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Abstract. A palindrome is a symmetric string that reads the same for-
ward and backward. Let Pals(w) denote the set of maximal palindromes
of a string w in which each palindrome is represented by a pair (c, r),
where c is the center and r is the radius of the palindrome. We say
that two strings w and z are pal-distinct if Pals(w) 6= Pals(z). Firstly,
we describe the number of pal-distinct strings, and show that we can
enumerate all pal-distinct strings in time linear in the output size, for
alphabets of size at most 3. These results follow from a close relationship
between maximal palindromes and parameterized matching. Secondly,
we present a linear time algorithm which finds a string w such that
Pals(w) is identical to a given set of maximal palindromes.

1 Introduction

1.1 Palindromes in Strings

A palindrome is a symmetric string that reads the same forward and backward.
Namely, a string w is a palindrome if w = xaxR where x is a string, xR is a
reversal of x, and a is either a single character or the empty string. Studying
palindromic structures in strings have gathered much attention in theoretical
computer science and in its applications.

In word combinatorics, palindromic structures of interesting family of words
have been extensively studied. For example, palindromic factors of Fibonacci
words and Sturmian words were investigated in [11, 12, 19, 26]. A concept called
palindrome complexity of infinite words was introduced in [1] and its extension to
finite words was proposed in [2]. Palindromic occurrences in ternary square-free
words were studied in [10].

In algorithmics, several efficient algorithms to compute palindromes in a
string have been proposed. Manacher [27] showed a linear-time algorithm to
compute all prefix palindromes of an input string, which can immediately be ex-
tended to computing maximal palindromes of all positions of the string within
the linear complexity. Another linear-time algorithm for prefix palindromes de-
tection was proposed in the KMP pattern matching algorithm paper [24]. There
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exist efficient parallel algorithms to find all prefix palindromes or all maximal
palindromes of a string [3, 4, 7]. A polynomial-time algorithm to compute all
maximal palindromes from a given compressed string was proposed in [28].

In bioinformatics, some extended concepts of palindromes are known to be
important in DNA and RNA sequence analysis [25]. An approximate palindrome,
where the first half of the palindrome can be transformed into the reversal of
the second half within a predefined edit distance, was introduced in [30]. Gus-
field showed a linear-time algorithm to compute maximal palindromes with a
fixed gap [20]. Kolpakov and Kucherov proposed linear-time solutions allowing
more flexible gaps [25]. In [21] an efficient algorithm to compute all maximal
approximate gapped palindromes was developed.

1.2 Our Contribution

It is natural and convenient to represent each maximal palindrome p of a string
w by a pair (c, r) such that c is the center of p and r is the radius of p. This
way the set of all maximal palindromes can be represented with O(n) space,
where n is the length of w. In what follows, we assume that the set of maximal
palindromes of a string is represented in this way.

The contribution of this paper is twofold: Firstly, we show new properties of
palindromes which are closely related to parameterized matching [5]. That is, if
two strings are drawn from an alphabet of size at most 3, then they have the same
set of maximal palindromes if and only if they parameterized match. Based on the
above result and the results from [29], the number of distinct sets of palindromes
for alphabets of size at most 3 can immediately be obtained. Besides, we show
that there exists an efficient algorithm to compute a representative string for all
distinct sets of maximal palindromes for alphabets of size at most 3.

Secondly, we study the problem of inferring a string from a given set of
palindromic structures. Namely, given a set P of pairs (c, r), find a string whose
maximal palindromes coincide with P . We propose a linear time solution to this
problem, which outputs the lexicographically smallest string over a minimum
alphabet.

1.3 Related Work

Inferring a string from other string data structures has been widely studied. An
algorithm to find a string having a given border array was presented in [16],
which runs in linear time for an unbounded alphabet. A simpler linear-time
solution for the same problem for a bounded alphabet was shown in [14]. Linear-
time and O(n1.5)-time inferring algorithms for parameterized versions of border
arrays, on a binary alphabet and an unbounded alphabet, respectively, were
recently proposed [22, 23]. Linear-time inferring algorithms for suffix arrays [15,
6], KMP failure tables [13, 18], prefix tables [8], cover arrays [9], directed acyclic
word graphs [6] and directed acyclic subsequence graphs [6] have been proposed,
which provide us with further insight concerning the data structures.
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Counting and enumerating some of the above-mentioned data structures have
also been studied in the literature [29, 31, 22, 23].

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins at
position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. The
empty substring ε of w is denoted by w[i : i − 1] for 1 ≤ i ≤ n. For any string
w, let wR denote the reversed string of w, that is, wR = w[|w|] · · ·w[2]w[1].

A string w is called a palindrome if w = wR. If |w| is even, then w is called
an even palindrome, that is, w = xxR for some x ∈ Σ+. If |w| is odd, then w is
called an odd palindrome, that is, w = xaxR for some x ∈ Σ∗ and a ∈ Σ. The
radius of a palindrome w is |w|

2 .
The center of a palindromic substring w[i : j] of a string w is i+j

2 . A palin-
dromic substring w[i : j] is called the maximal palindrome at the center i+j

2 if
no other palindromes at the center i+j

2 have a larger radius than w[i : j], i.e.,
if w[i − 1] 6= w[j + 1], i = 1, or j = |w|. In particular, w[1 : j] is called a prefix
palindrome of w, and w[i : |w|] is called a suffix palindrome of w.

We denote by (c, r)w the maximal palindrome of a string w whose center
is c and radius is r. We simply write (c, r) when the string w is clear from
the context. The set of all maximal even and odd palindromes of a string w
is denoted by Pals(w). It is clear that for any string w Pals(w) has exactly
2|w| + 1 elements. Let SPals(w) denote the set of all suffix palindromes of w,
that is, SPals(w) = {(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 = n}.

For example, let w = abbacabbba. Then

Pals(w) = {(0.5, 0), (1, 0.5), (1.5, 0), (2, 0.5), (2.5, 2), (3, 0.5), (3.5, 0),
(4, 0.5), (4.5, 0), (5, 3.5), (5.5, 0), (6, 0.5), (6.5, 0), (7, 0.5),
(7.5, 1), (8, 2.5), (8.5, 1), (9, 0.5), (9.5, 0), (10, 0.5), (10.5, 0)} and

SPals(w) = {(8, 2.5), (10, 0.5), (10.5, 0)}.

3 Palindromes and Parameterized Matching

In this section we present new properties of palindromic structures in strings,
with a tight relationship with parameterized matching which was originally in-
troduced by Baker [5].

For any string w, let σw denote the number of distinct characters that ap-
pear in w. Any two strings w and z over the alphabet Σ of the same length
are said to parameterized match (p-match in short) if there exists a renaming
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i

w

Fig. 1. Illustration for Observation 1.

bijection f : Σ → Σ which transforms one string into the other [5], that is,
w = f(z[1])f(z[2]) · · · f(z[|z|]). For instance, strings w = abab and z = baba
p-match, since w can be transformed to z by applying a renaming function
f : Σ → Σ such that f(a) = b and f(b) = a.

The following intuitive property indeed holds.

Lemma 1. If two strings w and z p-match, then Pals(w) = Pals(z).

Proof. Assume for contrary that Pals(w) 6= Pals(z). Then there exists at least
one center c such that (c, r) ∈ Pals(w), (c, r′) ∈ Pals(z) and r 6= r′. Assume
w.l.o.g. that r > r′. Then it holds that w[c − r′ − 0.5] = w[c + r′ + 0.5] and
z[c − r′ − 0.5] 6= z[c + r′ + 0.5]. Let a = w[c − r′ − 0.5] = w[c + r′ + 0.5],
b = z[c − r′ − 0.5], and b = z[c + r′ + 0.5], where b denotes any character
in Σ − {b}. Then clearly there exists no bijection on the alphabet Σ that can
transform w into z, since a at position c− r′ − 0.5 needs to be mapped to b but
a at position c + r′ + 0.5 needs to be mapped to b. This contradicts that w and
z p-match. ut

The reverse of Lemma 1 is also true if the strings are unary, binary or ternary.
To show it, the following observation is useful.

Observation 1 For any string w of length n ≥ 1 and for any i ≤ n,

Pals(w[1 : i]) = {(c, i + 0.5 − c) | (c, r) ∈ Pals(w), c ≤ i + 0.5, c + r − 0.5 > i}
∪{(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 ≤ i}.

(See also Fig. 1)

Lemma 2. If Pals(w) = Pals(z) and σw = σz ≤ 3, then w and z p-match.

Proof. Unary case σw = σz = 1. This case is trivial.
Binary case σw = σz = 2. We prove it by induction on the length i of the

strings. When i = 2, clearly two strings w and z of length 2 p-match, if
Pals(w) = Pals(z) and σw = σz = 2.
Suppose that the lemma holds for i = n− 1 ≥ 2. Let w and z be any strings
of length n over Σ, such that Pals(w) = Pals(z) and σw = σz = 2. By
Observation 1 Pals(w[1 : n − 1]) = Pals(z[1 : n − 1]), and by the induction
hypothesis w[1 : n − 1] and z[1 : n − 1] p-match. Let f : Σ → Σ be the
bijection which transforms w[1 : n − 1] into z[1 : n − 1].
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1. When w[n−1] = w[n]. If z[n−1] 6= z[n], then (n−0.5, 1) ∈ Pals(w) and
(n−0.5, 0) ∈ Pals(z). However, this contradicts that Pals(w) = Pals(z),
and hence z[n−1] = z[n]. Then f(w[n]) = f(w[n−1]) = z[n−1] = z[n],
and therefore w and z p-match.

2. When w[n−1] 6= w[n]. If z[n−1] = z[n], then (n−0.5, 0) ∈ Pals(w) and
(n−0.5, 1) ∈ Pals(z). However, this contradicts that Pals(w) = Pals(z),
and hence z[n−1] 6= z[n]. Let f(w[n−1]) = z[n−1] = a and f(w[n]) = b.
Since z[n] 6= a, z[n] = b. Hence f(w[n]) = z[n] and therefore w and z
p-match.

Ternary case σw = σz = 3. We prove it by induction on the length i of the
strings. When i = 3, clearly two strings w and z of length 3 p-match, if
Pals(w) = Pals(z) and σw = σz = 3.
Suppose that the lemma holds for i = n− 1 ≥ 3. Let w and z be any strings
of length n over Σ, such that Pals(w) = Pals(z) and and σw = σz = 3. By
similar arguments to the binary case, w[1 : n − 1] and z[1 : n − 1] p-match.
Let g : Σ → Σ be the bijection which transforms w[1 : n−1] into z[1 : n−1].
1. When w[n − 1] = w[n]. This case can be shown similarly to the binary

case.
2. When w[n − 1] 6= w[n]. By similar arguments to the binary case, we get

z[n− 1] 6= z[n]. Let m be the rightmost position of w[1 : n− 1] such that
w[m] 6= w[n − 1]. Let g(w[n − 1]) = z[n − 1] = a and g(w[n]) = b.
(a) When w[m] = w[n]. Since w[m + 1 : n − 1] is unary, w[m : n] is a

maximal palindrome of w. Since z[m : n] is a maximal palindrome
of z, z[n] = z[m] = g(w[m]) = b = g(w[n]). Hence w and z p-match.

(b) When w[m] 6= w[n]. Let g(w[m]) = c. Since w[m+1 : n−1] is unary,
w[m + 1 : n − 1] is a maximal palindrome of w. Since z[m + 1 :
n − 1] is a maximal palindrome of z, z[n] 6= z[m] = g(w[m]) = c.
Additionally, since z[n] 6= z[n − 1] = g(w[n − 1]) = a, z[n] = b =
g(w[n]). Consequently w and z p-match.

ut

The next proposition follows from Lemma 2.

Proposition 1. For any string w with σw ≤ 2, there exist no string z such that
Pals(w) = Pals(z) and σz > σw.

It is interesting to see that a similar argument to Lemma 2 does not hold
if strings contain 4 or more distinct characters. For instance, two strings w =
abbcdaa and z = accdbcc have the same set of maximal palindromes and σw =
σz = 4, but w and z do not p-match. Also, Proposition 1 does not hold if
σw ≥ 3. For instance, w = abcabb and z = abcdaa have the same set of maximal
palindromes, while σw = 3 and σz = 4. It is easy to extend the above examples
to infinite sequences of strings with an alphabet of size 4 or more.

Let us define equivalence relations ≡pal and ≡pm on Σ∗ by

w ≡pal z ⇐⇒ Pals(w) = Pals(z)
w ≡pm z ⇐⇒ w and z p-match.
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By Lemma 1 and Lemma 2, the two equivalence relations are equivalent for
|Σ| ≤ 3. Also, if |Σ| ≥ 4, then ≡pm is a refinement of ≡pal.

Denote by [w]pal and [w]pm the equivalence classes with respect to ≡pal and
≡pm, respectively. Define the representative of equivalence class [w]pal to be the
lexicographically smallest member of [w]pal, and call each representative a pal-
canonical string. Moore et al. [29] counted the number of p-canonical strings,
each of which is the representative (i.e., the lexicographically smallest member)
of an equivalence class [·]pm. They also presented an algorithm to enumerate
all p-canonical strings. From Lemma 1, Lemma 2 and the results of [29], we
immediately get the following theorems.

Theorem 1. Let p[k, n] be the number of distinct sets of maximal palindromes
for strings of length n containing exactly k characters. Then p[k, n] = S(n, k) for
1 ≤ k ≤ 3 and p[k, n] < S(n, k) for k ≥ 4, where S(n, k) is the Stirling number
of the second kind.

Theorem 2. For every pair of integers k ≤ 3 and n ≥ k, all pal-canonical
strings of length n consisting of exactly k characters can be computed in O(p[k, n])
time and space.

Although the above theorems provide us with new insights and an efficient
algorithm, yet they do not immediately help us solve the problem of inferring
a string from a given set of maximal palindromes. In the next section, we will
provide a linear-time algorithm to solve it.

4 Inferring a String from Maximal Palindromes

4.1 Problem

Let N be the set of non-negative integers, and let Q = {i | i = j
2 , j ∈ N}. In

this section we present a linear-time algorithm to solve the following problem.

Problem 1. Given a finite set P ⊂ Q×Q, find a string w such that P = Pals(w)
if such exists.

Concerning Lemma 2 and Proposition 1 of the previous section, we try to
find the lexicographically smallest string over a minimum alphabet in solving
Problem 1.

4.2 Linear-Time Algorithm to Compute Maximal Palindromes from
a String

Let us recall a linear-time algorithm to compute all maximal palindromes in a
given string, which is an extended version of Manacher’s algorithm that com-
putes all prefix palindromes [27]. A pseudo-code of the algorithm is shown in
Algorithm 1. The algorithm is based on the following lemma.
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Algorithm 1: Manacher’s algorithm to compute all maximal palindromes
in a given string [27].

Input: string w of length n.
Output: compute all maximal palindromes in s.
/* Let w[0] and w[n + 1] be special symbols that do not match other

symbols for convenience. */

add (0.5, 0) and (n + 0.5, 0) to P ;1

i← 2; c← 1; r ← 0.5;2

while c ≤ n do3

j ← 2c− i; /* Set j to be the mirrored position w.r.t. c. */4

while w[i] = w[j] do5

i + +; j −−; r + +;6

add (c, r) to P ;7

d← 0.5;8

while d ≤ r do9

let (c− d, r`) ∈ P ;10

if r` = r − d then break;11

rr ← min{r − d, r`};12

add (c + d, rr) to P ;13

d← d + 0.5;14

if d > r then i + +; r ← 0.5;15

else r ← r − d;16

c← c + d; /* Shift the value of c by d. */17

return P ;18

Lemma 3 ([27]). For any string w, let (c, r) ∈ Pals(w) and (c − d, r`) ∈
Pals(w) with some 0 < d ≤ r. Then (c + d, rr) ∈ Pals(w), where

rr = r` if r` < r − d, (1)
rr ≥ r − d if r` = r − d, (2)
rr = r − d if r` > r − d. (3)

Recall Observation 1. This observation suggests to compute maximal palin-
dromes from left to right in the input string, and therefore Algorithm 1 computes
the radius of each center in increasing order of the centers. Let c be the currently
focused center, that is, for every center less than c, the corresponding radius has
already been computed. Then we compute the radius for c, comparing leftward
and rightward substrings of c until a mismatch occurs. Let (c, r) ∈ Pals(w). The
key of the algorithm is that, if Condition 1 or 3 of Lemma 3 holds for a center
between c and c+ r, then the radius of the center can be determined in constant
time. If there exists a center c + d with which Condition 2 holds, then we shift
the currently focused center to the center c+d, and compute the radius for c+d.
Since in this case the radius for c+d is at least r−d, the overall time complexity
of Algorithm 1 is linear in the length of the input string.
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Algorithm 2: Algorithm to compute the lexicographically smallest string
over a minimum alphabet which has a given set of maximal palindromes.

Input: P ⊂ Q×Q.
Output: The lexicographically smallest string w over a minimum alphabet with

Pals(w) = P , if such exists.
w[1]← a;1

i← 2; c← 1; r̂ ← 0.5;2

while c ≤ n do3

j ← 2c− i; /* Set j to be the mirrored position w.r.t. c. */4

let (c, r) ∈ P ;5

if r < r̂ then return invalid;6

while r̂ < r do7

w[i]← w[j];8

i + +; j −−; r̂ + +;9

clear the list of forbidden characters;10

add w[j] to the list of forbidden characters for w[i]; /* w[i] 6= w[j]. */11

d← 0.5;12

while d ≤ r do13

let (c− d, r`), (c + d, rr) ∈ P ;14

if r` = r − d then break;15

if rr 6= min{r − d, r`} then return invalid;16

d← d + 0.5;17

if d > r then18

let x be the lexicographically smallest character not in the list of19

forbidden characters for w[i];
w[i]← x;20

i + +; r̂ ← 0.5;21

clear the list of forbidden characters;22

else r̂ ← r − d;23

c← c + d; /* Shift the value of c by d. */24

return w[1 : n];25

4.3 Our Algorithm to Compute a String from Maximal Palindromes

Now we consider Problem 1. Any P ⊂ Q × Q is said to be valid if there ex-
ists a string w such that Pals(w) = P , and is said to be invalid otherwise.
For P ⊂ Q×Q to be valid, clearly P has to satisfy the following: For each c =
0.5, 1, 1.5, . . . , n, n+0.5, there exists (c, r) ∈ P with some r ∈ {0, 0.5, 1, 1.5, . . . , k},
where n = b|P |/2c and k = min{c − 0.5, n + 0.5 − c}. Hence in what follows we
only consider as input a set P satisfying the above property.

Algorithm 2 shows our algorithm for Problem 1.

Theorem 3. Given a valid set P ⊂ Q × Q, Algorithm 2 computes the lexico-
graphically smallest string w over a minimum alphabet such that Pals(w) = P ,
in linear time and space.
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Proof. Let (c, r) ∈ P . If Condition 1 or Condition 3 of Lemma 3 holds for the
center c, then P is never rejected w.r.t. c in line 16 of Algorithm 2. Also, if
Condition 2 of Lemma 3 holds for the center c, then P is never rejected w.r.t. c
in line 6 of Algorithm 2. Therefore, if P is a valid set, then it is verified as valid
by Algorithm 2.

In line 8 of Algorithm 2, w[i] is set to w[j] where j = 2c − i is the mirrored
position of i w.r.t. c. When i goes “outside” of the radius r of the maximal
palindrome (c, r), then w[j] is recorded as a forbidden character for w[i] in line 11,
that is, w[i] cannot be equal to w[j]. Then in line 19, w[i] is set to be the
lexicographically smallest character that is not in the list of forbidden characters.
Therefore, for a given valid set P Algorithm 2 computes the lexicographically
smallest string w such that P = Pals(w).

The key for time complexity analysis is how to choose the lexicographically
smallest character in line 19. We use a bit vector F of length n = b|P |/2c
where each F [h] corresponds to the h-th lexicographically smallest character.
We initialize F with F [h] = 0 for every 1 ≤ h ≤ n. If a character w[j] is
forbidden for w[i] in line 11 and if w[j] is the h-th lexicographically smallest
character, then we set F [h] = 1. After finding all forbidden characters for w[i],
we find the lexicographically smallest character for w[i] by scanning F from left
to right until reaching the smallest index k with F [k] = 0. After setting w[i] to be
the k-th lexicographically smallest character, we initialize every entry F [h] = 1
to F [h] = 0.

Since σw ≤ n for any string w of length n, the bit vector F is sufficiently
large. For each position i, let fc(i) and lc(i) be the first (leftmost) center and
the last (rightmost) center w.r.t. i, respectively. Namely, w[i] is determined right
after lc(i) is obtained by shifting fc(i) several times in line 24, Then, the number
of forbidden characters for w[i] does not exceed 2(lc(i) − fc(i)). Hence the total
number of forbidden characters for all i is bounded by |P |. Consequently we can
maintain the bit vector F in a total of linear time and space. ut

We remark that Algorithm 2 verifies some invalid sets to be valid. For in-
stance, the following invalid set P is verified to be valid by Algorithm 2:

P = {(0.5, 0), (1, 0.5), (1.5, 1), (2, 0.5), (2.5, 0), (3, 1.5),
(3.5, 0), (4, 0.5), (4.5, 1), (5, 0.5), (5.5, 0)}.

Therefore, we firstly use Algorithm 2 as a filter. Consider the case where Al-
gorithm 2 verifies an input set P to be valid. Let w be the output string of
Algorithm 2 w.r.t. P . We then run Algorithm 1 over w to compute Pals(w).
Finally, we check whether Pals(w) = P or not. Note that P is valid if and only
if Pals(w) = P . Hence we obtain:

Theorem 4. Problem 1 can be solved in linear time.

Reducing Extra Space. Here we consider to reduce extra working space of
Algorithm 2. The next lemma is useful to estimate it.
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c1c2c3 i

d d

a a a

a

a a

Fig. 2. Illustration for Proposition 2.

For any string w, let SPC (w) be the set of centers of suffix palindromes of
w, that is,

SPC (w) = {c | (c, r) ∈ SPals(w)}.

Lemma 4 ([17, 28]). For any string w of length n, SPC (w) can be represented
by O(log n) arithmetic progressions.

For any w of length n and 1 ≤ i ≤ n, let

MC (i) = {w[2c − i] | (c, r) ∈ Pals(w), i = c + r + 0.5}.

Proposition 2. Let P be the set of maximal palindromes of some string of
length n. Then, there exists a string w over an alphabet of size O(log n) such
that Pals(w) = P .

Proof. Take any three elements from SPals(w[1 : i− 1]) whose centers belong to
the same arithmetic progression, i.e., (c1, r1), (c2, r2), (c3, r3) ∈ SPals(w[1 : i−1])
such that c1 = c2 + d = c3 + 2d for some d > 0 (See also Fig. 2). By mirroring
w[2c2 − i] w.r.t. c3, we get w[2c2 − i] = w[2c3 − (2c2 − i)] = w[2(c3 − c2) + i] =
w[i−2d]. Similarly by mirroring w[2c1−i] w.r.t. c2, w[2c1−i] = w[2c2−(2c1−i)] =
w[2(c2 − c1) + i] = w[i − 2d]. Then we get w[2c1 − i] = w[i − 2d] = w[2c2 − i].
By Lemma 4, |MC (i)| = O(log i). Since the number of forbidden characters for
each position i is at most |MC (i)|, we conclude that O(log n) distinct characters
are sufficient in total. ut

Since Algorithm 2 always computes a string over a minimum alphabet, a bit
vector of size O(log n) is actually enough for maintaining the forbidden charac-
ters for each position i of the output string.

5 Conclusions and Future Work

In this paper we studied the problem of counting the number of distinct sets of
maximal palindromes, and that of finding a string from a given set of maximal
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palindromes. For the first problem, we showed the exact number for an alphabet
of size at most 3. We also showed that there exists an algorithm that enumerates
all pal-canonical strings for an alphabet of size at most 3, which runs in linear
time in the output size. These results follow from the close relationship between
maximal palindromes and parameterized pattern matching for alphabets of size
at most 3. For the second problem, we presented a linear time algorithm that
finds the lexicographically smallest string over a minimum alphabet.

Our future work includes the followings.

1. Counting the number of pal-canonical strings for an alphabet of arbitrary
size.

2. Enumerating all distinct sets of maximal palindromes for an alphabet of
arbitrary size.

3. Finding a string that has a given set of maximal palindromes and contains
exactly k characters, where k is a predefined parameter.

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)
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