
On-Line Construction of
Symmetric Compact Directed Acyclic Word Graphs

Shunsuke Inenaga† Hiromasa Hoshino† Ayumi Shinohara†

Masayuki Takeda†,‡ Setsuo Arikawa†

† Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan

‡ PRESTO, Japan Science and Technology Corporation (JST)

E-mail: {s-ine,hoshino,ayumi,takeda,arikawa}@i.kyushu-u.ac.jp

Abstract

The Compact Directed Acyclic Word Graph
(CDAWG) is a space efficient data structure that
supports indices of a string. The Symmetric Di-
rected Acyclic Word Graph (SCDAWG) for a string
w is a dual structure that supports indices of bothw
and the reverse of w simultaneously. Blumer et al.
gave the first algorithm to construct an SCDAWG
from a given string, that works in an off-line man-
ner. In this paper, we show an on-line algorithm
that constructs an SCDAWG from a given string di-
rectly.

1 Introduction

A Directed Acyclic Word Graph (DAWG) is
the smallest finite state automaton that recognizes
all the suffixes of a given string [1]. DAWGs
are involved in several combinatorial algorithms on
strings, because they serve as indices of strings, as
well as other indexing structures like suffix tries,
suffix trees, and suffix arrays (see eg. [2, 4, 8]). All
of these indexing structures except for suffix trie
can be constructed in linear time with respect to the
length of a given string, and the space requirements
are also linear. The hidden constants behind the
big-O notation of space complexity are critical in
practice, and much attention has recently been paid
to reduce these constants.

Blumer et al. [2] first introduced the Compact
Directed Acyclic Word Graph (CDAWG), a space
efficient variant of a DAWG. A CDAWG can be
obtained by not only compacting the correspond-
ing DAWG, but also minimizing the correspond-
ing suffix tree [5]. Blumer et al. gave a lin-

ear time algorithm for constructing the CDAWG
for a given string, which first builds the DAWG
for the string and then shrinks it to the CDAWG.
Later, Crochemore and Vérin [5] developed the
first algorithm to construct CDAWGs directly, that
is, without constructing DAWGs or suffix trees as
intermediates. Their algorithm allows us to save
time and space requirements simultaneously, since
it has been proven that the size of CDAWGs is
strictly smaller than those of DAWGs and suf-
fix trees [2, 5]. Recently, we proposed an on-
line algorithm that directly constructs CDAWGs
from given strings [9]. The algorithm is based
on Ukkonen’s on-line suffix tree construction algo-
rithm given in [15], while the one Crochemore and
Vérin gave is based on McCreight’s off-line suffix
tree construction algorithm [11].

A kind of failure transition, suffix link, is often
used for efficient constructions of indexing struc-
tures such as suffix tries, suffix trees, DAWGs, and
CDAWGs [16, 11, 1, 2, 15, 5, 9]. An interesting
fact is that, for any string w, the suffix links of
STrie(w) form STrie(wrev) [6], where wrev de-
notes the reversal of w. A DAWG also has a similar
property, that is, the suffix links of the DAWG(w)
compose STree(wrev) [3]. However, this duality is
damaged in case of suffix trees. Namely, the suf-
fix links of STree(w) do not form a structure sup-
porting indices of wrev . However, the set of suf-
fix links of STree(w) corresponds to a subset of
the set of edges of DAWG(wrev) [4]. In order to
obtain the duality on suffix trees, the affix tree is
developed by Stoye [12, 13]. Affix trees are the
modification of suffix trees so that the suffix links
of ATree(w) form ATree(wrev) (see Fig. 5). Stoye
could not prove his on-line algorithm for construct-
ing affix trees runs in linear time, but Maaß [10]
later succeeded to improve it so as to run in lin-

1

ear time. Meanwhile, Blumer et al. [2] showed that
the nodes of a CDAWG are invariant under rever-
sal: the nodes of the CDAWG for a string w exactly
correspond to those of the CDAWG forwrev , which
they call the Symmetric Compact Directed Acyclic
Word Graph (SCDAWG) for w (see Fig. 4, right).

In [15], Ukkonen gave intuitive and excel-
lent on-line algorithms for the construction of
STrie(w) and STree(w). Since the suffix links of
STrie(w) are equal to the edges of STrie(wrev),
it turns out that STrie(w) and STrie(wrev) sharing
the same nodes can be simultaneously built on-line,
scanningw from left to right. Also, as the algorithm
to construct DAWGs which Blumer et al. gave
in [1] is on-line, it results in that their algorithm
builds DAWG(w) and STree(wrev) at the same
time, in on-line (left to right) fashion. Moreover,
the fact is that the first algorithm that constructs suf-
fix trees, given by Weiner in [16], becomes more in-
teresting when considered as an on-line algorithm.
His algorithm builds the suffix tree for a string w
by appending the suffixes of w to the current suf-
fix tree in increasing order. In other words, his al-
gorithm builds STree(w) on-line, right to left. In
addition to that, his algorithm can be modified so
as to create the edges of the DAWG for wrev at the
same time [5]. It implies that his algorithm also si-
multaneously constructs DAWG(w) together with
STree(wrev) on-line, left to right.

In this paper, we first give an algorithm that si-
multaneously builds STree(w) with DAWG(wrev)
on-line, left to right. This algorithm constructs
STree(w) in the same way as the Ukkonen algo-
rithm does, while computing the shortest extension
links (sext links) that form DAWG(wrev) at the
same time. Moreover, we show an algorithm that
directly constructs SCDAWG(w) on-line, left to
right. It builds CDAWG(w) similarly to the algo-
rithm we developed in [9], and computes the sext
links that are equal to the edges of CDAWG(wrev).

From a practical point of view, SCDAWGs
and affix trees have essentially the same range
of applications. However, the number of nodes
in SCDAWG(w) is much smaller than that of
ATree(w), although both are linear with respect to
the length of a given string w. In fact, an inequality
comparing the number of nodes

|SCDAWG(w)|
≤ min{|STree(w)|, |STree(wrev)|}
≤ max{|STree(w)|, |STree(wrev)|}
≤ |ATree(w)|

holds for any string w. This is because, intu-
itively, the set of nodes in SCDAWG(w) is the in-

tersection of those in STree(w) and STree(wrev),
while the set of nodes in ATree(w) is the union of
them. Therefore, SCDAWGs save space consider-
ably compared to affix trees. Moreover, not only
a CDAWG is attractive as indexing structure, but
also the underlying equivalence relation is useful
in data mining or machine discovery from textual
databases. Actually, the equivalence relation plays
a central role in supporting human experts who in-
volved in evaluation/interpretation task for mined
expressions from anthologies of classical Japanese
poems [14].

The rest of this paper is organized as follows.
In Section 2, we introduce some notions and nota-
tion, and define suffix tries, suffix trees, DAWGs,
and CDAWGs in terms of the equivalence relations
over strings. It gives a unified view for these data
structures. Moreover, we define some bidirectional
indexing structures, including SCDAWGs, from the
viewpoint of the duality. In Section 3, we give an
on-line linear time algorithm to construct STree(w)
with DAWG(wrev) simultaneously. Later on, an
algorithm that builds SCDAWG(w) on-line in lin-
ear time is shown in Section 4. We conclude in
Section 5.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is
called a string. Strings x, y, and z are said to be a
prefix, factor, and suffix of string u = xyz, respec-
tively. The sets of prefixes, factors, and suffixes of
a string w are denoted by Prefix (w), Factor(w),
and Suffix (w), respectively. The length of a string
u is denoted by |u|. The empty string is denoted
by ε, that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The
ith symbol of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the factor of a string w that be-
gins at position i and ends at position j is denoted
by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i : j] = ε for j < i. For a string w, we
denote by wrev the reversed string of w, that is,
wrev = w[n] . . . w[2]w[1]. For a set S of strings,
let |S| denote the cardinality of S.

2.2 Equivalence Relations on Strings

For strings x, y ∈ Σ∗, we write as x ≡L
w y (resp.

x ≡R
w y) if the sets of positions in w at which x

and y begin (resp. end) are identical. The equiv-
alence class of a string x ∈ Σ∗ with respect to

2

≡L
w (resp. ≡R

w) is denoted by [x]L
w

(resp. [x]R
w

). For
instance, if w = baggage, then [a]Lw = {a, ag},
[ga]L

w
= {ga, gag, gage}, [a]R

w
= {a}, [ga]R

w
=

{ga, gga, agga, bagga}, and so on.
Note that all strings that are not in Factor(w)

form one equivalence class under ≡L
w (≡R

w). This
equivalence class is called the degenerate class. All
other classes are called non-degenerate. It follows
from the definition of≡L

w that if two factors x and y
of w are in a single equivalent class under≡L

w, then
either x is a prefix of y, or vice versa. Therefore,
each equivalence class in ≡L

w other than the degen-
erate class has a unique longest member. Similar
discussion holds for ≡R

w.

For any factor x of a string w ∈ Σ∗, let
w−→x and

w←−x denote the unique longest members of [x]Lw and

[x]Rw, respectively. We call
w−→x (resp.

w←−x) the rep-
resentative of [x]L

w
(resp. [x]R

w
). In the running

example,
w−→a = ag,

w−→
b = baggage,

w←−a = a,
w←−gg = bagg, and so on. Moreover, let

w←→x denote the

string αxβ such that
w←−x = αx and

w−→x = xβ, where

α, β ∈ Σ∗. In the running example,
w←→a = ag, and

w←→gg = baggage. For any strings x, y ∈ Factor(w),

x ≡w y if and only if
w←→x =

w←→y .

2.3 Suffix Tries, Suffix Trees, DAWGs, and
CDAWGs

We here recall four indexing structures, the
suffix trie, the suffix tree, the DAWG, and the
CDAWG for a string w ∈ Σ∗, all of which rep-
resent every string x ∈ Factor(w). They are de-
noted by STrie(w), STree(w), DAWG(w), and
CDAWG(w), respectively. We define them as
edge-labeled graphs (V,E) with E ⊆ V ×Σ+×V
where the second component of each edge rep-
resents its label. The definitions of STrie(w),
STree(w), DAWG(w), and CDAWG(w) are
given in Fig. 1.

One can regard STree(w) as the compacted ver-

sion of STrie(w) with “
w−→x operation”. Similarly,

DAWG(w) can be seen as the minimized version
of STrie(w) with “[x]R

w
operation”. These different

operations cause the difference between suffix trees

and DAWGs:
w−→x refers to a single string, the rep-

resentative of [x]L
w

, while more than one string can
belong to [x]R

w
. That means, a node of STree(w)

represents just one string in Factor(w), but that of
DAWG(w) can represent more than one. In other
words, two or more edges may point to the same

node in DAWG(w). CDAWG(w) is obtained both
by minimizing STree(w) with “[x]Rw operation” and

by compacting DAWG(w) with “
w−→x operation”.

The nodes of STrie(w) and STree(w) corre-
sponding to ε are called the root nodes. On a com-
mon assumption that a string w ends with an end-
marker occurring only at the end of w, every string
x ∈ Suffix (w) except ε is associated with some
leaf node both in STrie(w) and in STree(w). In
other words, both STrie(w) and STree(w) have
|Suffix (w)| − 1 leaf nodes. An end-marker is de-
noted by $. From here on, let us make the end-
marker assumption keep on holding until the end
of this paper. The nodes corresponding to ε in
DAWG(w) and CDAWG(w) are called the initial
nodes. Both of them have the final node with which
every string x ∈ Suffix (w) but ε is associated.

2.4 Bidirectional Index Structures

If an index structure represents all the strings not
only in Factor(w) but also in Factor(wrev), let
us call it a bidirectional index structure for string
w. We define such a structure as a graph with two
kinds of edges: the ones for a string w, and the
other for wrev .

Giegerich and Kurtz [6] observed that STrie(w)
and STrie(wrev) are dual in the sense that they
share the same nodes. We refer this bidirectional
index structure as “STrie(w) with STrie(wrev)”.
The formal definition is given as Definition 5 in
Fig. 2

The duality of STree(w) and DAWG(wrev),
which was pointed out in [3, 4], is shown in Defini-
tion 6 of Fig. 2. Let V ′ = {[x]Lw | x ∈ Factor(w)}.
It is easy to see that there is a trivial one-to-one
correspondence between V of Definition 6 and V ′.
Using this correspondence, we can identify ER→L

of Definition 6 with{
([x]Lw, a, [ax]Lw)

∣∣∣∣x, ax ∈ Factor(w)
and a ∈ Σ

}

=
{

([y]R
wrev , a, [ya]Rwrev)

∣∣∣∣y, ya ∈ Factor(wrev)
and a ∈ Σ

}
,

which is equivalent to the definition of
DAWG(wrev).

The edges ER→L of Definition 6 are the
so-called shortest extension links (sext links) of
STree(w), which were introduced by Crochemore
and Rytter in [4]. Moreover, a part of the reversed
sext links are known as suffix links that play a key
role in time efficient construction of suffix trees,
DAWGs, and CDAWGs. Formally, the suffix links

3

Definition 1 STrie(w) is the tree (V,E) such that

V = {x | x ∈ Factor(w)},
E = {(x, a, xa) | x, xa ∈ Factor(w) and a ∈ Σ}.

Definition 2 STree(w) is the tree (V,E) such that

V = {
w−→x | x ∈ Factor(w)},

E = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa}.

Definition 3 DAWG(w) is the dag (V,E) such that

V = {[x]R
w
| x ∈ Factor(w)},

E = {([x]Rw, a, [xa]Rw) | x, xa ∈ Factor(w) and a ∈ Σ}.

Definition 4 CDAWG(w) is the dag (V,E) such that

V = {[
w−→x]R

w
| x ∈ Factor(w)} � {

w←→x | x ∈ Factor(w)},
E = {([

w−→x]Rw, aβ, [
w−→xa]Rw) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w−→xa = xaβ, and
w−→x �=

w−→xa}
� {(

w←→x , aβ,
w←→xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,

w−→xa = xaβ, and
w−→x �=

w−→xa}.

Figure 1. The definitions of the indexing structures STrie(w), STree(w), DAWG(w), and
CDAWG(w).

Definition 5 STrie(w) with STrie(wrev) is the bidirectional tree (V,EL→R, ER→L) such that

V = {x | x ∈ Factor(w)},
EL→R = {(x, a, xa) | x, xa ∈ Factor(w) and a ∈ Σ}.
ER→L = {(x, a, ax) | x, ax ∈ Factor(w) and a ∈ Σ}.

Definition 6 STree(w) with DAWG(wrev) is the bidirectional dag (V,EL→R, ER→L) such that

V = {
w−→x | x ∈ Factor(w)},

EL→R = {(
w−→x , aβ,

w−→xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

ER→L = {(
w−→x , a,

w−→ax) | x, ax ∈ Factor(w) and a ∈ Σ}.

Definition 7 SCDAWG(w) is the bidirectional dag (V,EL→R, ER→L) such that

V = {
w←→x | x ∈ Factor(w)},

EL→R = {(
w←→x , aβ,

w←→xa) | x, xa ∈ Factor(w), a ∈ Σ, β ∈ Σ∗,
w−→xa = xaβ, and

w−→x �=
w−→xa},

ER→L = {(
w←→x , γa,

w←→ax) | x, ax ∈ Factor(w), a ∈ Σ, γ ∈ Σ∗,
w←−ax = γax, and

w←−x �=
w←−ax}.

Figure 2. The definitions of the bidirectional indexing structures STrie(w) with
STrie(wrev), STree(w) with DAWG(wrev), and SCDAWG(w).

are the set{
(

w−→ax,
w−→x)

∣∣∣∣∣ x, ax ∈ Factor(w), a ∈ Σ, and
w−→ax = a ·

w−→x

}
.

The reversal of the suffix links are reversed suffix

link defined as{
(

w−→x , a,
w−→ax)

∣∣∣∣∣ x, ax ∈ Factor(w), a ∈ Σ, and
w−→ax = a ·

w−→x

}
.

In Fig. 3 we illustrate STrie(w) with STrie(wrev)

4

and STree(w) with DAWG(wrev), where w =
baggage.

By the duality, we omit the definition of
the bidirectional index structure DAWG(w) with
STree(wrev).

In Definition 7 of Fig. 2, we show the defini-
tion of the symmetric CDAWG (SCDAWG) of a
string w, denoted by SCDAWG(w), originally de-
fined by Blumer et al. [2]. The edges ER→L are
called the sext links of CDAWG(w), as well. The
suffix links of CDAWG(w) are the set{

(
w←→ax,

w←→x)

∣∣∣∣∣ x, ax ∈ Factor(w), a ∈ Σ,

and
w←→x �=

w←→ax

}
,

whereas the reversed suffix link of CDAWG(w)
are the set
(

w←→x , γa,
w←→ax)

∣∣∣∣∣∣∣
x, ax ∈ Factor(w), a ∈ Σ,

γ ∈ Σ∗,
w←−ax = γax,

w←→x �=
w←→ax, and

w←→ax = a ·
w←→x


 .

We illustrate DAWG(w) with STree(wrev), and
SCDAWG(w) in Fig. 4, where w = baggage.

Another symmetric bidirectional index struc-
ture, called affix tree, was introduced by Stoye [12].
ATree(w) and ATree(wrev) for w = baggage
are shown in Fig. 5 without a formal definition
for comparison. Intuitively, the set of the nodes
in SCDAWG(w) is the intersection of those in
STree(w) and STree(wrev), while the set of the
nodes in ATree(w) is the union of them.

3 On-Line Construction of STree(w)
with DAWG(wrev)

In this section, we give an algorithm that simul-
taneously constructs STree(w) with DAWG(wrev)
for a string w ∈ Σ∗, on-line and in linear time with
respect to |w|.

3.1 Definition

For any string w ∈ Σ∗, let STree′(w) denote
the tree obtained by eliminating the non-branching
internal nodes from STree(w). The Ukkonen suf-
fix tree construction algorithm builds STree′(w)
rather than STree(w) in on-line manner for a string
w. Despite the difference between the two trees,
we can use the algorithm because we know that
STree′(w$) = STree(w$) when $ does not oc-
cur in w. Our algorithm constructs STree′(w) in
the same fashion as the Ukkonen algorithm, and

therefore the DAWG(wrev) being constructed at
the same time is incomplete in the sense that it lacks
the nodes corresponding to the non-branching inter-
nal nodes of STree(w) and the sext links from/to
them. However, the finally obtained structure for
input w$ is exactly the same as STree(w$) with
DAWG($wrev).

Let us denote by “STree′(w) with sext
links” this incomplete version of “STree(w) with
DAWG(wrev)”. Before describing our algo-
rithm, we have to formally define STree′(w), and
“STree(w) with sext links”, in order to clarify what
our algorithm constructs.

For a string w ∈ Σ∗, let

Lw =


(x, xa)

∣∣∣∣∣∣
x ∈ Factor(w), and a ∈ Σ
is the unique symbol
such that xa ∈ Factor(w).


 ,

and let ≡′L
w be the equivalence closure of Lw, i.e.,

the smallest superset of Lw that is symmetric, re-
flexive, and transitive. It can be readily shown that
≡L

w is a refinement of ≡′L
w, namely, every equiva-

lence class in ≡′L
w is a union of one or more equiv-

alence classes in ≡L
w. For a string x ∈ Factor(w),

denote by
w

=⇒
x the longest string in the equivalence

class to which x belongs under the equivalence re-

lation ≡′L
w. We remark that

w−→x is a prefix of
w

=⇒
x ,

and that
w

=⇒
x corresponds to the ‘locus’ of a string

x ∈ Factor(w) in STree′(w), not in STree(w).
Now we are ready to give formal definitions.

Definition 8 STree′(w) is the tree (V,E) obtained

by replacing the
w−→
(·) operation with the

w
=⇒
(·) opera-

tion in Definition 2.

Definition 9 STree′(w) with sext links is the bidi-
rectional dag (V,EL→R, ER→L) obtained by re-

placing the
w−→
(·) operation with the

w
=⇒
(·) operation in

Definition 6.

Since we can prove that
w$
=⇒
x =

w$−→x , these struc-
tures are identical to those defined in Definition 2
and Definition 6, respectively, for input string w$.

3.2 Main Idea of the Algorithm

As for STree′(w) for a string w ∈ Σ∗, our al-
gorithm creates it in entirely the same way as the
Ukkonen algorithm. Every time a new node is cre-
ated during the construction of STree′(w), the sext

5

b

a

g

g

gg

g

g

g

a

aa

a

e

ee

e
e

g

a

g

g

ab

a

g

g

g

a

e

e g

a

e

g

a

g

gg a

a

ab

b

g
b

b

b

b

b
a

g

g

g

g
g
g

a

a

a
e

e

e

ab

g

g

g
a

e
g

a

g

g

a

g

g
a

e

e
e

b

a

b

g
g

Figure 3. STrie(w) with STrie(wrev) at the left, and STree(w) with DAWG(wrev) at the right,
where w = baggage. The thick solid lines represent the edges of STrie(w) and STree(w),
while the thin break lines do the ones of STrie(wrev) and DAWG(wrev). Since the string
baggage ends with a unique character e, the endmarker $ is omitted.

a

b

g

g
g
a

a

e

g

a

a
g

g

e

e

e

g

g

b

a

a

g
e

g
g

b

g

g

g

e

g

g

a

b

a
g

g

g

a

a

a

b

g

b

b

b

a

g

g

e

ee

g

g

b

a

a

g
e

g
g

b

g
a

e
g
a

e
g
a

e

a

a

b
a

g
g

b

b

b
a

g
g

Figure 4. DAWG(w) with STree(wrev) at the left, and SCDAWG(w) at the right, for string
w = baggage.

links of the new node, which correspond to certain
edges of DAWG(wrev), are computed. The Ukko-
nen algorithm creates no leaf node for the use of
so-called “∞-trick” that enables his algorithm to
achieve anO(|w|)-time construction of STree′(w),
and an edge directed to a “transparent” leaf node is
called an open edge. However, we modify it so as
to create every leaf node not only because

(i) we need a leaf node to define its sext links, but
also

(ii) the sext link of a leaf node is to be a clue to
define the sext links of a node to be created
just above the leaf node.

First of all, one may wonder that if creating leaf
nodes, the time complexity of the construction of
STree′(w) can be quadratic due to a series of up-
dating the open edges. However, recall the fact that
label α of an edge of STree′(w) is usually imple-
mented with a pair of integers (i, j) such that α =
w[i : j]. Furthermore, note that the second value of
the label of any open edge in STree′(w[1 : h]) is
h for 1 ≤ h ≤ n. Therefore, if we implement the
second value with a global variable, we can update
all the open edges in constant time with increment
of the variable h.

Let us pay our attention back to the two reasons
(i) and (ii). We have an obvious proposition about

6

b

a
g

g

g

g

g

aa

a

e

e

e
e

g

a

g

g

ab

a

g

g
g
a

e

e
g
a

e

g

a

g

g

a

b

b

b

b

g
a
b

g

g
a

e

gab

b

a

g

g

g

a

e

b

a

g
g

g

a
b

a

g
gg

ab
a

b

b

be

b

ag

a

g

g

a

g
e

g

e

a
g

ge

e

a
g

ge

age

Figure 5. ATree(w) at the left and ATree(wrev) at the right, where w = baggage.

(i).

Proposition 1 Suppose that in STree′(w) the re-
versed suffix link of a leaf node x, which is labeled
a, points to a node y. Then node y is also a leaf
node in STree′(w).

Proof. From the definition the reversed suffix

link of node x is a triple (
w

=⇒
x , a,

w
=⇒
ax) such that

w
=⇒
ax = a ·

w
=⇒
x . String x is a suffix of w because x is

represented by a leaf in STree′(w). Hence
w

=⇒
x = x.

Consequently,
w

=⇒
ax = a ·

w
=⇒
x = ax = y. This means

that y is also a suffix of w and is represented by a
leaf node in STree′(w). �

The above proposition tells us that, in a suffix tree,
the reversed suffix link of the newest leaf node
points to the last created leaf node. Conversely, the
suffix link of the last created leaf node is pointing
to the leaf node which will be created next.

In the sequel, we shall clarify what the reason
(ii) implies.

On the construction of “STree′(w) with sext
links”, we use a two dimensional table sext. The
description “sext [x, a] = y” means “the sext link
of node x labeled with a points to node y.” Simi-
larly, we use tables suf and rsuf which correspond
to the suffix link and the reversed suffix link, re-
spectively.

3.3 How to Maintain Sext Links

Here, we explain how the sext links of a new
node are computed during the Ukkonen-type con-
struction of STree′(w). See Fig. 6 that shows each
phase of the construction of STree′(#abab$). The

starred point in Fig. 6 is called the active point. For
a string w ∈ Σ∗, at the beginning of each phase
w[1 : i] (i = 0, 1, . . . , |w| − 1), the active point
stays at which the algorithm should start to update
STree′(w[1 : i]) to STree′(w[1 : i + 1]). Let act i

denote the active point in phase w[1 : i]. In phase
w[1 : i + 1], act i+1 moves until it can stop with
spelling out w[i+ 1].

If it is possible for act i+1 to move ahead from
the current location while spelling out w[i+1] (say
case (a)), it moves and stops there, and then be-
comes act i+2. Notice that no new node is cre-
ated in case (a), as seen in phase #aba and phase
#abab in Fig. 6. Otherwise (say case (b)), a new
edge labeled with w[i+1] has to be created from
where act i+1 currently stays. Case (b) is divided
into two sub-cases:

• act i+1 is on a node u (case (b1)).

• act i+1 is on an edge (case (b2)).

In case (b1), the algorithm just creates a new edge
labeled byw[i+1] with a new leaf node v (see Fig. 7,
left). Only v is the newly created node in case (b1).
Concrete examples can be seen in phases #, #a,
#ab, and the third step of phase #abab$ in Fig. 6.
As for case (b2), the algorithm needs to create a
new node u where act i+1 stays now, in the middle
of the edge, to insert a new edge labeled withw[i+1]
from there (see Fig. 7, right). Concrete examples of
case (b2) can bee seen at the first and second steps
in phase #abab$ in Fig. 6. After having making
node u, it creates a new edge together with a new
leaf node v. These nodes u and v are all the nodes
newly created in case (b2).

7

$

a

a

a
#

b
b

b

b
a#

#

#

a

a

b

a

b

$

$

$
$
b

b

b

$
a

a

a

a

a
#

b
b

b
b
a#

#

#

a

a

b

a

b

$

$

$
$
b

b

b

a
a

a
#

bb
b

b
a#

#

#abab:

a

a

b
aaa

a
#

bbb
a#

#

#aba:

a

a

b

a

#

bbb
a#

#

#ab:

a

#
a

##

a
a

#

#

#a:#:

#abab$:

a

b a

b

a

a

a
bb

b

b
a#

#

#

a

a

ba

b

$

$

$

$

b

b

b

b

$
a

a

b

$

Figure 6. The on-line construction of STree′(#abab$) with the sext links represented
by the broken arrows. At the third step of phase #abab$, the sext links form
DAWG($baba#).

uu

v

ss

v

u

(b2)(b1)

Figure 7. The two cases of the position of the active point, which is denoted by a gray
star. Since the active point is on a node u in case (b1) displayed on the left, only leaf
node v is newly created. On the other hand, in case (b2) on the right, internal node u is
also created where the active point is at present, in the middle of an edge.

3.3.1 Sext Link of a Leaf Node

In both cases (b1) and (b2), it follows from Propo-
sition 1 that the reversed suffix link of a new leaf
node v points to the last created leaf node v′. Sup-
pose v is the jth created leaf node and v′ is (j−1)th
one during the construction of STree′(w), where
2 ≤ j ≤ |w|. Then the reversed suffix link of
node v pointing to v′ is labeled by w[j−1], in for-

mula, rsuf [v,w[j−1]] = v′. We have the following
proposition which concerns with the sext link of v.

Proposition 2 Suppose that v and v′ are jth and
(j − 1)th created leaf nodes of STree′(w), respec-
tively, where 1 ≤ j ≤ |w|. Then sext [v,w[j−1]] =
v′ is the sole sext link of leaf node v.

Proof. Since v is a leaf node, v is a factor which
has occurred only once in w, as a suffix. Because

8

v is the jth suffix, it is preceded by w[j − 1] and
w[j − 1] · v = v′. Therefore, for any c ∈ Σ such
that c �= w[j−1], the string cv is not in Factor(w).
�

For example, leaf node b is created in phase
#ab of Fig. 6, and it is the third one. Therefore,
rsuf [b, a] = sext [b, a] = ab, where a is the sec-
ond character in string #abab$.

3.3.2 Sext Links of an Internal Node

Since the leaf node v is the only node newly cre-
ated in case (b1), the algorithm then has only to do
the above maintenance for node v. Meanwhile, be-
cause the node u is also newly created in case (b2),
we have to determine the sext links of u. Assume
that in phase w[1 : i] the internal node u is created
in the middle of an edge between node s and node r.
It then results in that u has two children, r and v. If
there exists a node u′ such that suf [u′] = u, then let
a be the character such that rsuf [u, a] = u′. Sup-
pose there is a node r′ such that sext [r, b] = r′ with
b �= a. Then sext [u, b] is set to point to r′ as well,

since r′ =
w[1:i]
=⇒
bu in this case (remember the defi-

nition of sext links). For instance, at the first step
of phase #abab$ in Fig. 6, u = ab, r = abab$
and r′ = sext [abab$,#] = #abab$. Since
rsuf [ab,#] is undefined, we define sext [ab,#] =
#abab$. If b = a, then sext [u, b] stays pointing

to node u′, because obviously u′ =
w[1:i]
=⇒
bu =

w[1:i]
=⇒
au .

For example, at the second step of phase #abab$
in Fig. 6, sext [bab$, a] = abab$. However, since
rsuf [b, a] = ab, sext [b, a] = ab. As previously
remarked in the reason (ii) in Section 3.2, we also
refers to the sext link of leaf node v in order to de-
termine the sext links of node u, in the same way
as mentioned above about the sext links of r. For-
mally, we have the following lemma.

Lemma 1 When an internal node u is newly cre-
ated in phase w[1 : i] during the construction of
STree′(w) with sext links, let r be the existing child
node of u and v be the new leaf node which is also
a child of u. Then, sext [u, c] is created for each
character c such that either sext [r, c] or sext [v, c]
was present at the beginning of the phase.

Proof. It follows from the definition that a node x
has a sext link labeled by a character c if and only if
an occurrence of the string x is preceded by c. Note
that the string u is a suffix of the string w[1 : i],
and that each of the occurrences of u within w[1 :

i − 1] is followed by the string α such that uα =
r. Therefore, if there is an occurrence of u within
w[1 : i − 1] which is preceded by c, then the node
r has a sext link labeled by c. On the other hand,
if c is the preceding character of the occurrence of
u within w[1 : i] that ends at the last character of
w[1 : i], then the node v has a sext link labeled by
c. �

On the other hand, if the active point arrives at
a node when case (a) is applied, a new sext link of
the node is created. Suppose that, just after a leaf
node v had been created, the active point stopped
on a node in phase w[1 : i] during the construction
of STree′(w), where 1 ≤ i ≤ |w|. In addition,
assume that v is the jth created leaf node, where
1 ≤ j ≤ |w|. That is to say, v = w[j : i]. Notice
that j ≤ i. After that, if the active point stops on a
node p with case (a) in the next phase, phase w[1 :
i + 1], then a sext link of node p which is labeled
w[j] is created and set to point to node v, where v
now representsw[j : i+1]. Let us clarify the reason
for the above. Let u and u′ be the parent nodes of v
and p, respectively. Notice that then u·w[i : i+1] =
v = w[j : i+1]. Furthermore, u′ ·w[i+1 : i+1] =
u′ · w[i+ 1] = w[j + 1 : i+ 1] since suf [u] = u′.
Namely, node v currently representsw[j : i+1] and
node p corresponds to w[j+ 1 : i+ 1]. That is why
sext [p, w[j]] = v. If the active point again stops on
a node until the algorithm faces case (b), the sext
link of the node whose label is w[j] is created and
set to point to the leaf node v as well. A concrete
example is shown in Fig. 8.

3.3.3 Sext Links Pointing to a New Node

The only thing we have not accounted for yet is to
change the sext links that point to the newly created
nodes u and v. Let us first mention the case of v, a
new leaf node. The following remark about a new
leaf node v is common to case (b1) and case (b2).
Whenever a character w[i] appears in string w[1 :
i] for the first time, a new edge labeled with w[i]
is created from the root node, and v is associated
with w[i]. Then, sext [ε, w[i]] = v, because the root
node corresponds to the empty string ε. This can be
seen in phases #, #a, #ab, and #abab$ in Fig. 6.
If the character w[i] has already appeared in string
w[1 : i − 1], then leaf node v should be pointed to
by the leaf node which will be created next.

We now treat how to decide what sext link of
STree′(w[1 : i]) should be modified so as to point
to a newly created internal node u, in case (b2).
Recall that node u has two children r and v. Let

9

a

a

a
a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaabaa:

a
a

a

a

a

b

a

b

a

a

a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaaba:

a

a

a

a

a

a

#

b

b

a#

#

#

#

a

a

b

b

b

a

a

#aaab:

a
a

a

b

a

a

a

b

a

b

a

a

a

a

b

Figure 8. STree′(#aaab) with the sext links is shown on the left. Node b is the last
created leaf node in that phase. Scanning a new character a, the active point moves
to node a, as seen in the center figure STree′(#aaaba). Then, sext [a, b] is set to point
to the last created leaf node ba. Also in the right figure representing STree′(#aaabaa),
sext [aa, b] = baa, because the active point has arrived at node aa.

us suppose that node r is pointed to by a c-labeled
sext link of a node p in STree′(w[1 : j]) where
j = i − 1, that is, sext [p, c] = r. In other words,
w[1:j]
=⇒
cp = r. If |u| > |p|, then the sext link of p

is modified so as to point to u (sext [p, c] = u),

because
w[1:i]
=⇒
cp = u. A concrete example can be seen

between phase #abab and phase #abab$ in Fig. 6.
sext [ε, a] = abab in phase #abab is modified as
sext [ε, a] = ab at the first step of phase #abab$,
where node ab is the internal node newly created in
phase #abab$. In another case (if |u| ≤ |p|), the
sext link of node p remains pointing to node r, since
w[1:i]
=⇒
cp = r in this case. Similar discussion holds for

the sext links pointing to node v, another child of
node u.

3.4 Correctness and Complexity of the Al-
gorithm

The algorithm is summarized as Fig. 9 and
Fig. 10. If we compute the sext links of the nodes
in “STree′(w) with sext links” according to the al-
gorithm, we have the following:

Theorem 1 For any string w ∈ Σ∗, STree′(w)
with sext links can be constructed on-line and in
linear time and space with respect to |w|.

Proof. Since it has been proven in [15] that
STree′(w) can be obtained on-line and in O(|w|)
time, all we have to clarify are the correctness and
complexity of the construction of sext links. The

data structure we newly add to the Ukkonen algo-
rithm are the table sext and rsuf. It is clear that they
require O(|Σ|·|w|) space. Therefore, if Σ is a fixed
alphabet, the space complexity of our algorithm is
linear.

We have assumed that a string w ends with a
unique end-marker $. After $ is scanned, a new
edge labeled with $ is absolutely created from the
root node, and the corresponding new leaf node is
also created. After that, the sext link of the root
node, which is labeled $, is set to point to the new
leaf node. Then, the chain formed by the sext links
of all the leaf nodes in STree′(w) exactly spells
wrev , i.e., the path of DAWG(wrev) which cor-
responds to string wrev is then completed. This
guarantees that the paths of DAWG(wrev) corre-
sponding to the suffixes of wrev are also created as
the sext links of the internal nodes of STree′(w).
This algorithm constructs DAWG(wrev) on-line,
because new sext links are computed each time a
new node is created.

From here on, we establish the sext links can be
computed in linear time with respect to |w|. It is
obvious that to decide the sext link of any new leaf
node takes only constant time. When we determine
the sext links of a newly created internal node, we
copy the sext links of the two children of the new
node. It takes O(|Σ|) time, since each of the two
children has at most |Σ| sext links. Therefore, if Σ
is a fixed alphabet, it takes constant time. The mat-
ter is the change of sext links due to a new-created
internal node. Suppose that, in phase w[1 : i],
act i stays somewhere depth m in STree′(w[1 : i]).
At the beginning of phase w[1 : i + 1], the algo-

10

Algorithm Construction of STree′(text$) with sext links in alphabet Σ = {text[−1], . . . , text[−m]},
and $ is the end marker not appearing elsewhere in text.

1 create nodes root and bottom;
2 for j := 1 tom do create a new edge (bottom, (−j,−j), root);
3 suf[root] := bottom;
4 length(root) := 0; length(bottom) := −1;
5 (s, k) := (root, 1); i := 0;
6 lastleaf := nil; n := 0; /* lastleaf is the last (n-th) created leaf node */
7 repeat
8 i := i+ 1;
9 (s, k, lastleaf, n) := update(s, (k, i), lastleaf, n);

10 until text[i] = $;

function update(s, (k, p), lastleaf, n):
/* (s, (k, p− 1)) is the canonical reference pair for the active point. */
1 oldr := nil; s′ := nil;
2 while not check end point(s, (k, p− 1), text[p]) do
3 if k ≤ p− 1 then /* implicit */
4 s′ := extension(s, (k, p− 1));
5 r := split edge(s, (k, p− 1));
6 else /* explicit */
7 r := s;
8 create a new leaf node v and a new edge (r, (p, e), v);
9 /* e is the global variable representing the scanned length of the input string. */

10 let length(v) be e− n;
11 if oldr �= nil then set suffix link(oldr, r);
12 if lastleaf �= nil then set suffix link(lastleaf, v);
13 if r �= s then /* maintenance of sext links */
14 c := text[n];
15 if rsuf[r, c] = nil then sext[r, c] := sext[v, c];
16 for each character a such that sext[s′, a] �= nil do
17 if rsuf[r, a] = nil then sext[r, a] := sext[s′, a];
18 for each sext link sext[x, a] = s′ do /* modify sext links pointing to s′ */
19 if length(r) > length(x) then sext[x, a] := r;
20 oldr := r; lastleaf := v; n := n+ 1;
21 (s, k) := canonize(suf[s], (k, p− 1));
22 if oldr �= nil then set suffix link(oldr, s);
23 (s, k) := canonize(s, (k, p));
24 if k > p then sext[s, text[n]] := lastleaf;
25 return (s, k, lastleaf, n);

Figure 9. Main routine and function update.

rithm begins to seek for the location where the ac-
tive point can stop. Then, at most m sext links are
changed until the active point stops. This implies
that the overall complexity of the change of sext
links due to new internal nodes takes O(|w|) time.
�

4 On-Line Construction of SCDAWG

In this section, we propose how to construct SC-
DAWG for a string w, on-line in O(|w|) time. De-
fine CDAWG ′(w) and SCDAWG ′(w) in a similar
way to the definition of STree′(w). Our on-line al-
gorithm builds CDAWG ′(w) in the same way as
in [9], and builds certain edges of CDAWG(wrev)

11

procedure set suffix link(s, t):
1 let c be the first character of the string represented by s;
2 suf[s] := t; rsuf[t, c] := s; sext[t, c] := s;

function check end point(s, (k, p), c): boolean;
1 if k ≤ p then /* implicit */
2 let (s, (k′, p′), s′) be the text[k]-edge from s;
3 return (c = text[k′ + p− k + 1]);
4 else /* explicit */
5 return (there is a c-edge from s);

function extension(s, (k, p)): node;
/* (s, (k, p)) is a canonical reference pair. */
1 if k > p then return s; /* explicit */
2 find the text[k]-edge (s, (k′, p′), s′) from s; return s′; /* implicit */

function canonize(s, (k, p)): pair of integers; /* borrowed from the Ukkonen algorithm. */
1 if k > p then return (s, k); /* explicit */
2 find the text[k]-edge (s, (k′, p′), s′) from s;
3 while p′ − k′ ≤ p− k do
4 k := k + p′ − k′ + 1; s := s′;
5 if k ≤ p then find the text[k]-edge (s, (k′, p′), s′) from s;
6 return (s, k);

function split edge(s, (k, p)): node;
1 let (s, (k′, p′), s′) be the text[k]-edge from s;
2 replace this edge by edges (s, (k′, k′ + p− k), r) and (r, (k′ + p− k + 1, p′), s′), where r is a new node;
3 length(r) := length(s) + (p− k + 1);
4 return r;

Figure 10. Other functions.

as the sext links of the nodes of CDAWG ′(w).

We stress that the algorithm of [9] is based
on the Ukkonen suffix tree construction algo-
rithm. This implies, if we add the functions “redi-
rect” and “separate node” in [9] to the pseudo-
code of the algorithm in Section 3, we ob-
tain CDAWG ′(w). The matter is how to build
the edges of CDAWG(wrev), the sext links of
CDAWG(w), of course. However, we fortu-
nately have the fact that CDAWGs can have “the
same amount of information” as suffix trees. The
loss of information comes from the property that
CDAWGs have a node having two or more incom-
ing edges, which correspond to two or more nodes
connected by suffix links in suffix trees. Namely,
the lost information is strings obtained by concate-
nating labels of some suffix links. One hint has
been given in [7] as an exercise. Furthermore,
the CDAWG construction algorithm in [9] is capa-

ble of storing the “lost” information as integers in
nodes. Notice that if we can treat CDAWGs like
suffix trees, it means we can obtain the sext links of
CDAWGs.

In the following subsections, we show how the
algorithm of Section 3 should be changed when
constructing CDAWGs, by using examples. If
again turning our attention to the pseudo-code, the
8th line of update function is changed to as “cre-
ate a new edge (r, (p, e), f inal);” and labels of re-
versed suffix links and sext links can be of strings,
not a character.

4.1 Sext Link Corresponding to a Newly
Created Edge

A sequence of snapshots on the on-line con-
struction of SCDAWG ′(#abab$) is shown in
Fig. 11. Since character a has appeared in string
#a, the edge labeled with a is created and directed

12

a
b

bba
a

$
$ $b

a

a
b

b
a

a

b

#

#

#

b

b b
a
#

$
$

$

$b
a

b
a

a

b
a
#

#

#

#

b b
a
#

b
a

a
bb

a

a b
a
#

a
#

#

b

b
aa

a
bb

a

a b
a
#

a
#

#
b

a
bb

a
b
a
#

a
#

#
#

a#

a
a##
b

a

b

$
$

$$b
a

a
b

b
a

a
b
a
#

aa

#

#

#
b

b
a

b
b
a
#

a

b
a

$

#abab:#aba:#ab:#a:#:

#abab$:

Figure 11. The on-line construction of SCDAWG ′(w), where w = #abab$. The solid
arrows represent the edges of CDAWG ′(w), whereas the broken arrows represent the
sext links of the nodes of CDAWG ′(w), that are equivalent to the edges of CDAWG(wrev).

to the final node in phase #a. After that, the sext
link of the initial node labeled with a# is set to
point to the final node. Comparing it with the cor-
responding phase in Fig. 6, one can see that charac-
ter # in the label a# of the CDAWG corresponds
to the label # of the sext link from the leaf node
a to node #a of the suffix tree in the phase #a.
In general, in phase w[1 : i] of the construction of
CDAWG ′(w), the representative of the final node
is w[1 : i]. Assume that an edge is then created
from a node u and it is the jth edge entering to
the final node, where 1 ≤ j ≤ i. Then, the jth
edge is associated with w[j : i]. There then exists a
“gap”w[1 :j−1] between the representativew[1 : i]
and w[j : i]. Notice that this “gap” corresponds to
the reversal of the concatenation of the labels of the
sext links between leaf node w[j : i] and leaf node
w[1 : i] in STree(w[1 : i]). On the grounds of this
gap w[1 : j − 1], a new sext link of node u is set to
point to the final node with label (w[1 :j])rev .

4.2 Change of Sext Links

See phases #abab and #abab$ in Fig. 11. The
active point stays on the middle of the edge labeled
abab in phase #abab, and the edge is split into two
edges due to the creation of the new edge labeled $.
Notice that the sext link labeled with a# is also
cut into two. One labeled with a is set to point

to the new node ab, and the other labeled # is set

from node ab. It is because
w[1:6]
=⇒
εa = ab and

w[1:6]
=⇒
#ab =

#abab$ in this time, where w[1 : 6] = #abab$.

What if a sext link, whose label is of length
more than 1, is cut? See Fig. 12 that dis-
plays CDAWG ′(#abb) and CDAWG ′(#abba).
There is a sext link of the initial node pointing
to the final node, which is labeled with ba# in
CDAWG ′(#abb). At the beginning of the conver-
sion to CDAWG ′(#abba), a new node b is cre-
ated where the active point currently stays. Then,
the sext link labeled ba# is cut and its former part
is set to point to the new node b, labeled with b. In
general, if a new node is created in the middle of
an edge, the sext link corresponding to the edge is
cut into two, and its former part is labeled with the
single initial character of the label of the cut sext
link. It does not depend on the length of the label
of the sext link to be cut.

To realize the operation above mentioned, we
need to associate the sext link labeled ba# with
string bb in the final node, where bb is not the
representative of the final node. This is because if
we associate that just with the representative, like
sext [ε, ba#] = #abb, we cannot recognize which
sext link pointing to the final node should be cut
owing to the newly created node (notice there ex-
ist other sext links from the initial node to the final

13

b

a
bb

a

a

b

a
#

a#
#

b

b

b

#abba:

b

a
b

b
a b

a
#

a
#

#
#
b

b

b

#abb:

a aa b
a
#

Figure 12. CDAWG ′(#abb) and CDAWG ′(#abba) with their sext links.

node). Therefore, we make a sext link point to a
string represented in a certain node, not to the rep-
resentative. For example, on CDAWG ′(#abb) in
Fig. 12, sext [ε,#] = #abb, sext [ε, a#] = abb,
sext [ε, ba#] = bb.

As seen in phase #abab$ of Fig. 11, the edge
labeled with bab$ is merged into the node ab
and its label is modified to b. According to it,
sext [ε, ba#] = bab$ becomes sext [ε, ba] = b.
The character a at the tail of label ba of the sext
link corresponds to the label of the sext link from
node b to ab in STree(#abab$) in Fig. 6.

Fig. 13 displays a node separation that can
happen during the construction of CDAWGs. In
Fig. 13, as the active point arrives at node ab via
the edge labeled b which belongs to a non-longest
path from the initial node to the node ab, the node is
cloned as seen in the CDAWG ′(#ababcb). Then,
sext [ε, ba] = b in CDAWG ′(#ababc) is cut into
two, one of which is sext [b, a] = ab and the other
sext [ε, b] = b.

4.3 Implementation of Factors Repre-
sented in a Node

As is mentioned above, a sext link in
CDAWG ′(w) is set to point to a certain factor of
w represented in a node. However, if we actually
implement all of such strings naively, the space re-
quirement can be quadratic. Therefore, we imple-
ment them with integers referring to the positions
in the input string w. Suppose that the represen-
tative of a node p is α in CDAWG ′(w[1 : i]) for
1 ≤ i ≤ |w|. Then, node p has integers j and k
(1 ≤ j ≤ k ≤ i) such that α = w[j :k] where j rep-
resents the beginning position of the left most oc-
currence of α in w[1 : i]. In addition to it, each edge
entering node p has an integer representing the en-
trance order to node p. See the left figure in Fig. 13,
CDAWG ′(#ababc). For example, the edge la-

beled ab is the first one and the edge labeled b is
the second one entering to node ab. Note that, in
CDAWG ′(#ababc), the edge labeled abc enter-
ing to the final node represents two factors ababc
and babc, which are the second and the third mem-
bers of the final node, respectively. Thus the edge
labeled abc is associated with the set {2, 3}. In this
way, the edges entering to the final node are associ-
ated with the sets {1}, {2, 3}, {4, 5}, {6} from left
to right. In general, an edge in a node may corre-
spond to more than two strings represented in the
node. However, the truth is that such strings always
occur sequentially in string w, for any w. There-
fore, even if an edge corresponds to more than two
strings, we can represent all of them with a pair of
integers, the minimum and the maximum elements
in the set associated with. As a result of the above
discussions, we now have:

Theorem 2 For any string w ∈ Σ∗, SCDAWG for
w can be constructed on-line in linear time and
space with respect to |w|.

5 Conclusions

First, we gave an on-line linear time algorithm
to construct the suffix tree for a string together with
the DAWG for the reversal of the string. It builds
the suffix tree based on Ukkonen’s on-line algo-
rithm [15], and simultaneously builds the DAWG
as the sext links of the nodes of the suffix tree.

Blumer et al. [2] gave an off-line linear time al-
gorithm for the construction of the SCDAWG for
a string: first builds the DAWG with the suffix
links, and then compacts the DAWG and its suffix
links to the SCDAWG. Meanwhile, the algorithm
we proposed in this paper directly constructs the
SCDAWG for a given string, on-line in linear time:
builds the CDAWG for the string on-line, with the
sext links that compose the CDAWG for the rever-
sal of the string. This enables us to save time and

14

a
b bba

a

cc
cc

b

b
a

b
a

a

b
a
#

#

#

#

b

b
b
a
#

b
a

c

a
b

bba
a

cc

c

cb
a

b
a

a

b
a
#

#

#

#

b b
a
#

b
a

c

#ababcb:#ababc:

c
b
a

b b
b

c
b

Figure 13. CDAWG ′(#ababc) and CDAWG ′(#ababcb) with their sext links.

space at the same time when constructing an SC-
DAWG.

References

[1] A. Blumer, J. Blumer, D. Haussler, A. Ehren-
feucht, M. T. Chen, and J. Seiferas. The small-
est automaton recognizing the subwords of a
text. Theor. Comput. Sci., 40:31–55, 1985.

[2] A. Blumer, J. Blumer, D. Haussler, R. Mc-
Connell, and A. Ehrenfeucht. Complete in-
verted files for efficient text retrieval and anal-
ysis. J. ACM, 34(3):578–595, 1987. Prelimi-
nary version in: STOC’84.

[3] M. T. Chen and J. Seiferas. Efficient and el-
egant subword tree construction. In A. Apos-
tolico and Z. Galil, editors, Combinatorial Al-
gorithm on Words, volume 12 of NATO Ad-
vanced Science Institutes, Series F, pages 97–
107. Springer-Verlag, 1985.

[4] M. Crochemore and W. Rytter. Text Algo-
rithms. Oxford University Press, New York,
1994.

[5] M. Crochemore and R. Vérin. On compact
directed acyclic word graphs. In Structures
in Logic and Computer Science (LNCS1261),
pages 192–211. Springer-Verlag, 1997.

[6] R. Giegerich and S. Kurtz. From Ukkonen to
McCreight and Weiner: A unifying view of
linear-time suffix tree construction. Algorith-
mica, 19(3):331–353, 1997.

[7] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, New
York, 1997.

[8] J. Holub and B. Melichar. Approximate string
matching using factor automata. Theor. Com-
put. Sci., 249:305–311, 2000.

[9] S. Inenaga, H. Hoshino, A. Shinohara,
M. Takeda, S. Arikawa, G. Mauri, and
G. Pavesi. On-line construction of compact
directed acyclic word graphs. In Proc. 12th
Ann. Symp. on Combinatorial Pattern Match-
ing (LNCS2089), pages 169–180, July 2001.

[10] M. G. Maaß. Linear bidirectional on-line
construction of affix trees. In Proc. 11th
Ann. Symp. on Combinatorial Pattern Match-
ing (LNCS1848), pages 320–334. Springer-
Verlag, 2000.

[11] E. M. McCreight. A space-economical suf-
fix tree construction algorithm. J. ACM,
23(2):262–272, Apr. 1976.

[12] J. Stoye. Affixbäume. Master’s thesis, Uni-
versität Bielefeld, May 1995.

[13] J. Stoye. Affix trees. Technical Report 2000–
4, Universität Bielefeld, Technische Fakultät,
2000.

[14] M. Takeda, T. Matsumoto, T. Fukuda, and
I. Nanri. Discovering characteristic expres-
sions from literary works: A new text analy-
sis method beyond n-gram and KWIC. Theor.
Comput. Sci., 2001. (to appear).

[15] E. Ukkonen. On-line construction of suffix
trees. Algorithmica, 14(3):249–260, 1995.

[16] P. Weiner. Linear pattern matching algo-
rithms. In Proc. 14th Ann. Symp. on Switching
and Automata Theory, pages 1–11, Oct. 1973.

15

