach is to keep track of the advanced point that corresponds to the locus
of w[1 : n − 1], where n = |w|. Let x = LastNode(w) and xy = w, that is,

([
w

=⇒
x ]Rw, y, [

w
=⇒
w ]Rw) is the edge for deletion or shortening. The canonical reference pair

for the advanced point is ([
w

=⇒
x ]Rw, t), where t ∈ Prefix(y) and

w
=⇒
x · t = w[1 : n − 1].

We move to node [
w

=⇒
s ]Rw = SufLink([

w
=⇒
x ]Rw). Suppose CDAWG(w) has already been

converted to CDAWG(u). Assume [
u

=⇒
s ]Ru = [

w
=⇒
s ]Rw. Since

u
=⇒
s · t = u[1 : m − 1]

where m = |u|, ([
u

=⇒
s ]Ru , t) is a reference pair of the next advanced point, and then it is

canonized. Let ([
u

=⇒
s′ ]Ru , t′) be the canonical reference pair of the advanced point. Then

u
=⇒
s′ = LastNode(u). If LastNode(u) /∈ Prefix(LRS(u)), that is, if the active point is

not on the longest out-going edge from the node [
u

=⇒
s′ ]Ru , DelPoint(u) = LastNode(u).

Otherwise, DelPoint(u) = LRS(u). In the case that [
u

=⇒
s ]Ru �= [

w
=⇒
s ]Rw, we perform the

same procedure from its closest parent node (see FIG. 7). If Σ is fixed, the cost of
canonizing the reference pair is only proportional to the number of nodes included in
the path. The amortized number of such nodes is constant.

4.4 On Buffer Size

The following theorem is the main result of this section, which shows an exact es-
timation of the upperbound of DelSize(w). For an alphabet Σ and an integer n, let
MaxDelΣ(n) = max{DelSize(w) | w ∈ Σ∗, |w| = n}.
THEOREM 4.5
If |Σ| ≥ 3, MaxDelΣ(n) = �n

2 � − 1.

By this theorem, edge deletion or edge shortening can shrink the window size upto
the half of the original size. Therefore, in order to keep the window size at least M , a
buffer of size 2M + 1 is necessary and sufficient.

We will prove the above theorem in the sequel.

LEMMA 4.6
Let w ∈ Σ∗. For any string x ∈ Factor(w), let SufLink([

w
=⇒
x ]Rw) = [

w
=⇒
s ]Rw. Then

|[
w

=⇒
x ]Rw| = |

w
=⇒
x | − |

w
=⇒
s |.

PROOF. |[
w

=⇒
x ]Rw| = |Suffix(

w
=⇒
x )|−|Suffix(

w
=⇒
s )| = (|

w
=⇒
x |+1)−(|

w
=⇒
s |+1) = |

w
=⇒
x |−|

w
=⇒
s |.

LEMMA 4.7
Let w ∈ Σ∗ and n = |w|. For any x ∈ Prefix(w) − {w} with

w
=⇒
x = x, |[

w
=⇒
x ]Rw| ≤

�n
2 � − 1.
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w
x

y
x

i j n1

FIG. 9: The case j > n
2 . x occurs at least twice in w, and the overlap y is in fact both

a prefix and a suffix of x.

PROOF. Let j = |x| = |
w

=⇒
x |. Let SufLink([

w
=⇒
x ]Rw) = [

w
=⇒
s ]Rw. We have the following

three cases.

(1) When j < n
2 : Since j is an integer, j ≤ �n

2 � − 1, and |[
w

=⇒
x ]Rw| = |

w
=⇒
x | − |

w
=⇒
s | ≤

�n
2 � − 1 by LEMMA 4.6.

(2) When j > n
2 : (See FIG. 9.) The equivalences x = w[1 : j] and

w
=⇒
x = x imply that

x = w[i : i+j−1] for some i ≥ 2 and i+j−1 ≤ n. Then i−j ≤ n−2j+1 < 1,
that is, i ≤ j. Let y = w[i : j]. Its length is |y| = j − i + 1 ≥ 1, and

y = x[i : j] ∈ Suffix(x). Since
w

=⇒
x = x and y ∈ Suffix(x),

w
=⇒
y = y. On the

other hand, y = w[i : j] = x[1 : j − i + 1] = w[1 : j − i + 1] ∈ Prefix(w),

which implies
w←−y = y. Thus y is the longest element of [

w
=⇒
y ]Rw. Since |x| > |y|,

x �∈ [
w

=⇒
y ]Rw. Therefore |

w
=⇒
s | ≥ |y|, which yields |[

w
=⇒
x ]Rw| = |

w
=⇒
x | − |

w
=⇒
s | ≤ |x| −

|y| = j − (j − i + 1) = i− 1 ≤ n− j < n− n
2 = n

2 . Thus |[
w

=⇒
x ]Rw| ≤ �n

2 � − 1.

(3) When j = n
2 : Since

w
=⇒
x = x, x occurs in w at least twice. If x = w[i : i + j − 1]

for some i with 2 ≤ i ≤ j, we can show the inequality holds in the same way as
(2). Otherwise, x = w[j + 1 : 2j] = w[j + 1 : n] = w[1 : j], that is w = xx.

Then
w

=⇒
x = w �= x, which does not satisfy the precondition of the lemma.

In any cases, we have got the result.

We are ready to prove the upperbound of MaxDelΣ(n).

LEMMA 4.8
MaxDelΣ(n) ≤ �n

2 � − 1 for any Σ and any n ≥ 3.

PROOF. Let x = DelPoint(w) and z = LastNode(w). First we consider the case

x = z. Since
w−→x = x and x ∈ Prefix(w) − {w}, DelSize(w) = |[

w
=⇒
z ]Rw| = |[

w
=⇒
x ]Rw| ≤

�n
2 � − 1 by LEMMA 4.7.
We now assume x �= z. Then z ∈ Prefix(x), and x = DelPoint(w) implies that

x ∈ Prefix(w) − {w}, which yields z ∈ Prefix(w) − {w}. Thus by LEMMA 4.7,

DelSize(w) = |[
w

=⇒
z ]Rw| ≤ �n

2 � − 1.
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FIG. 10: To the left is CDAWG(aaabaaabc), in which the thick edge is to be deleted.
To the right is the resulting structure CDAWG(aaabc). The gray star indicates the
active point.

On the other hand, the lowerbound is given by the following lemma.

LEMMA 4.9
If |Σ| ≥ 3, MaxDelΣ(n) ≥ �n

2 � − 1 for any n ≥ 1.

PROOF. For each 1 ≤ n ≤ 4, the inequality trivially holds since �n
2 � − 1 ≤ 1. Let

a,b,c be distinct symbols in Σ. For each odd n ≥ 5, let wn = akbakbc, where
k = n−3

2 . Remark that DelPoint(wn) = akb (see FIG. 10). Let x = akb. We can

see that any suffix of x except ε belongs to [
w

=⇒
x ]Rw, so that SufLink(x) = ε. Thus

DelSize(wn) = |x| − |ε| = |akb| − 0 = k + 1 = n−1
2 = �n

2 � − 1, since n is odd.
For each even n ≥ 6, let w′

n = ak−1bakbc, where k = n
2 − 1, and we can verify

that DelSize(w′
n) = �n

2 � − 1 similarly.

Consequently, THEOREM 4.5 is proved by LEMMA 4.8 and LEMMA 4.9. We note
that for a binary alphabet Σ = {a,b}, two series of the strings akbakbab and
ak−1bakbab give the lowerbound MaxDelΣ(n) ≥ �n−3

2 �.
On the on-line algorithm of [11], each node [

w
=⇒
x ]R

w
of CDAWG(w) stores the value

of |
w

=⇒
x |. By LEMMA 4.6, it is guaranteed that we can calculate DelSize(w) in constant

time with no additional information.

4.5 Keeping Edge Labels Valid

As mentioned previously, an edge label is actually represented by a pair of integers
indicating its beginning and ending positions in input string w, respectively. We must
ensure that no edge label becomes “out of date” after the window slides, e.g., that
no integer refers to a position outside the sliding window. In case of a suffix tree,
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when a new edge is created, we can guarantee the above regulation by traversing from
the leaf node toward the root node while updating all edge labels encountered. How-
ever, this would yield quadratic time complexity in the aggregate. Larsson [14, 15]
utilized credit issuing, an update-number-restriction technique, originally proposed
in [7], which takes in total O(|w|) time and space. In the following, we introduce an
extended credit issuing technique for CDAWGs. Our basic strategy is to show that we
can handle the credit issuing as well as in case of suffix trees.

We assign each internal node s of CDAWG(w) a binary counter called credit, de-
noted by Cred(s). This credit counter is initially set to zero when s is created. When
a node s receives a credit, we update the labels of in-coming edges of s. Then, if
Cred(s) = 0, we set it to one, and stop. If Cred(s) = 1, after setting it to zero, we let
the node s issue a credit to its parent nodes.

When s is newly created, Cred(s) = 0. The creation of the new node s implies that
a new edge is to be inserted from s to the sink node. When the new edge is created
leading to the sink node, the sink node issues a credit to the parent node s. Assume
the new edge is labeled by pair (i, j) where i, j are some integers with i < j. Let �
be the length of the label of the in-coming edge of s. After s received a credit from
the sink node, we reset its in-coming edge label to (i− �, i− 1). Remember the edge
redirection happening in the construction of a CDAWG (see Section 2.2 or [11]). If
some edge is actually redirected to node s, its label is updated as well. Note that we
need not change the value of Cred(s) again.

Suppose a node r has right now received a credit from one of its child nodes. As-
sume Cred(r) is currently one. We need to update all in-coming edge labels of r. We
store a list in r to maintain its in-coming edges arranged in the order of the length
of the path they correspond to. The maintenence of the list is an easy matter, since
the on-line algorithm of [11] inserts edges to r in such order. Let t be an arbitrary
parent node of r. Let k be the number of the in-coming edges of r connected from
t. One might wonder that r must issue k credits to t, but there is the following time-
efficient method. In case k is even, Cred(t) need not to be changed because it is a
binary counter. Contrarily, in case k is odd, we always change the value of Cred(t).
If Cred(t) was one, we also have to update the in-coming edge of t. To do it, we focus
on the shortest in-coming edge of r connected from t, which is in turn the shortest
out-going edge of t leading to r. In updating the in-coming edges of t, we should uti-
lize the label of the shortest edge, since the label corresponds to the possibly newest
occurrence of the factors represented in node t. We continue updating edge labels by
traversing the reversed graph rooted at r in width-first manner while issuing credits.

Recall the node separation in constructing a CDAWG (see Section 2.2 or [11]).
Assume a node r has right now been created owing to the separation of a node s. The
subgraph rooted at r is currently the same as the one rooted at s, since r was created
as a clone of s. Thus we simply set Cred(r) = Cred(s).

Now consider a node u to be deleted, corresponding to the second case of Sec-
tion 4.2. It might have received a credit from its newest child node (that is not deleted),
which has not been issued to its parent node yet. Therefore, when a node u is sched-
uled for deletion and Cred(u) = 1, node u issues credits to its parent nodes. However,
this complicates the update of edge labels: several waiting credits may aggregate,
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causing nodes upper in the CDAWG to receive a credit older than the one it has al-
ready received from its another child node. Therefor, before updating an edge label,
we compare its previous value against the one associated with the received credit, and
refer to the newer one. As well as the case of edge insertion mentioned in the above
paragraph, we traverse the reversed graph rooted at u in width-first fashion to update
edge labels. In the worst case, the updating cost is proportional to the number of paths
from the source node to node u. Nevertheless, it is bounded by DelSize(w).

By analogous arguments to [7, 14, 15], we can establish the following lemma.

LEMMA 4.10
All edge labels of a CDAWG can be kept valid in a sliding window, in linear time and
space with respect to the length of an input string.

As a conclusion of Section 4, we finally obtain the following.

THEOREM 4.11
Let w ∈ Σ∗ and M be the window size. The proposed algorithm runs in O(|w|) time
using O(M) space.

5 Conclusion

We introduced an algorithm to maintain CDAWGs for a sliding window, which runs in
linear time and space. It can be an alternative of Larsson’s suffix tree algorithm in [14].
Moreover, CDAWGs are known to be more space-economical than suffix trees [2,
6], and thus our algorithm seems to contribute to reducing the space requirement in
PPM∗-style data compression scheme.

It is still an open problem whether conversion of CDAWG(bu) to CDAWG(u) can
be done in (amortized) constant time for any character b and string u. Also, it is surely
worth considering DAWGs for a sliding window where labels of edges of DAWGs
are single characters. This is really a big advantage in the scheme of a sliding win-
dow since we would not need credit issuing then, which is surely time-consuming
and makes the algorithm rather complicated. However, we hold a strong belief that
conversion of DAWG(bu) into DAWG(u) cannot be done in (amortized) constant time,
either. Thus we will need some alternative way, like in case of CDAWGs.
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