
Computing longest common substring and
all palindromes from compressed strings

Wataru Matsubara1, Shunsuke Inenaga2, Akira Ishino1, Ayumi Shinohara1,
Tomoyuki Nakamura1, and Kazuo Hashimoto1

1 Graduate School of Information Science, Tohoku University, Japan
{matsubara@shino., ishino@, ayumi@, nakamura@aiet.,

hk@aiet.}ecei.tohoku.ac.jp
2 Department of Computer Science and Communication Engineering,

Kyushu University, Japan
inenaga@c.csce.kyushu-u.ac.jp

Abstract. This paper studies two problems on compressed strings de-
scribed in terms of straight line programs (SLPs). One is to compute the
length of the longest common substring of two given SLP-compressed
strings, and the other is to compute all palindromes of a given SLP-
compressed string. In order to solve these problems efficiently (in poly-
nomial time w.r.t. the compressed size) decompression is never feasible,
since the decompressed size can be exponentially large. We develop com-
binatorial algorithms that solve these problems in O(n4 log n) time with
O(n3) space, and in O(n4) time with O(n2) space, respectively, where n
is the size of the input SLP-compressed strings.

1 Introduction

The importance of algorithms for compressed texts has recently been arising
due to the massive increase of data that are treated in compressed form. Of
various text compression schemes introduced so far, straight line program (SLP)
is one of the most powerful and general compression schemes. An SLP is a
context-free grammar of either of the forms X → Y Z or X → a, where a is a
constant. SLP allows exponential compression, i.e., the original (uncompressed)
string length N can be exponentially large w.r.t. the corresponding SLP size
n. In addition, resulting encoding of most grammar- and dictionary-based text
compression methods such as LZ-family [1, 2], run-length encoding, multi-level
pattern matching code [3], Sequitur [4] and so on, can quickly be transformed
into SLPs [5–7]. Therefore, it is of great interest to analyze what kind of problems
on SLP-compressed strings can be solved in polynomial time w.r.t. n. Moreover,
for those that are polynomial solvable, it is of great importance to design efficient
algorithms. In so doing, one has to notice that decompression is never feasible,
since it can require exponential time and space w.r.t. n.

The first polynomial time algorithm for SLP-compressed strings was given by
Plandowski [8], which tests the equality of two SLP-compressed strings in O(n4)
time. Later on Karpinski et al. [9] presented an O(n4 log n)-time algorithm for

the substring pattern matching problem for two SLP-compressed strings. Then
it was improved to O(n4) time by Miyazaki et al. [10] and recently to O(n3)
time by Lifshits [11]. The problem of computing the minimum period of a given
SLP-compressed string was shown to be solvable in O(n4 log n) time [9], and
lately in O(n3 log N) time [11]. Ga̧sieniec et al. [5] claimed that all squares of a
given SLP-compressed string can be computed in O(n6 log5 N) time.

On the other hand, there are some hardness results on SLP-compressed string
processing. Lifshits and Lohrey [12] showed that the subsequence pattern match-
ing problem for SLP-compressed strings is NP-hard, and that computing the
length of the longest common subsequence of two SLP-compressed strings is also
NP-hard. Lifshits [11] showed that computing the Hamming distance between
two SLP-compressed strings is #P-complete.

In this paper we tackle the following two problems: one is to compute the
length of the longest common substring of two SLP-compressed strings, and the
other is to find all maximal palindromes of an SLP-compressed string. The first
problem is listed as an open problem in [11]. This paper closes the problem
giving an algorithm that runs in O(n4 log n) time with O(n3) space. For second
the problem of computing all maximal palindromes, we give an algorithm that
runs in O(n4) time with O(n2) space.
Comparison to previous work. Composition system is a generalization of
SLP which also allows “truncations” for the production rules. Namely, a rule of
composition systems is of one of the following forms: X → Y [i]Z[j], X → Y Z,
or X → a, where Y [i] and Z[j] denote the prefix of length i of Y and the
suffix of length j of Z, respectively. Ga̧sieniec et al. [5] presented an algorithm
that computes all maximal palindromes from a given composition system in
O(n log2 N×Eq(n)) time, where Eq(n) denotes the time needed for the equality
test of composition systems. Since Eq(n) = O(n4 log2 N) in [5], the overall time
cost is O(n5 log4 N).

Limited to SLPs, Eq(n) = O(n3) due to the recent work by Lifshits [11].
Still, computing all maximal palindromes takes O(n4 log2 N) time in total, and
therefore our solution with O(n4) time is faster than the previous known ones
(recall that N = O(2n)). The space requirement of the algorithm by Ga̧sieniec et
al. [5] is unclear. However, since the equality test algorithm of [11] takes O(n2)
space, the above-mentioned O(n4 log2 N)-time solution takes at least as much
space as ours.

2 Preliminaries

For any set U of pairs of integers, we denote U ⊕ k = {(i+ k, j + k) | (i, j) ∈ U}.
We denote by 〈a, d, t〉 the arithmetic progression with the minimal element a,
the common difference d and the number of elements t, that is, 〈a, d, t〉 = {a +
(i− 1)d | 1 ≤ i ≤ t}. When t = 0, let 〈a, d, t〉 = ∅.

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string T is denoted by |T |. The empty string ε is a string of length 0, namely,
|ε| = 0. For a string T = XY Z, X, Y and Z are called a prefix, substring, and

2

suffix of T , respectively. The i-th character of a string T is denoted by T [i] for
1 ≤ i ≤ |T |, and the substring of a string T that begins at position i and ends
at position j is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For any string T , let TR

denote the reversed string of T , namely, TR = T [|T |] · · ·T [2]T [1].
For any two strings T, S, let LCPref (T, S), LCStr(T, S), and LCSuf (T, S)

denote the length of the longest common prefix, substring and suffix of T and
S, respectively.

A period of a string T is an integer p (1 ≤ p ≤ |T |) such that T [i] = T [i + p]
for any i = 1, 2, . . . , |T | − p.

A non-empty string T such that T = TR is said to be a palindrome. When
|T | is even, then T is said to be an even palindrome, that is, T = SSR for some
S ∈ Σ+. Similarly, when |T | is odd, then T is said to be an odd palindrome,
that is, T = ScSR for some S ∈ Σ∗ and c ∈ Σ. For any string T and its
substring T [i : j] such that T [i : j] = T [i : j]R, T [i : j] is said to be the maximal
palindrome w.r.t. the center b i+j

2 c, if either T [i−1] 6= T [j +1], i = 1, or j = |T |.
In particular, T [1 : j] is said to be a prefix palindrome of T , and T [i : |T |] is said
to be a suffix palindrome of T .

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where each Xi is a variable and each expri is an expression in either of the
following form:

– expri = a (a ∈ Σ), or
– expri = X`Xr (`, r < i).

Denote by T the string derived from the last variable Xn of the program T . The
size of the program T is the number n of assignments in T .

When it is not confusing, we identify a variable Xi with the string derived
from Xi. Then, |Xi| denotes the length of the string derived from Xi.

For any variable Xi of T with 1 ≤ i ≤ n, we define XR
i as follows:

XR
i =

{
a if Xi = a (a ∈ Σ),
XR

r XR
` if Xi = X`Xr (`, r < i).

Let T R be the SLP consisting of variables XR
i for 1 ≤ i ≤ n.

Lemma 1. SLP T R derives string TR.

Proof. By induction on the variables XR
i . Let ΣT be the set of characters ap-

pearing in T . For any 1 ≤ i ≤ |ΣT |, we have Xi = a for some a ∈ ΣT , thus
XR

i = a and a = aR. Let Ti denote the string derived from Xi. For the induction
hypothesis, assume that XR

j derives TR
j for any 1 ≤ j ≤ i. Now consider variable

Xi+1 = X`Xr. Note Ti+1 = T`Tr, which implies TR
i+1 = TR

r TR
` . By definition,

we have XR
i+1 = XR

r XR
` . Since `, r < i + 1, by the induction hypothesis XR

i+1

derives TR
r TR

` = TR
i+1. Thus, T R = XR

n derives TR
n = TR. ut

Note that T R can be easily computed from T in O(n) time.

3

3 Computing Longest Common Substring of Two SLP
Compressed Strings

Let T and S be the SLPs of sizes n and m, which describe strings T and S,
respectively. Without loss of generality we assume that n ≥ m.

In this section we tackle the following problem:

Problem 1. Given two SLPs T and S, compute LCStr(T, S).

In what follows we present an algorithm that solves Problem 1 in O(n4 log n)
time and O(n3) space. Let Xi and Yj denote any variable of T and S for 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

3.1 Overlaps between Two Strings

For any two strings X and Y , we define the set OL(X,Y) as follows:

OL(X, Y) = {k > 0 | X[|X| − k + 1 : |X|] = Y [1 : k]}
Namely, OL(X,Y) is the set of lengths of overlaps of suffixes of X and prefixes
of Y . Karpinski et al. [9] gave the following results for computation of OL for
strings described by SLPs.

Lemma 2 ([9]). For any variables Xi and Xj of an SLP T , OL(Xi, Xj) can
be represented by O(n) arithmetic progressions.

Theorem 1 ([9]). For any SLP T , OL(Xi, Xj) can be computed in total of
O(n4 log n) time and O(n3) space for any 1 ≤ i ≤ n and 1 ≤ j ≤ n.

As we will show in the sequel, we need to compute OL(Xi, Yj) and OL(Yj , Xi)
for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. In so doing, we produce a new variable
V = XnYm, that is, V is a concatenation of SLPs T and S. Then we compute
OL for each pair of variables in the new SLP of size n + m. On the assumption
that n ≥ m, it takes O(n4 log n) time and O(n3) space in total.

3.2 The FM function

For any two variables Xi, Yj and integer k with 1 ≤ k ≤ |Xi|, we define the
function FM (Xi, Yj , k) which returns the previous position of the first position
of mismatches, when we compare Yj with Xi at position k. Formally,

FM (Xi, Yj , k) = min{1 ≤ h ≤ |Yj | | Xi[k + h− 1] 6= Yj [h]} − 1.

Namely, FM (Xi, Yj , k) equals the length of the common prefix of Xi[k : |Xi|]
and Yj when it is not zero. When the common prefix is the empty string ε (when
such h does not exist), let FM (Xi, Yj , k) = 0.

Lemma 3 ([9]). For any variables Xi, Yj and integer k, FM (Xi, Yj , k) can be
computed in O(n log n) time, provided that OL(Xi′ , Xj′) is already computed for
any 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

4

kh1 h2

Xi

Yj

Xli Xri

YrjYlj

kh1 h2

Xi

Yj

Xli Xri

Yrj
Ylj

Fig. 1. Illustration of Observation 2 where we “extend” an overlap k as a candidate of
LCStr(T, S).

3.3 Efficient Computation of Longest Common Substrings

The main idea of our algorithm for computing LCStr(T, S) is based on the
following observation.

Observation 1 For any substring Z of string T , there always exists a variable
Xi = X`iXri of SLP T such that:

– Z is a substring of Xi and
– Z touches or covers the boundary between X`i and Xri .

It directly follows from the above observation that any common substring of
strings T, S touches or covers both of the boundaries in Xi and Yj for some
1 ≤ i ≤ n and 1 ≤ j ≤ m.

For any SLP variables Xi = X`iXri and Yj = Y`j Yrj , and k ∈ OL(Xi, Yj), let
ExtXi,Yj (k) = k+h1 +h2 such that h1 = LCSuf (X`i [1 : |X`i |−k], Y`j) and h2 =
LCPref (Xri , Yrj [k + 1 : |Yrj |]). For any k /∈ OL(Xi, Yj), we leave ExtXi,Yj (k)
undefined. For a set S of integers, we define ExtXi,Yj (S) = {ExtXi,Yj (k) | k ∈ S}.
ExtYj ,Xi(k) and ExtYj ,Xi(S) are defined similarly.

The next observation follows from the above arguments (see also Fig. 1):

Observation 2 For any strings T and S, LCStr(T, S) equals to the maximum
element of the set

⋃

1≤i≤n,1≤j≤m

(ExtXi,Yj (OL(X`i , Yrj))∪ExtYj ,Xi(OL(Y`j , Xri))∪LCStr∗(Xi, Yj)),

where LCStr∗(Xi, Yj) = LCSuf (X`i , Y`j) + LCPref (Xri , Yrj).

Based on Observation 2, our strategy for computing LCStr(T, S) is to com-
pute max(ExtXi,Yj (OL(X`i , Yrj))) and max(ExtYj ,Xi(OL(Y`j , Xri))) for each pair
of Xi and Yj . Lemma 4 shows how to compute max(ExtXi,Yj (OL(X`i , Yrj))) and
max(ExtYj ,Xi(OL(Y`j , Xri))) using FM .

5

Yj

Ylj Yrj

XriXli

Xi

} case 1

case 4

case 5

} case 2

} case 3

e2 e1

e4
e3

k

Fig. 2. Illustration for the proof of Lemma 4. The dark rectangles represent the overlaps
between X`i and Yrj . Case 6 is the special case where cases 4 and 5 happen at the
same time and case 3 does not exist.

Lemma 4. For any variables Xi = X`iXri and Yj = Y`j Yrj , we can compute
max(ExtXi,Yj (OL(X`i , Yrj))) and max(ExtYj ,Xi(OL(Y`j , Xri))) in O(n2 log n)
time.

Proof. Here we concentrate on computing max(ExtXi,Yj (OL(X`i , Yrj))), as the
case of max(ExtYj ,Xi(OL(Y`j , Xri))) is just symmetric. Let 〈a, d, t〉 be any of the
O(n) arithmetic progressions of OL(X`i , Yrj).

Assume that t > 1 and a < d. The cases where t = 1 or a = d are easier to
show. Let u = Yrj [1 : a] and v = Yrj [a + 1 : d]. For any string w, let w∗ denote
an infinite repetition of w, that is, w∗ = www · · · . Firstly we compute

e1 = LCPref (Xri , (vu)∗) =

{
FM (Yrj , Xri , a+1) if FM (Yrj , Xri , a+1)<d,

FM (Xri , Xri , d + 1) + d otherwise,

e2 = LCSuf (X`i , (vu)∗) = FM (XR
`i

, XR
`i

, d + 1) + d,

e3 = LCPref (Yrj , (uv)∗) = FM (Yrj , Yrj , d + 1) + d,

e4 = LCSuf (Y`j , (uv)∗) =

{
FM (XR

`i
, Y R

`j
, a+1) if FM (XR

`i
, Y R

`j
, a+1)<d,

FM (Y R
`j

, Y R
`j

, d + 1) + d otherwise.

(See also Fig. 2.) As above, we can compute e1, e2, e3, e4 by at most 6 calls of FM .
Note that Xi[|X`i |−e2+1 : |X`i |+e1] is the longest substring of Xi that contains
Xi[|X`i | − d + 1 : |X`i |] and has a period d. Note also that Yj [|Y`j | − e4 + 1 :
|Y`j |+ e3] is the longest substring of Yj that contains Yj [|Y`j |+ 1 : |Y`j |+ d] and
has a period d.

Let k ∈ 〈a, d, t〉. We categorize ExtXi,Yj (k) depending on the value of k, as
follows.

6

case 1: When k < min{e3 − e1, e2 − e4}. If k− d ∈ 〈a, d, t〉, it is not difficult to
see ExtXi,Yj (k) = ExtXi,Yj (k − d) + d. Therefore, we have

A = max{ExtXi,Yj (k) | k < min{e3 − e1, e2 − e4}} = ExtXi,Yj (k
′),

where k′ = max{k | k < min{e3 − e1, e2 − e4}}.
case 2: When k > max{e3− e1, e2− e4}. If k + d ∈ 〈a, d, t〉, it is not difficult to

see ExtXi,Yj
(k) = ExtXi,Yj

(k + d) + d. Therefore, we have

B = max{ExtXi,Yj (k) | k > max{e3 − e1, e2 − e4}} = ExtXi,Yj (k
′′),

where k′′ = min{k | k > max{e3 − e1, e2 − e4}}.
case 3: When min{e3−e1, e2−e4} < k < max{e3−e1, e2−e4}. In this case we

have ExtXi,Yj (k) = min{e1+e2, e3+e4} for any k with min{e3−e1, e2−e4} <
k < max{e3 − e1, e2 − e4}. Thus

C = max{ExtXi,Yj
(k) | min{e3 − e1, e2 − e4} < k < max{e3 − e1, e2 − e4}}

= min{e1 + e2, e3 + e4}.
case 4: When k = e3 − e1. In this case we have

D = ExtXi,Yj (k) = k + min{e2 − k, e4}+ LCPref (Yrj [k + 1 : |Yrj |], Xri)
= k + min{e2 − k, e4}+ FM (Yrj , Xri , k + 1).

case 5: When k = e2 − e4. In this case we have

E = ExtXi,Yj (k) = k + LCSuf (X`i [1 : |X`i | − k], Y`j) + min{e1, e3 − k}
= k + FM (XR

`i
, Y R

`j
, k + 1) + min{e1, e3 − k}.

case 6: When k = e3 − e1 = e2 − e4. In this case we have

F = ExtXi,Yj (k)
= k + LCSuf (X`i [1 : |X`i | − k], Y`j) + LCPref (Yrj [k + 1 : |Yrj |], Xri)

= k + FM (XR
`i

, Y R
`j

, k + 1) + FM (Yrj , Xri , k + 1).

Then clearly the following inequality stands (see also Fig. 2):

F ≥ max{D,E} ≥ C ≥ max{A,B}. (1)

A membership query to the arithmetic progression 〈a, d, t〉 can be answered in
constant time. Also, an element k ∈ 〈a, d, t〉 such that min{e3 − e1, e2 − e4} <
k < max{e3− e1, e2− e4} of case 3 can be found in constant time, if such exists.
k′ and k′′ of case 1 and case 2, respectively, can be computed in constant time as
well. Therefore, based on inequality (1), we can compute max(ExtXi,Yj (〈a, d, t〉))
by at most 2 calls of FM , provided that e1, e2, e3, e4 are already computed.

Since OL(X`i , Yrj) contains O(n) arithmetic progressions by Lemma 2, and
each call of FM takes O(n log n) time by Lemma 3, max(ExtXi,Yj (OL(X`i , Yrj)))
can be computed in O(n2 log n) time. ut

7

Now we obtain the main result of this section.

Theorem 2. Problem 1 can be solved in O(n4 log n) time with O(n3) space.

Proof. It follows from Theorem 1 that OL(Xi, Yj) can be computed in O(n4 log n)
time with O(n3) space. For any variables Xi = X`i

Xri
and Yj = Y`j

Yrj
, by Lem-

mas 2, 3 and 4, max(ExtXi,Yj (OL(X`i , Yrj))) and max(ExtYj ,Xi(OL(Y`j , Xri)))
can be computed in O(n2 log n) time.

Moreover, it is easy to see that

LCSuf (X`i
, Y`j

) = FM (XR
`i

, Y R
`j

, 1) and
LCPref (Xri , Yrj) = FM (Xri , Yrj , 1).

Thus LCStr∗(Xi, Yj) can be computed in O(n log n) time. Overall, by Observa-
tion 2 it takes O(n4 log n) time and O(n3) to solve Problem 1. ut

The following corollary is immediate.

Corollary 1. Given two SLPs T and S describing strings T and S respectively,
the beginning and ending positions of a longest common substring of T and S
can be computed in O(n4 log n) time with O(n3) space.

4 Computing Palindromes from SLP Compressed Strings

In this section we present an efficient algorithm that computes a succinct rep-
resentation of all maximal palindromes of string T , when its corresponding SLP
T is given as input. The algorithm runs in O(n4) time and O(n2) space, where
n is the size of the input SLP T .

For any string T , let Pals(T) denote the set of pairs of the beginning and
ending positions of all maximal palindromes in T , namely,

Pals(T) = {(p, q) | T [p : q] is the maximal palindrome centered at bp+q
2 c}.

Note that the size of Pals(T) is O(|T |) = O(2n). Thus we introduce a succinct
representation of Pals(T) in the next subsection.

4.1 Succinct Representation of Pals(T)

Let Xi denote a variable in T for 1 ≤ i ≤ n. For any variables Xi = X`Xr,
let Pals4(Xi) be the set of pairs of beginning and ending positions of maximal
palindromes of Xi that cover or touch the boundary between X` and Xr, namely,

Pals4(Xi) = {(p, q) ∈ Pals(Xi) | 1 ≤ p ≤ |X`|+ 1, |X`| ≤ q ≤ |Xi|, p ≤ q}.
Also, let PPals(T) and SPals(T) denote the set of pairs of the beginning and
ending positions of the prefix and suffix palindromes of T , respectively, that is,

PPals(T) = {(1, q) ∈ Pals(T) | 1 ≤ q ≤ |T |}, and
SPals(T) = {(p, |T |) ∈ Pals(T) | 1 ≤ p ≤ |T |}.

Ga̧sieniec et al. [5] claimed the following lemma:

8

Lemma 5 ([5]). For any string T , PPals(T) and SPals(T) can be represented
by O(log |T |) arithmetic progressions.

We have the following observation for decomposition of Pals(Xi).

Observation 3 For any variables Xi = X`Xr,

Pals(Xi) = (Pals(X`)− SPals(X`)) ∪
Pals4(Xi) ∪ ((Pals(Xr)− PPals(Xr))⊕ |X`|).

Thus, the desired output Pals(T) = Pals(Xn) can be represented as a combi-
nation of {Pals4(Xi)}n

i=1, {PPals(Xi)}n
i=1 and {SPals(Xi)}n

i=1. Therefore, com-
puting Pals(T) is reduced to computing Pals4(Xi), PPals(Xi) and SPals(Xi),
for every i = 1, 2, . . . , n. The problem to be tackled in this section follows:

Problem 2. Given an SLP T of size n, compute {Pals4(Xi)}n
i=1, {PPals(Xi)}n

i=1

and {SPals(Xi)}n
i=1.

Lemma 6 is useful to compute Pals4(Xi) from SPals(X`) and PPals(Xr).

Lemma 6. For any variable Xi = X`Xr and any (p, q) ∈ Pals4(Xi), there
exists an integer l ≥ 0 such that (p+ l, q− l) ∈ SPals(X`)∪ (PPals(Xr)⊕|X`|)∪
{(|X`|, |X`|+ 1)}.
Proof. Since Xi[p : q] is a palindrome, Xi[p + l : q − l] is also a palindrome for
any 0 ≤ l < bp+q

2 c. Then we have the following three cases:

1. When bp+q
2 c < |X`|, for l = p− |X`|, we have (p + l, q − l) ∈ SPals(X`).

2. When bp+q
2 c > |X`|, for l = |X`| − p + 1, we have (p + l, q− l) ∈ PPals(Xr).

3. When bp+q
2 c = |X`|, if q − p + 1 is odd, then the same arguments to case 1

apply, since X`[|X`|] = X`[|X`|]R and (|X`|, |X`|) ∈ SPals(X`). If q − p + 1
is even, let l = |X`| − p. In this case, we have p + q = 2|X`| + 1. Thus,
p + l = |X`| and q − l = |X`|+ 1.

ut
By Lemma 6, Pals4(Xi) can be computed by “extending” all palindromes in
SPals(X`) and PPals(Xr) to the maximal within Xi, and finding the maxi-
mal even palindromes centered at |X`| in Xi. In so doing, for any (maximal
or non-maximal) palindrome P = Xi[p : q], we define function ExtXi so that
ExtXi(p, q) = (p − h, q + h), where h ≥ 0 and Xi[p − h : q + h] is the maximal
palindrome centered at position bp+q

2 c in Xi. For any p, q with Xi[p : q] not being
a palindrome, we leave ExtXi(p, q) undefined. For a set S of pair of integers, let
ExtXi(S) = {ExtXi(p, q) | (p, q) ∈ S}.

The next observations give us a recursive procedure to compute Pals4(Xi).

Observation 4 For any variable Xi = X`Xr,

Pals4(Xi) = ExtXi(SPals(X`)) ∪ ExtXi(PPals(Xr)) ∪ Pals∗(Xi), where

Pals∗(Xi) = {(|X`| − l + 1, |X`|+ l) ∈ Pals(Xi) | l ≥ 1}.

9

PPals(Xi) and SPals(Xi) can be computed from Pals4(Xi) as follows:

Observation 5 For any variable Xi = X`Xr,

PPals(Xi) = PPals(X`) ∪ {(1, q) ∈ Pals4(Xi)} and
SPals(Xi) = (SPals(Xr)⊕ |X`|) ∪ {(p, |Xi|) ∈ Pals4(Xi)}.

4.2 Efficient Computation of Pals4(Xi)

Let us first briefly recall the work of [10, 11]. For any variables Xi = X`Xr and
Xj , we define the set Occ4(Xi, Xj) of all occurrences of Xj that cover or touch
the boundary between X` and Xr, namely,

Occ4(Xi, Xj) = {s > 0 | Xi[s : s + |Xj | − 1] = Xj , |X`| − |Xj |+ 1 ≤ s ≤ |X`|}.

Theorem 3 ([11]). For any variables Xi and Xj, Occ4(Xi, Xj) can be com-
puted in total of O(n3) time and O(n2) space.

Lemma 7 ([10]). For any variables Xi, Xj and integer k, FM (Xi, Xj , k) can
be computed in O(n2) time, provided that Occ4(Xi′ , Xj′) is already computed
for any 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

Lemma 8. For any variable Xi = X`Xr and any arithmetic progression 〈a, d, t〉
with (1, 〈a, d, t〉) ⊆ PPals(Xr), ExtXi((1, 〈a, d, t〉)) can be represented by at most
2 arithmetic progressions and a pair of the beginning and ending positions of a
maximal palindrome, and can be computed by at most 4 calls of FM . Similar for
ExtXi((〈a, d, t〉, |X`|)) with (〈a′, d′, t′〉, |X`|) ⊆ SPals(X`).

Proof. By Lemma 3.4 of [13]. ut
We are now ready to prove the following lemma:

Lemma 9. For any variable Xi = X`Xr, Pals4(Xi) requires O(log |Xi|) space
and can be computed in O(n2 log |Xi|) time.

Proof. Recall Observation 4. It is clear from the definition that Pals∗(Xi) is
either singleton or empty. When it is a singleton, it consists of the maximal even
palindrome centered at |X`|. Let l = FM (Xr, X

R
` , 1). Then we have

Pals∗(Xi) =

{
∅ if l = 0,
{(|X`| − l + 1, |X`|+ l)} otherwise.

Due to Lemma 7, Pals∗(Xi) can be computed in O(n2) time.
Now we consider ExtXi(SPals(X`)). By Lemma 7 and Lemma 8, each subset

ExtXi((1, 〈a, d, t〉)) ⊆ ExtXi(SPals(X`)) requires O(1) space and can be com-
puted in O(n2) time. It follows from Lemma 5 that ExtXi(SPals(X`)) consists
of O(log |Xi|) arithmetic progressions. Thus ExtXi(SPals(X`)) can be computed
in O(n2 log |Xi|) time. Similar arguments hold for ExtXi(PPals(Xr)). ut

10

4.3 Results

Theorem 4. Problem 2 can be solved in O(n4) time with O(n2) space.

Proof. Firstly we analyze the time complexity. From Theorem 3 preprocessing
for the FM function takes O(n3) time. By Lemma 7, each call of FM takes
O(n2) time. It follows from Lemma 9 that Pals4(Xi) can be computed in O(n3)
time. By Observation 5, PPals(Xi) and SPals(Xi) can be computed in O(n)
time from Pals4(Xi). Hence the overall time cost to compute {PPals(Xi)}n

i=1,
{SPals(Xi)}n

i=1, and {Pals4(Xi)n
i=1} is O(n4).

Secondly we analyze the space complexity. The preprocessing for the FM
function requires O(n2) due to Theorem 3. From Lemma 5 PPals(Xi) and
SPals(Xi) require O(n) space. Lemma 9 states that Pals4(Xi) requires O(n)
space. Thus the total space requirement is O(n2). ut

The following two theorems are results obtained by slightly modifying the
algorithm of the previous subsections.

Theorem 5. Given an SLP T that describes string T , whether T is a palin-
drome or not can be determined with extra O(1) space and without increasing
asymptotic time complexities of the algorithm.

Proof. It suffices to see if (1, |T |) ∈ PPals(T) = PPals(Xn). By Lemma 5,
PPals(Xn) can be represented by O(n) arithmetic progressions. It is not dif-
ficult to see that T is a palindrome if and only if a + (t − 1)d = |T | for the
arithmetic progression 〈a, d, t〉 of the largest common difference among those
in PPals(Xn). Such an arithmetic progression can easily be found during com-
putation of PPals(Xn) without increasing asymptotic time complexities of the
algorithm. ut
Theorem 6. Given an SLP T that describes string T , the position pair (p, q)
of the longest palindrome in T can be found with extra O(1) space and without
increasing asymptotic time complexities of the algorithm.

Proof. We compute the beginning and ending positions of the longest palindrome
in Pals4(Xi) for i = 1, 2, . . . , n. It takes O(n) time for each Xi. If its length
exceeds the length of the currently kept palindrome, we update the beginning
and ending positions. ut

Provided that {PPals(Xi)}n
i=1, {SPals(Xi)}n

i=1, and {Pals4(Xi)n
i=1} are al-

ready computed, we have the following result:

Theorem 7. Given pair (p, q) of integers, it can be answered in O(n) time
whether or not substring T [p : q] is a maximal palindrome of T .

Proof. We binary search the derivation tree of SLP T until finding the variable
Xi = X`Xr such that 1 + offset ≤ p ≤ |X`|+ offset and 1 + offset + |X`| ≤ q ≤
|Xi|+ offset . This takes O(n) time. Due to Observation 4, for each variable Xi,
Pals4(Xi) can be represented by O(n) arithmetic progressions plus a pair of the
beginning and ending positions of a maximal palindrome. Thus, we can check if
(p, q) ∈ Pals4(Xi) in O(n) time. ut

11

Finally we supply pseudo-codes of our algorithms.
Algorithm ComputeLCStr
Input: SLP T = {Xi}n

i=1, S = {Yj}m
j=1.

L = ∅;
for i = 1 . . . n do
for j = 1 . . . m do
compute OL(Xi, Yj) and OL(Yj , Xi);

for i = 1 . . . n do
for j = 1 . . . m do
if Xi = a then /* a ∈ Σ */
L = L ∪ LCSuf (Yj` , Xi)

∪LCPref (Yjr , Xi);
else if Yj = a then /* a ∈ Σ */
L = L ∪ LCSuf (Xi` , Yj)

∪LCPref (Xir , Yj);
else /* Xi = X`Xr and Yi = Y`Yr */
L = L ∪ LCStr∗(Xi, Yj)

∪ExtXi,Yj (OL(X`i , Yrj))
∪ExtYj ,Xi(OL(Y`j , Xri));

return max(L);

Algorithm ComputePalindromes
Input: SLP T = {Xi}n

i=1.
for i = 1 . . . n do

SPals(Xi) = ∅; PPals(Xi) = ∅;
Pals4(Xi) = ∅;

for i = 1 . . . n do
if Xi = a then
SPals(Xi) = (1, 1); PPals(Xi) = (1, 1);

Pals4(Xi) = (1, 1);
else /* Xi = X`Xr */
seed = SPals(X`) ∪ (PPals(Xr)⊕ |X`|);
Pals4(Xi) = ExtXi(seed) ∪ Pals∗(Xi);
SPals(Xi) = SPals(Xr)

∪{(1, q) ∈ Pals4(Xi)};
PPals(Xi) = PPals(X`)

∪{(p, |X`|) ∈ Pals4(Xi)};
return Pals4(X1), . . . ,Pals4(Xn);

References

1. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Info. Theory IT-23(3) (1977) 337–349

2. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Trans. Info. Theory 24(5) (1978) 530–536

3. Kieffer, J., Yang, E., Nelson, G., Cosman, P.: Universal lossless compression via
multilevel pattern matching. IEEE Trans. Info. Theory 46(4) (2000) 1227–1245

4. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: DCC’94, IEEE Press (1994) 244–253

5. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding. In: SWAT’96. (1996) 392–403

6. Rytter, W.: Grammar compression, lz-encodings, and string algorithms with im-
plicit input. In: ICALP’04. Volume 3142 of LNCS., Springer-Verlag (2004) 15–27

7. Inenaga, S., Shinohara, A., Takeda, M.: An efficient pattern matching algorithm
on a subclass of context free grammars. In: DLT’04. (2004) 225–236

8. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
ESA’94. Volume 855 of Lecture Notes in Computer Science. (1994) 460–470

9. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4 (1997) 172–186

10. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: CPM’97. Volume 1264 of LNCS.,
Springer-Verlag (1997) 1–11

11. Lifshits, Y.: Processing compressed texts: A tractability border. In: CPM’07.
Volume 4580 of LNCS., Springer-Verlag (2007) 228–240

12. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: MFCS’06.
Volume 4162 of LNCS. (2006) 681–692

13. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a
string. Theoretical Computer Science 141 (1995) 163–173

12

