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Abstract. We consider the problem of finding pairs of short patterns
such that, in a given input sequence of length n, the distance between
each pair’s patterns is at least . The problem was introduced in [1] and
is motivated by the optimization of multiplexed nested PCR.

We study algorithms for the following two cases; the special case when
the two patterns in the pair are required to have the same length, and the
more general case when the patterns can have different lengths. For the
first case we present an O(anloglogn) time and O(n) space algorithm,
and for the general case we give an O(anlogn) time and O(n) space
algorithm. The algorithms work for any alphabet size and use asymptot-
ically less space than the algorithms presented in [1]. For alphabets of
constant size we also give an O(ny/nlog? n) time algorithm for the gen-
eral case. We demonstrate that the algorithms perform well in practice
and present our findings for the human genome.

In addition, we study an extended version of the problem where patterns
in the pair occur at certain positions at a distance at most «, but do not
occur a-close anywhere else, in the input sequence.

1 Introduction

1.1 Composite Pattern Discovery

Pattern discoveryis a fundamental problem in Computational Biology and Bioin-
formatics [2, 3]. A large amount of effort was paid to devising efficient algorithms
to extract interesting, useful, and surprising substring patterns from massive
biological sequences [4,5]. Then this research has been extended to more com-
plicated but very expressive pattern classes such as subsequence patterns [6, 7],
episode patterns [8, 9], VLDC patterns [10], and their variations [11].

The demand for composite pattern discovery has recently arisen rather than
simply finding single patterns. It is motivated by, for instance, the fact that many
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of the actual regulatory signals are composite patterns that are groups of monad
patterns occurring near each other [12]. The concept of composite patterns was
introduced by Marsan and Sagot [13] as structured motifs which are two or more
patterns separated by a certain distance. They introduced suffix tree [14] based
algorithms for finding structured motifs, and Carvalho et al. [15] presented a
new algorithm with improved running time and space.

In a similar concept, Arimura et al. [16, 17] introduced proximity patterns and
proposed algorithms to find these patterns efficiently. MITRA [12] is another
method that looks for composite patterns. BioProspector [18] applies the Gibbs
sampling strategy to discover gapped motifs. Bannai et al. [19] and Inenaga et
al. [20] considered Boolean combinations of patterns, in order to find regulatory
elements that cooperate, complement, or compete with each other in enhancing
and/or silencing certain genomic functions.

Another application of composite pattern discovery is to find good adapters
for primers used in polymerase chain reaction (PCR). PCR is a standard tech-
nique for producing many copies of a DNA region [21]. It is routinely used for
example in medicine to detect infections and in forensic science to identify indi-
viduals even from tiny samples. In PCR a pair of short fragments of DNA called
primers is specifically designed for the amplified region so that each of them is
complementary to the 3’ end of one of two strands of the region (see also Fig. 1).

Fig. 1. Illustration for polymerase chain reaction (PCR).

In order to achieve ultrasensitive detection, repeated PCR with nested primers,
so-called nested PCR, is used. Also, detection tests are preferred to be carried
out in a multiplexed fashion. Let S denote any sequence taken from a sample of
genome, and S’ denote the reverse complement of S. To obtain a good primer
pair for multiplexed nested PCR, we are required to find a pair of patterns (A4, B)
such that any occurrences of A and B are separated further than « in both se-
quences S and S, where « is a given threshold value. Then, the pair (A, B) is
called a missing pattern pair (or shortly a missing pair). For the application of
multiplexed nested PCR, the patterns in a missing pair have to also satisfy that
|A| = |B| = k and k is as short as possible. Namely, a missing pair with patterns
of the same, and shortest length, is demanded. More details of the relationship
between missing patterns and PCR can be found in [1].



Table 1. Summary of results for finding missing pairs of patterns of same length.

Algorithm Time Space

Algorithm 1 O(anloglog, n) O(n)
Bit Table Algorithm [1] O(an(o + loglog, n)) O(an)

1.2 Finding Missing Patterns

The problem of finding missing pattern pairs was firstly considered in [1]. The
paper presented an algorithm which finds missing pattern pairs in O(an loglogn)
time with O(an) space, where n denotes the length of the input sequence. For
a more general case where the two patterns in a missing pair can have different
lengths, the paper showed that the problem is solvable in O(n?) time and O(n)
space, or in O(anlogn) time and O(nlogn) space, both on a constant-size al-
phabet. We remark that the patterns considered in [1] were substring patterns,
that is, exact match without errors was considered.

In this paper, we give simpler and more efficient algorithms that solve the
stated problems for an arbitrary alphabet size 0. We give an O(anloglog, n)
time algorithm for the case when the patterns in the missing pairs are of the
same length, and O(min{anlog, n, (0 + logn)ny/nlog, n}) time algorithm for
the case when the two patterns can have different lengths. In both cases the
space requirement is only O(n).

See Tables 1 and 2 for more detailed comparison between our algorithms and
those obtain in [1]. For patterns of the same length and constant-size alphabets,
Algorithm 1 saves computational space by a factor of a. It also improves the
time complexity for arbitrary alphabet sizes. For pairs of patterns of different
lengths, Algorithm 1 is superior to Suffix Tree Algorithm B on both constant
and arbitrary alphabets. It is also noteworthy that although both Suffix Tree
Algorithms heavily depend on manipulations on suffix trees [14], neither Algo-
rithm 1 or 2 in this paper needs advanced data structures which can be rather
expensive in practice.

Furthermore, since primers need to occur around the region to be amplified,
we also study a natural extension of the problem where patterns in the pair
occur at certain positions at a distance at most «, but do not occur a-close
anywhere else, in the input sequence. We show how Algorithm 1 can be modified
for this extended problem. Since the restriction can make “short” pattern pairs
impossible, we also discuss a variant that allows for arbitrary pattern lengths.
We note that for the case of primers, which typically have lengths in the range
17..25, the obtained algorithm runs in O(an) time and O(n) space.

1.3 Organization

In Section 2 we formally introduce our model and state the considered problem.
In Section 3 we present the main algorithm, and subsequent results. Next, in



Table 2. Summary of results for finding missing pairs of patterns of different length.

Algorithm Time Space
Algorithm 1 O(anlog, n) O(n)
Algorithm 2 O((o + logn)ny/nlog, n) O(n)
Suffix Tree Alg. A [1 O(n?) O(n)

*

Suffix Tree Alg. B |
Suffix Tree Alg. B |

1] O(anlogn) O(nlogn)
1] O(log canlog, n) O(log canlog, n)

*

Constant size alphabet.

Section 4, we discuss natural extensions to the main algorithm and their im-
plications. In Section 5 we discuss our findings on the human genome. Finally,
Section 6 concludes this paper with some possible directions for future work.

2 Preliminaries

A string T = tq1ty - - - t,, is a sequence of characters from an ordered alphabet X
of size 0. We assume w.l.o.g. ¥ = {0,1,...,0 — 1} and that all characters occur
in T. A substring of T' is any string T; _; = t;t;41---t;, where 1 << j<n. A
pattern is a short string over the alphabet 2. We say that pattern P = p1ps - - - pi.
occurs at position j of string T iff py = t;,p2 = tjq1,...,Pk = tj4r—1. Such
positions j are called the occurrence positions of P in T.

A missing pattern P (with respect to sequence T') is such that P is not a
substring of T, i.e., P does not occur at any position j of T. Let o > 0 be a
threshold parameter. A missing pattern pair (A, B) is such that if A (resp. B)
occurs at position j of sequence T, then B (A) does not occur at any position
j of T, such that j —a < j' <j+ «. If (A, B) is a missing pair, we say that A
and B do not occur a-close in T'. These notions are illustrated in Fig. 2.

A E3 B

Fig. 2. Missing pattern pair (A, B). No occurrences of A and B are at a distance closer
than a.

We study the following problem:

Problem 1 (Missing Pattern Pair Problem). Given a sequence T and a threshold
a, find patterns A and B of minimum total length, such that (A4, B) is a missing
pattern pair with respect to 7', i.e., A and B do not occur a-close in T



3 Finding Missing Pattern Pairs

Missing pattern pairs can be formed by two processes. When a pattern does not
occur in the input sequence T, it can be combined with any pattern to form a
missing pair. Alternatively, both patterns in the pair may occur in the sequence,
but always at least a positions away from each other. The first case, when a
single pattern is missing, provides an insight to the upper bound on the missing
pair length and is an interesting property on its own.

It is not hard to see that there is a missing pattern of length [log, n] from
sequence T with size n, where o is the input alphabet size. This is because
there are at most n — k + 1 distinct patterns of length k£ in 7. In [1], a linear
time algorithm based on suffix trees is proposed that finds the shortest missing
pattern when o is a constant. The algorithm can be readily extended for the case
of arbitrary alphabet sizes by a loss of log o factor. Instead, we can compute a
bit table of all patterns of length |log, n]| that occur in T' using the natural
bijective mapping of the patterns to the integers 0, 1,...,o°8 ™ — 1. This can
be done in linear time by scanning the input sequence from left to right using the
established technique of computing the entry of pattern Yb knowing the entry
of pattern aY (see for example [22]). By examining consecutive runs of missing
patterns of this length, one can compute the shortest string (the longest missing
pattern prefix) that is missing from the input sequence. If all patterns of length
|log, n| are present in 7', then the shortest missing pattern is of length [log, n].
In this case we can find a representative by computing the first n entries of the
corresponding bit table.

Proposition 1. The shortest single missing pattern problem can be solved in
linear time and space.

In what follows, we let m be the length of the shortest missing pattern.

3.1 Finding Missing Pairs of Fixed Lengths

We now present an O(an) time and O(n) space algorithm that finds a missing
pattern pair (A, B), where the lengths of A and B are given as input parameters.
The algorithm serves as a basis for the missing pattern pairs algorithms that
follow. Let |A| = a and |B| = b and assume w.l.0.g. a > b. We will first consider
the case when a < m, or else there is a pattern of length a that is missing and
by Proposition 1 it can be found in linear time. Let N; = ¢® and Ny = o? be the
number of distinct patterns of length a and b respectively. (Clearly, n > Ny >
N5). The proposed algorithm heavily uses the bijective mapping of patterns to
integers described in the previous subsection.

Algorithm 1. We now describe the steps of the algorithm.

1. Let L be an array of length Ny, where L[h] is the list of occurrence positions
in T of the pattern of length a mapped to the integer h.



2. Compute an array H s.t. H[j] is the mapped value of the pattern of length
b at position j of T

3. For h = 0...N; — 1, count the number of distinct patterns B of length b
that occur at distance at most « from the pattern A of length ¢ mapped to
h. We do this by maintaining a bit table of the distinct patterns B that are
a-close to A.

At each iteration we perform the following sub-steps. Let A be the pattern

mapped to h.

(i) For each occurrence in L[h] of pattern A, we mark in a table M of size
N5 all patterns of length b that occur at distance at most « by scanning
the corresponding positions of the array H.

(ii) When a pattern of length b is seen for the first time we increment a
counter. The counter is set to 0 at the beginning of each iteration.

(iii) The iteration ends when the maintained counter becomes equal to Na to
indicate that all patterns of length b are a-close to A, or when all of L[h]
is processed. At the end of an iteration, if the counter is less than Ny we
scan M to output a missing pattern pair and the algorithm terminates.

Analysis. Step 1 of the algorithm can be performed in O(n) time by scanning T’
from left to right. Compute the value h of the pattern at position ¢ from that of
position ¢ — 1 and append 4 to the list L[h]. The total size of all lists is n —a + 1.
The array H in Step 2 can be computed in a similar fashion and takes n —b+1
space. An iteration of Step 3 takes O(«|L[h]]) time for a total of O(an) time
and an additional O(N3) = O(n) space. We conclude the algorithm will output
a missing pair (A, B) with the desired pattern lengths, if such pair exists, in
O(an) time and O(n) space.

3.2 Finding Missing Pairs of the Same Length

We combine the algorithm from the previous subsection and the following prop-
erty to obtain an efficient algorithm for the problem of finding missing pairs
when the patterns are of the same length.

Property 1 (Monotonicity Property). If a pattern pair (A, B) is missing, the pair
(C, D), where A is a substring of C' and B is a substring of D, is also missing.

We are now ready to state the following theorem.

Theorem 1. The missing patterns problem on a sequence of length n for pat-
terns of the same length can be solved in O(anloglog, n) time and O(n) space,
where o is the alphabet size.

Proof. Recall that there exists a missing pattern pair (A, B), wherea = b=m <
[log, n]. Therefore, such missing pair can be found in linear time by Proposition
1. In order to find the shortest pair, we can do binary search on the pattern
length 1...m—1 and apply Algorithm 1 for each length. From the Monotonicity
Property we are guaranteed to output the shortest missing pattern pair of the
same length in O(anloglog, n) time and O(n) space. O



3.3 Finding Missing Pairs

We now consider the problem when the two patterns do not necessarily have the
same length. From Lemma 1, there exists a missing pattern pair (A, B), where
a =m and b =1 for a combined pair length of m + 1. Recall that m < [log, n]
is the length of the shortest missing pattern of the input sequence T and can
be found in linear time and space. Such missing pattern can be combined with
any non-empty pattern to form a missing pattern pair. For a > m, it is easy to
see that for any missing pattern pair (A, B) of length < m, the concatenation
of A and B should also be missing, otherwise A and B occur at a distance < «.
Therefore, for any missing pattern pair (4, B), a + b > m.

Theorem 2. The missing patterns problem on sequence of length n can be solved
in O(anlog, n) time and O(n) space, where o is the alphabet size.

Proof. We showed that the shortest missing pattern pair is of length at least m
and at most m + 1. To find if a pattern pair (A4, B) of length m is missing it is
enough to verify all possible combinations of a + b = m. This can be done by
applying m = O(log, n) times Algorithm 1. Therefore, we obtain the required
running time. a

The above analysis assumes a > m. In the case when o < m, there is also
a solution to take in consideration of total length 2a + 1. Let G,T € X be two
arbitrary letters of the input alphabet. Consider the pattern pair

G...G,T...T) .
———

a+1 [e%
Trivially, it is a missing pair since the two patterns cannot occur a-close.

Remark 1. Let the alphabet size ¢ be a constant. Since there are ¢ = O(n)
pattern pairs of combined length m = O(log, n), one can adapt the bit-table
algorithm from [1] to match the above running time and space requirements.

We now present an algorithm with running time independent of the threshold
parameter «. The algorithm finds for each pair of patterns (A, B) of given length,
the smallest a4 p s.t. the two patterns occur a4 g-close. Therefore, a pattern pair
is missing iff a«4p > «a. The algorithm also finds the smallest iy s.t. all pairs
are omin-close.

Algorithm 2. The algorithm takes advantage from the fact that there are not
too many pattern pairs of total length m. More precisely, there are at most
o871 < n such pairs. Again, we present the algorithm for fixed lengths of
the pattern pairs (A, B) and adapt similar notation to Algorithm 1. We further
assume a + b = m. The steps of the algorithm are as follow:

1. Let L be an array of length Ny, where L[h] is the list of occurrence positions
in T of the pattern of length a mapped to the integer h. Let R be an array of
length Ny, where R[I/] is the list of occurrence positions in 7' of the pattern
of length b mapped to the integer h'.



2. For each pattern pair (A, B), merge efficiently the corresponding lists of
occurrence positions (which are sorted by construction) to find the closest
occurrence of A and B and therefore asp.

Analysis. The algorithm clearly requires O(n) space, and we claim it takes
O ((o 4 logn)ny/n) time. Step 1 of the algorithm can be performed in O(n) time
by scanning T from left to right. We now analyze Step 2. For a given pattern,
we will call its list of occurrence positions long if it has length at least /n. We
note that there are at most /n long lists in L since the total length of all lists
is at most n. Similarly, there are at most /n long lists in R. All pairs of lists
that are not long can be merged in O(ony/n) time using merge sort since there
are O(on) such pairs. Let I be the set of indices of long lists in L, i.e. for all
h e I,|L[h]| > v/n. Fix h € I. The list L[h] can be merged using binary search
with all lists in R in time proportional to )_,, |R[h']|log |L[h]| = O(nlog|L[h]).
Summing over h € I we obtain n)_, ;log|L[h]| = O(n/nlogn) since |I| < \/n
and each list is of length at most n. Applying the same argument for the long
lists in R we obtain the desired running time.

The next theorem follows by an argument analogous to the proof of Theorem
2 but applying Algorithm 2.

Theorem 3. The missing pattern problem on sequence of length n can be solved
in O((o +logn)ny/nlog, n) time and O(n) space, where o is the alphabet size.

4 Extensions to the Missing Pattern Pair Problem

We discuss the following two extensions to the problem of finding missing pattern
pairs of fixed lengths. First, we show how to find missing pairs when the patterns
are restricted to occur at certain regions of the input sequence T. Next, in
addition, we allow the patterns to be of length equal or greater than m. We
describe the required changes to Algorithm 1, and then state how it generalizes
to the problem of finding the shortest pattern pairs of the same or different
lengths.

Localized Patterns. Let P, (Pg) be the set of positions where pattern A (B)
of pair (A, B) can occur. The sets can be specified as interval lists or bit-tables.
For simplicity we assume the latter representation, which can be obtained from
the interval lists in O(n) time and space®. We are interested in finding pattern
pairs that occur at the restricted positions at a distance at most «, but do not
occur a-close anywhere else.

We modify Algorithm 1 as follows. We restrict occurrence positions for A
patterns in lists in L only to those in P, in a straightforward manner. In the

3 The conversion can be done even when the intervals are overlapping by storing for
each position the number of intervals starting and ending at that position, and then
scanning the array from left to right.



same fashion, in Step 3, we count for each pattern A, the distinct patterns B that
occur at distance at most «. If there is a pattern missing, we do an additional
pass to look for a-close unmarked pattern that start in Pg. It is not hard to see
that with the described modifications the time and space requirements of the
algorithm do not change.

Long Patterns. Since patterns are restricted to occur in the input sequence
T, there are at most n candidate patterns for each A and B irrespective to their
length. We can maintain the same framework of Algorithm 1 given a suitable
(hash) function mapping valid A and B patterns to integers 0 to O(n) corre-
sponding to lists L (Step 1) and H (Step 2). We obtain the desired properties by
computing the suffix tree of T' and using the node indices corresponding to the
patterns of length a and b in a standard way (see for details [14]). Computing
the suffix tree only requires additional O(nlogo) time and O(n) space [14].

We are now ready to state the following theorem.

Theorem 4. The generalized missing patterns problem on a sequence of length
n can be solved in

— O(anllog o) time when the patterns are of the same length;
— O(ant?log o) time when the patterns are allowed to have different lengths,

where o is the alphabet size, and £ is the total length of the output pair. In both
cases the space requirement is O(n).

Proof. (Sketch) Note that because of the condition that patterns must occur a-
close at specific positions, the Monotonicity Property does not hold. We therefore
need to run the extended Algorithm 1 for all possible combinations of pattern
lengths up to /. ad

5 Experiments

We have performed preliminary tests with the human genome®* to complement
the results reported in [1] for the baker’s yeast (Saccharomyces cerevisiae) genome.
We set the threshold parameter a to a realistic value 5000 and searched for the
shortest missing pattern pairs where the patterns are of the same length k. We
found 238 pattern pairs for k = 8. Interestingly, the shortest pattern pairs found
for the baker’s yeast genome, which is about 250 times smaller, were also of
length 8 [1]. From the 238 pattern pairs, 20 pairs are missing from both the
human and the baker’s yeast genome. Table 3 summarizes these missing pairs
and the shortest distance between the patterns (or their reverse complements)
of each pair in the corresponding genomes. For reference, the shortest (single)
missing patterns from the human genome are of length 11 and are listed in Table
4. This is also surprising since the human genome length is roughly equal to 4'6.

4 Available at ftp://ftp.ensembl.org/pub/current_human/



Table 3. Unordered missing pattern pairs in both the human and baker’s yeast

genomes for k = 8. The reverse complements of the shown pattern pairs are also
missing.

Missing Pairs Yeast aap Human aap

(AATCGACG, CGATCGGT) 5008 6458

(CCGATCGG, CCGTACGG) 5658 6839

(CGACCGTA, TACGGTCG) 13933 7585

(CGACCGTA, TCGCGTAC) 5494 5345

(CGAGTACG, GTCGATCG) 5903 8090

(CGATCGGA, GCGCGATA) 6432 6619

Table 4. (Single) missing patterns from the human genome of length 11. The reverse
complements of the shown patters are also missing.

Missing Patterns

ATTTCGTCGCG CGGCCGTACGA CGCGAACGTTA
CCGAATACGCG CGTCGCTCGAA CGTTACGACGA
CCGACGATCGA CGACGCGATAG GCGTCGAACGA
CGCGTCGATAG CGATTCGGCGA TATCGCGTCGA

An implementation in Java of the used software is available at the author’s
homepage®. The program needed about 3 hours to process the baker’s yeast
genome on a 1GHz machine, and about 30 hours for the human genome. The stop
condition of step 3 of Algorithm 1, namely when all pattern pairs are discovered
for the current pattern, provides a significant optimization in practice which
allows the software to run only 10 times slower (rather than 250 times) for the
human genome compared to the yeast genome.

6 Conclusions and Further Work

The missing pattern discovery problem was first introduced in [1] for optimal
selection of adapter primers for nested PCR. In this paper, we presented more
simple and efficient algorithms to solve the problem. The presented algorithms
only require linear space and thus are efficiently implementable, whereas most
algorithms in [1] take super-linear space. Our algorithms also have advantages
for running time compared to those in [1], especially when the alphabet size
o is not constant. We implemented our algorithms and made experiments for
the human genome and the baker’s yeast genome, and we succeeded in finding
shortest missing pairs of length 8 for both human and yeast genomes. In addition,
we studied an extended version of the problem where patterns in the pair occur
at certain positions at a distance at most «, but do not occur a-close anywhere
else, in the input sequence.

® http://www.cis.upenn.edu/~angelov



As a generalization of the missing pattern discovery problem, the following
problem that allows mismatches is worth to consider: Given sequence T', distance
«, and error parameter e, find pattern pair (A, B) such that any occurrence of
A and B within e mismatches in T is not a-close. In [13], they presented some
algorithms to discover structured motifs with errors in the Hamming distance
metric. Since the algorithms of [1] and [13] are both based on suffix trees, it
might be possible to solve the above general missing pattern discovery problem
by combining these algorithms.
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