Sparse Directed Acyclic Word Graphs

Shunsuke Inenaga'? and Masayuki Takeda?3

! Japan Society for the Promotion of Science
2 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan
{shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
3 SORST, Japan Science and Technology Agency (JST)

Abstract. The suffix tree of string w is a text indexing structure that
represents all suffixes of w. A sparse suffix tree of w represents only a
subset of suffixes of w. An application to sparse suffix trees is compos-
ite pattern discovery from biological sequences. In this paper, we intro-
duce a new data structure named sparse directed acyclic word graphs
(SDAWGs), which are a sparse text indexing version of directed acyclic
word graphs (DAWGs) of Blumer et al. We show that the size of SDAWGs
is linear in the length of w, and present an on-line linear-time construc-
tion algorithm for SDAWGs.

1 Introduction

Text indexing is a classical technique for pattern matching. Probably, the most
widely known structure for text indexing is suffix trees [1,2]. Indeed, quite a lot
of applications for suffix trees have been introduced so far, and many problems
are efficiently solved by using suffix trees [3]. Some of those problems require
‘variants’ of suffix trees that are modified for the specific purposes.

Kérkkédinen and Ukkonen [4] introduced a sparse suffiz tree which stores only
a subset S of suffixes of text string ¢ of length n. An example of applications to
sparse suffix trees is composite pattern discovery from biological sequences [5-7].
It is not difficult to see that sparse suffix trees can be constructed in O(n) time
and space, in such a way that we firstly construct a normal suffix tree of ¢ in
O(n) time [?], and then prune the leaves for the suffixes which do not belong
to the subset S. A natural interest is whether or not the sparse suffix tree for ¢
w.r.t. S is directly constructible in O(n) time using O(k) space, where k = |S].
(Note that O(n) time consumption is unavoidable due to the necessity of reading
entire ¢ at least once.) To the best of our knowledge, this is still an open problem.

Now, let D be a dictonary of words, and let text string w be a sequence
wy - - - wy of words in D, that is, w € D™ . In this paper, we condier the following
problem:

Input: pattern p of length m and text w = wy - - wy, € DT of length n.
Output: whether or not p is a prefix of w; - - - wy, for some 1 < i < k.

If we have a sparse suffix tree representing the subset

{w; - wg | w=wy - wg, 1 <i<k}

of the suffixes of w, we are able to solve the above problem in O(m) time.

This tree is known as a word suffix tree whose concept was first introduced
in [8]. Let X' be an alphabet, and let D = X*# be a dictionary of words over X,
each followed by #. We can associate the special symbol # with, e.g., a ‘word
separator’ such as the blank symbol in the European languages, and then the
word suffix tree of w represents only the suffixes of w starting at the beginning of
words. In this way, we can avoid unwanted matches such as ‘other’ in ‘mother’.
Andersson et al. [9] introduced an algorithm to build the word suffix tree for w
w.r.t. D with O(k) space, but in O(n) ezpected time. Very lately, we invented an
algorithm that constructs word suffix trees with O(k) space and in O(n) time in
the worst cases [10].

In this paper, we introduce a new data structure named sparse directed acyclic
word graphs (SDAWGSs) as an alternative to the word suffix trees and to the
sparse suffix trees thereby. SDAWGs are a sparse text indexing version of directed
acyclic word graphs (DAWGSs) of Blumer et al. [11]. We give a formal definition
of SDAWGs based on an equivalence relation on string w and dictionary D, and
show the size of SDAWGsS to be linear in n. One might concern that O(n) space
consumption is a disadvantage of SDAWGs against sparse suffix trees requiring
only O(k) space, but we recall that the edge labels of sparse suffix trees are
implemented as pairs of pointers to the positions of w, and therefore the input
string w has to be kept stored. Consequently, the total space requirement is
also O(n) for using the sparse suffix tree. On the other hand, any edge label of
SDAWGs is a single symbol, and thus the input string w can be discarded after
the SDAWG is constructed.

Finally, we present an on-line linear-time algorithm for constructing SDAWGs.
Our algorithm is based on, and generalizes, the on-line construction algorithm
for DAWGs invented by Blumer et al. [11]. Our algorithm directly constructs
SDAWGs without building normal DAWGs as intermediate structures, by using
the minimum DFA accepting dictionary D as suggested in [10]. We emphasize
that SDAWGs can be obtained by first constructing the corresponding normal
DAWGsS, removing the unnecessary suffixes from the DAWGs, and then mini-
mizing the resulting graphs. However, since these are non-tree DAGs, removing
only one suffix may take linear time. Therefore, the algorithm presented in this
paper is the only known one capable of building SDAWGs in O(n) time.

2 Preliminaries

2.1 Notations

Let X be a finite set of symbols, called an alphabet. Throughout this paper we
assume that Y is fixed. A finite sequence of symbols is called a string. We denote
the length of string w by |w|. The empty string is denoted by ¢, that is, |¢| = 0.
Let X* be the set of strings over X. For any symbol a € X, we define a~! such
that a la = ¢.

Strings x, y, and z are said to be a prefir, substring, and suffix of string
w = xyz, respectively. A prefix, substring, and suffix of string w are said to be

proper if they are not w. Let Prefiz(w) be the set of the prefixes of string w, and
let Prefiz(S) = U,cg Prefiz(w) for set S of strings.

Definition 1 (Prefix property). A set L of strings is said to satisfy the prefix
property if no string in L is a proper prefixz of another string in L.

The i-th symbol of string w is denoted by w[i] for 1 < i < |w|, and the
substring of string w that begins at position ¢ and ends at position j is denoted
by wli..j] for 1 <i < j < |w|. For any strings z,w € X*, let

Endpos,,(v) = {j | # = wl[j — |2[+ 1.5]}.

Let D be a set of strings called a dictionary. A factorization of string w w.r.t.
D is a list wq,...,wy of strings in D such that w = wy ---wy and w; € D for
each 1 < ¢ < k. In the rest of the paper, we assume that D = X*# where # is a
special symbol not belonging to X, and that w € D¥. Then, a factorization of w
w.r.t. D is always unique, since D clearly satisfies the prefix property because of
not being in Y. Let Mp denote the minimum DFA which accepts D = X*#.
It is easy to see that Mp requires only constant space (refer to the left of Fig. 2).

Let

Suffic p(w) = {w; - wi | 1 <i < k+1}.

Then, Suffizx,(w) consists only of the original string w, the suffixes which im-
mediately follow # in w, and the empty string € intended by w41 wg. We define
set Wordpos ,(w) of the word-starting positions in w as follows:

Wordpos p(w) = {Jw| — |s| + 1| s € Suffizp(w)}.

2.2 Equivalence Class on Strings over D

For set S of integers and integer i, we denote S @i = {j+i | j € S} and
Sei={j—1i|j € S} Now we define the end-equivalence relation =,, on
w € DT by:

T =4 y < Endpos,, (z) N (Wordposp(w) @ |z| © 1)
= Endpos,,(y) N (Wordposp(w) & |y| © 1).

We note that the above end-equivalence relation is a ‘word-position-sensitive’
version of the equivalence relation introduced by Blumer et al. [11], where the
intersection with Wordpos p(w) makes it word-position-sensitive. We denote by
[x],, the equivalence class of z w.r.t. =,.

Proposition 1. All strings that are not in Prefix(Suffix p(w)) form one equiv-
alence class under =, called the degenerate class.

Proof. Since for any string x € Prefiz(Suffiz p(w)) we have Wordposp(w) = 0,
we consequently obtain Endpos,,(x) N (Wordposp(w) & |z] © 1) = (). Moreover,
for any string y € Prefix(Suffizp(w)), it is easy to observe that Endpos,,(y) N
(Wordpos p(w) & |z| © 1) # 0. 0

It follows from the definition of =,, that if two strings x,y are in a same
non-degenerate equivalence class under =,,, then either = is a suffix of y, or
vice versa. Thus, each non-degenerate equivalence class under =,, has a unique
longest member, which is called the representative of it. The representative of

[7]. is denoted by T .

3 Sparse Directed Acyclic Word Graphs

3.1 Definitions

Here we define the sparse directed acyclic word graphs (SDAWGs in short) as
edge-labeled DAGs (V, E) with E CV x YT x V where the second component
of each edge represents its label.

Definition 2 (Sparse directed acyclic word graph). The sparse directed
acyclic word graph of string w € DT, denoted by SDAWG p(w), is a DAG (V, E)
such that

V ={[z]w | x € Prefiz(Suffix p(w))},
E = {([z]w, a, [za)y) | x,za € Prefix(Suffix p(w)) and a € XU {#}}.

SDAWG p(w) has single source node [¢],, of in-degree zero, and single sink node
[w],, of out-degree zero.

We associate each node [z],, of SDAWG p(w) with length([z],,) = | |. For
any edge ([z]y, a, [zalyw), if length([zal,) = length([x]w) + 1, this edge is called
primary; otherwise, it is called secondary.

Fig. 1 shows SDAWG p(w) with w = a#b#a#bab# and D = {a,b}*#, to-
gether with the normal DAWG (w) representing all the suffixes of w. Observe that
SDAWG p(w) only represents the suffixes a#tb#a#bab#, b#aftbab#, a#tbab#,
bab#, and ¢, all from Suffiz ,(w).

Also, observe that substrings a#b and b are in distinct nodes of DAWG (w),
while they are in the same node of SDAWG p(w). It is because Endpos,,(a#b) =
{3,7} # Endpos,,(b) = {3,7,9}, but Endpos,,(a#b) N (Wordposp(w) & 2) =
Endpos,(b) N (Wordpos p(w) & 0) = {3, 7}, as Wordpos p(w) = {1,3,5,7}. Sim-
ilar discussion holds for the pair of strings a#b# and b#.

Now we define the suffiz links of SDAWG p(w), which are extensively used
for on-line linear-time construction algorithm to be given later on. Also, they
play an important role to bound the size of SDAWG p(w) within O(n) space.
For any string « € Prefiz(Suffix p(w)), we consider a partition z = zjz2 such
that 1 € D* and x5 is a proper prefix of some string in D. Then, it is easy to
see that the partition x5 is unique for any « € Prefix(Suffiz p(w)).

The following proposition is clear from the definition of the end-equivalence.

Proposition 2. For any z,y € Prefix(Suffiz p(w)) such that x =, y and |z| >
lyl, we have 1 = vy; with v € DY and x5 = ys.

Fig. 1. SDAWGp(w) with w = a#b#a#bab# and D = {a,b}*# is shown on the
upper, and normal DAWG(w) is shown on the lower for comparison. Observe that
SDAWG p(w) contains only suffixes of Suffiz ,(w), while DAWG (w) has all the suffixes
of Suffiz(w). For instance, ab# is a suffix of w and is in normal DAWG (w), but is not
in SDAWG p(w).

Definition 3 (Suffix links of SDAWGS). For any node [z],, of SDAWGp(w),
let ' = 2!z, be the shortest member of [x]y,.

w

1. If 2} € DT, the suffiz link from node [z],, goes to node [u], such that ‘w =
u=ujus, u; € D*, ug =z, and xy = huy for some h € D;

2. Otherwise (If x} =), the suffix link from [x], goes to the initial state of
Mp.

Fig. 2 displays SDAWG p(w) and its suffix links, with w = a#tb#a#bab#. For
instance, see Node 8 that is [z],, = {aftb#af#b, b#a#b}, where ' = b#ta#b,
x) = b#a#, and z, = b. The suffix link of Node 8 goes to Node 4 that is

[u], = {a#b, b}, where U = a#b, u; = a#, and uy = b. Observe that h = b#,
x} = hu; = b#a# and 2, = us = b.

3.2 Size Bound

Here we analyze the size of SDAWG p(w). Firstly, we show that any distinct
prefixes of w are associated with distinct nodes of SDAWG p(w).

Lemma 1. For any strings x,za € Prefiz(w) with a € X U{#}, © %, za.

Proof. By the length argument, |x| € Endpos,,(x) but |z| ¢ Endpos,,(xa). Since
1 € Wordposp(w) for any w € D, |z| € Endpos,,(z) N (Wordpos p(w) ® |x| 1)
but |z| ¢ Endpos,,(za) N (Wordposp(w) ® |za| ©1). Thus we have x #,, za. O

Lo G LB 2 D DD D
e NS I~

Fig. 2. To the left is the minimum DFA Mp accepting D = X*#, and to the right is
SDAWG p(w) for w = a#b#a#bab#, with Mp and its suffix links (broken arrows)
attached. Nodes 3, 5, 6, 7, 8, and 11 are in Group 1 of Definition 3, and nodes 1, 2, 4,
9, and 10 are in Group 2.

According to the above lemma, SDAWG p(w) has at least n + 1 nodes, each
corresponding to a certain prefix of w. In addition, for any proper prefix = of w,
there exists primary edge ([2]y, a, [za]y) iIn SDAWG p(w) with za € Prefiz(w).

To show the upper bound for the size of SDAWG p(w), we consider the suffix
link tree Tp(w) = (V U {¢s}, Ey) where ¢, is the initial state of Mp and is the
root of Tp(w), and Ej is the set of the ‘reversed’ suffix links of SDAWG p(w).

The following lemma is critical to bound the size of SDAWGp(w) within
linear space w.r.t. n.

Lemma 2. If% ¢ Prefiz(w), node [ty of Tp(w) is branching (has at least two
children).

Proof. Since T ¢ Prefiz(w), there exist some distinct strings u,v € D such that

w w
o & .

both vz and v’z are substrings of w

b

— Endpos,,(uT) N (Wordpos p(w) & |u<%| o1)#0,

— Endposw(v%) N (Wordpos p,(w) @ |v%| ©61) #0, and

- Endposw(u%) N (Wordpos p(w) @ |u%| o1)#
Endposw(v%) N (Wordpos p(w) & |v%| o1).

Then, no two strings of u'z , vz, or T belong to the same end-equivalence class.
By Proposition 2 and Definition 3, the suffix links of [uZ],, and [vZ],, both go
t0 [T] = [2]w- O

Now we show the upper bound of the size of SDAWGs, based on a similar
idea to the case of DAWGs by Blumer et al. [11].

Theorem 1. For any string w € DT of length n, SDAWG p(w) has O(n) nodes
and edges.

Proof. By Lemmas 1 and 2, Tp(w) can have at most n + 1 leaves which cor-
respond to the nodes having the prefixes of w. Since Tp(w) is a tree, it can
have at most n branching nodes, and therefore the total number of nodes in
SDAWG p(w) is bounded by O(n).

Now we bound the number of edges in SDAWG p(w). It is not difficult to see
that for any w € DT, SDAWG p(w) has a spanning tree rooted at the source node
[€]w, and let us fucus on one such spanning tree. With each edge of SDAWG p(w)
not in the spanning tree, we associate one of the k — 1 non-empty proper suffixes
of Suffiz ,(w). This suffix can be obtained by spelling out a path from the source
through the spanning tree until one of its leaves, across the omitted edge, and
finally to the sink node [w],, in any convenient way. Then, distinct omitted
edges are associated with distinct non-empty suffixes of Suffiz ,(w), since they
are associated with distinct source-to-sink paths (the paths differ in the first
edge traversed outside the spanning tree). Thus, the number of edges not in the
spanning tree is bounded by k—1, and the total number of edges in SDAWG p(w)
by O(n). O

One might concern that Theorem 1 suggests a disadvantage of the SDAWGs
against the sparse (word) suffix trees which have only O(k) nodes and edges,
but we recall that the edge labels of those suffix trees are implemented as pairs
of pointers to the positions of w. To do so, the input string w has to be kept
stored and therefore the total space requirement for using those suffix trees is
also O(n). On the other hand, any edge label of SDAWGs is a single symbol from
Y U{#}, and therefore the input string w can be discarded after SDAWG p(w)
is constructed.

3.3 On-line Linear-time Construction Algorithm

In this section we present our on-line linear-time construction algorithm for
SDAWGs. Since our algorithm is on-line, it sequentially processes the input
string w € DT from left to right. To discuss this on-line construction, we extend
the definition of Suffiz ;,(u) to any prefix v of w € DV, as follows. For any prefix
wof w=w;...w, € DT such that u =w; ---wpv, 1 < ¢ < k, and v is a proper
prefix of w1, let u; = w; - - - wyv. For convenience, let ugy1 = v and ugyo = €.
Now, let
Suffizp(u) = {u; | 1 <i <€+ 2},

Then, the definitions of Wordposp(u), the end-equivalence relation =,, and
SDAWG p(u) are naturally extended to any prefix u of w.

The following proposition and lemma state how to update the nodes of
SDAWG p(u) when we read a new symbol a and construct SDAWG p(ua).

Proposition 3. Let w € DV and u,ua € Prefiz(w) with a € X U {#}. Then,

Wordpos p(u) U {[ual}, if ullul] = #;

Wordpos p(ua) = { Wordpos p(u), otherwise.

Fig. 3. The SDAWG for string a#b#af#bab#b w.r.t. D = X*#. Compare this with
the SDAWG for string a#b#a#bab# w.r.t. D in Fig. 1 (upper).

Also, for any string x € (XU {#})*,

[Endpos,,(x) U {|ual}, if x € Suffix(ua);
Endpos, o (v) = { Endpos,,(x), otherwise.
Lemma 3. Let w € DT, and let u,ua € Prefir(w) with a € X U {#}. Let z
be the longest string in Suffiz p(ua) N Prefix(Suffizp(w)). Then, for any x €
Prefiz(Suffizp(u)), we have

(2], = [%]ua U [2]ua, if 2 € 2]y and z # %;
Z)uas otherwise.

Proof (Sketch). By Proposition 3, it is not difficult to see that only if z € [x],, and

z # T, it happens that [2], # [*]uq. In any other cases, we have [z], = [2]ua. By
Proposition 3, for any string s € [z], with |s| > |z|, Endpos,,(s) = Endpos,(s),
and for any string ¢ € [z], with [¢| < |z|, Endpos,,(t) = Endpos,(t) U {|ual}.
No matter if Wordposp(ua) = Wordposp(u) U {|ua|} or Wordposp(ua) =
Wordpos p,(u), we have [x], = [T Jua U [2]ua- O

To see a concrete example of the above lemma, compare SDAWGp(u) of
Fig. 1 (upper) and SDAWG p(ub) of Fig. 3, where u = a#b#a#bab#. Observe
that z = b. Now, node [a#b], of SDAWG p(u) is split when it is updated to
SDAWG p(ub), as follows:

[a#b], = {a#b,b} = {a#b} U{b} = [a#Db]up U [b]yup-

For any other nodes [z],, we have [z], = [2]yu.

Fig. 4 shows a pseudo code of our on-line algorithm to build SDAWGs, with
the help of the DFA Mp and the suffix links of Definition 3. The only difference
between our algorithm and the algorithm of Blumer et al. [11] for constructing
normal DAWGs is the initialization steps of the main routine where we set
the source of the SDAWG to the final state gy of Mp and the suffix link of the
source to the initial state ¢ of Mp. These simple modifications make a difference
in the resulting data structures. In Fig. 5 we illustrate on-line construction of
SDAWG p(w) with w = ab#b#ba# and D = {a,b}#.

Input: w = w[l..n] € D' and Mp with initial state ¢; and final state ¢;.
Output: SDAWGp(w).

{

length(qr) = 0; length(qs) = —1;

source = qy; link(source) = gs;

sink = source;

for (i =1;i < n;i++) sink = Update(sink,1);
}
node Update(sink, i) {

¢ = wli];

create new node newsink; length(newsink) = i;

create new edge (sink, ¢, newsink);

for (s = link(sink);no c-edge from s;s = link(s))
create new edge (s, ¢, newsink);

s’ = SplitNode(s, c);

link(newsink) = s';

return newsink;

}

node SplitNode(s, c) {
let s" be the head of the c-edge from s;
if (length(s’) == length(s) + 1) return s’;
create node r’ as a duplication of s’ with the out-going edges;
link(r") = link(s'); link(s") =r';
length(r') = length(s) + 1;

do {
replace edge (s, c,s’) by edge (s,c,7’);
s = link(s);
} while the head of the c-edge from s is s';
return r’;

}

Fig. 4. SDAWG construction algorithm. For any node v, link(v) indicates the node to
which the suffix link of v goes. Only the initialization steps using Mp is different from
the normal DAWG construction algorithm by Blumer et al. [11].

We remark that our algorithm generalizes the normal DAWG construction
algorithm of Blumer et al. [11]. Assume just for now D = X, and consider a
DFA which accepts X with only two states that are a single initial state and a
single final state. Then this DFA plays the same role as the auxiliary ‘1’ node
used in Ukkonen’s on-line suffix tree construction algorithm [12], and this alters
our algorithm so that it builds normal DAWGs.

Theorem 2. The algorithm of Fig. 4 correctly constructs SDAWG p(w) for any
string w € DT,

To establish the above correctness theorem, we show the following claim:

0% 6 o o G Ui iNG

b

L

- D

b £y

Fig.5. A snapshot of on-line construction of SDAWGp(w) with w = ab#b#ba#
and D = {a,b}#. The broken arrows represent suffix links. The update from
SDAWG p (ab#) to SDAWG p(ab#b) is shown in two rounds, as two new edges are cre-
ated here. Also, the update from SDAWG p(ab#b#) to SDAWG p(ab#b#b) is shown
in two rounds, as a node is here split into two nodes.

Claim. Let w € DT and wy, ..., w, be a unique factorization of w w.r.t. D. Let
u = wj - - - wev be the prefix of w of length j, where v is a proper prefix of wy1.
After the j-th call of the Update function, we have SDAWG p(u) representing
Suffix 5 (u) together with the suffix links of Definition 3.

Proof. By induction on j = |u|. When |u| = 0, the lemma trivially holds. We
now consider |u| > 0. Let u; = w; - --wyv for 1 < i < £, and for convenience, let
Upy1 = v, Upyo = € and ugy3 = ¢~ L. For the induction hypothesis, assume that,
after the j-th call of the Update function, we have SDAWG p(u) representing

Suffic p(u) = {u; | 1 <i <€+ 2},

At the (j 4 1)-th call of Update, due to Lemmas 1 and 3, sink = [u], = [u]yuc
and thus newsink is created as node [uc|., together with edge (sink, ¢, newsink)
= ([u)uc, ¢, [ucluc). Now let h (1 < h < £+ 3) be the smallest integer satisfying

wp, - wpve = upc € Prefix(Suffiz p(u)). Note that such h always exists, since
urrzc = ¢ e = e is always in Prefir(Suffiz p(u)). Then, upc is the longest
element of Suffiz ;,(uc) represented by SDAWG p(u). In the iteration of the for
loop, we traverse the suffix links starting from sink, each time creating edge
([ti)ues € [uclue) for i = 2,...,h — 1. (Note that for some consecutive i’s, the
strings u; may belong to the same end-equivalence class under u, and in this
case only one edge is created for all such consecutive ¢’s.) This is justified by
the definition of the end-equivalence relation, as we do have u;c =, uc for all
i=1,...,h — 1. Hence, the current DAG represents Suffiz p(uc).
For the suffix link of newsink, there are two possible cases to happen:

— When ujc = upe. In this case, ([up]u,c, [uncl,) is a primary edge. Due to
Lemma 3, we have [upc]y, = [unc]ye and the suffix link from newsink = [uc]qy.c
is set to node [uhc]uc This operation is justified by Definition 3.

— When upc # Upe. In this case, ([upy,c, [uncly) is a secondary edge. Due

to Lemma 3, we have [upcl, = [yuncluc U [unclu,. where unc = yupc and
y € DT. This is done by the function SplitNode, and the suffix link of [upc]ye
is set to link([uncly,), and that of [yupnclye is set to [upc]ye. Then, the suffix
link of newsink = [uc]y. is also set to node [upcly.. These operations are
justified by Definition 3.

Judging whether upc = tpc or not, namely, whether edge ([up]y,c, [uncly) is
primary or secondary, is done by the if condition in SplitNode checking the
lengths of the nodes [up], and [upc],. The resulting structure is SDAWG p(uc)
with its suffix links. O

Now the only remaining matter is the time complexity of the algorithm.
Let w,ua € Prefiz(w) with w € Dt and a € X U {#}. For any = €

Prefiz(Suffiz p(u)) with T = z, let SC,(x) be the list of nodes contained in
the suffix-link path from node [z], to the root of Tp(u). We can establish the
following lemma, similarly to [11].

Lemma 4. Letu € Prefiz(w) with w 6 D+, Assume that there is a primary edge

([%]u, a, [xa)y) in SDAWGp(u), with T = x and ¥a = wa. Then |SC,(va)| =
|SC . (2)]|—m~+1 where m is the number of secondary edges from nodes in SC,,(x)
to nodes in SC,(za).

We are ready to prove the following theorem, based on a similar idea to [11].

Theorem 3. The execution time of the algorithm of Fig. 4 is linear in the input
string length.

Proof. Let w € DT be the input string and let u,ua € Prefiz(w) with a €
XY U {#}. Consider a single call to Update creating new node newsink, where
sink = [u], and newsink = [ua]yq,. Let I be the total number of iterations by the
for and do while loops, except for the first execution of the do while loop that

generates the primary edge from node s to r’. In any other iteration of either of
these loops, a secondary edge is created from a node in SC,,,(u) to either [ual.,q
or [2]ua, where z is the longest string in Suffiz p(ua) N Prefiz(Suffiz p(u)). Since
z € Suffixp(ua), we have [z]yq € SCya(ua). Therefore, by Lemma 4, we have
|SCyua(ua)] < [SCyuqe(u)| — 14+ 1.

Moreover, consider the special case where z € [u],, and z # u . Recall that the
occurrence of z as a suffix of ua immediately follows # in ua, namely, va[|ual —
|z|]] = #. Since now z € Suffix ,(u), by the periodicity of z, this special case can
happen only when z = #/?|. By Lemma 3, node [u],, is split into two nodes [u]yq
and [z]yq, increasing |SCyq(u)| by one from |SC.,(u)|. Consequently, we obtain
[SC ua(ua)| < [SCua(u)| =1+ 2.

The above formula implies that at each call to Update, the suffix chain of
newsink of SDAWG p(ua) can grow by at most two from the suffix chain of
sink of SDAWG p(u). On the other hand, at each call to Update, the length of
this suffix chain decreases by [, which is the number of iterations of the for and
do while loops minus one. Note that the length of this suffix chain never gets
zero, since at the beginning of the construction, SCp(e) already has the initial
state g, of Mp. Hence, the total number of iterations of these loops when we
have processed the entire string w is linear in |w|. O

4 Conclusions and Further Work

In this paper we introduced a new data structure SDAWG p(w) which supports
a sparse text indexing of string w w.r.t. dictionary D = X*#. Namely, for any
string w = wq -+ - wy, with w; € D for each 1 < i < k, SDAWG p(w) represents
the suffixes of w of the form w;---wg. A typical application to SDAWGs is
word- and phrase-level search on texts written in natural languages such as the
European languages, where the blank character can be regarded as #. Further,
we showed that SDAWGp(w) has O(n) nodes and edges, where n = |w|, and
finally we presented an on-line algorithm that constructs SDAWG p(w) in O(n)
time and space.

Our future work includes the followings: The first one is to show the exact,
tight bound on the size of SDAWGs. Blumer et al. [11] showed that for any
string w € X*, DAWG(w) has at most 2n — 1 nodes and 3n — 4 edges, where
n = |w|. Since SDAWGs are a sparse version of DAWGs, SDAWGs should have
strictly less nodes and edges, but this has to be explored in more details.

The second one is to extend this work to compact directed acyclic word
graphs (CDAWGS) [13]. The idea of using the minimum DFA Mp is applica-
ble to the on-line construction algorithm for CDAWGSs [14], yielding a sparse
text indexing version of CDAWGs. We will then need to define this new data
structure, show its size bound, and prove that the modified algorithm correctly
constructs the desired structure in linear time.

References

10.

11.

12.
13.

14.

. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann.

Symp. on Switching and Automata Theory. (1973) 1-11

Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

Karkkénen, J., Ukkonen, E.: Sparse suffix trees. In: Proc. 2nd International Com-
puting and Combinatorics Conference (COCOON’96). Volume 1090 of Lecture
Notes in Computer Science., Springer-Verlag (1996) 219-230

Inenaga, S., Kivioja, T., Méakinen, V.: Finding missing patterns. In: Proc. 4th
Workshop on Algorithms in Bioinformatics (WABI’04). Volume 3240 of Lecture
Notes in Bioinformatics., Springer-Verlag (2004) 463-474

Bannai, H., Hyyr6, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An
O(N?) algorithm for discovering optimal boolean pattern pairs. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 1 (2004) 159-170

Inenaga, S., Bannai, H., Hyyro, H., Shinohara, A., Takeda, M., Nakai, K., Miyano,
S.: Finding optimal pairs of cooperative and competing patterns with bounded
distance. In: Proc. 7th International Conference on Discovery Science (DS’04).
Volume 3245 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2004)
32-46

Baeza-Yates, R., Gonnet, G.H.: Efficient text searching of regular expressions. In:
Proc. 16th International Colloquium on Automata, Languages and Programming
(ICALP’89). Volume 372 of Lecture Notes in Computer Science., Springer-Verlag
(1989) 46-62

Andersson, A.; Larsson, N.J., Swanson, K.: Suffix trees on words. Algorithmica
23 (1999) 246-260

Inenaga, S., Takeda, M.: On-line linear-time construction of word suffix trees. In:
Proc. 17th Ann. Symp. on Combinatorial Pattern Matching (CPM’06). Lecture
Notes in Computer Science, Springer-Verlag (2006) To appear.

Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40 (1985) 31-55

Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249-260
Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM 34 (1987)
578-595

Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi,
G.: On-line construction of compact directed acyclic word graphs. Discrete Applied
Mathematics 146 (2005) 156-179

