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Pattern Searching Problem

 Given：text T in Σ∗ and pattern P in Σ∗

 Find：an occurrence of P in T

 Σ: alphabet
 Σ∗: set of strings

 Using an indexing structure for T, we can solve the 
above problem in O(|P|) time.



Suffix Trie

 A trie representing all suffixes of T
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Introducing Word Separator #

 # : word separator - special symbol not in Σ
 D = Σ∗ # : dictionary of words

 Text T : an element of D+

(T is a sequence T1T2…Tk of k words in D)

 e.g., T = This#is#a#pen#

 Σ = {A,…,z}
 D = {...,This#,...,a#,...is#,...pen#,...}



Word-level Pattern Searching Problem

 Given: text T in D+ and pattern P in D+

 Find: an occurrence of P in T which immediately 
follows #

e.g.
The#space#runner#is#not#your#good#pace#runner#



Word-level Pattern Searching Problem
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Word Suffix Trie

 A trie representing the suffixes of T which 
immediately follows # (and T itself).

T = aa#b#
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Construction

 Suffix Trie ： Ukkonen’s on-line algorithm （1995）

 Word Suffix Trie ： We modify Ukkonen’s algorithm by:

 Using minimum DFA accepting dictionary D
 Redefining suffix links



Minimum DFA

 The minimum DFA accepting D = Σ∗ # clearly 
requires constant space (for fixed Σ).

 We replace the root node of the suffix trie with the 
final state of the DFA.
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Suffix Links

T = aa#b#

#

a,b

a

a

#

b

b

#

#

Word Suffix Trie



Suffix Links [cont.]
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On-line Construction

Σ, #
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On-line Construction
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Σ, # #

On-line Construction
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Σ, # #

On-line Construction
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Σ, # #

On-line Construction
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Pseudo Code
Just change here!!
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Drawback of Word Suffix Trie

 Word suffix tries require O(k|T|) space.

 Andersson et al. introduced word suffix trees which 
can be implemented in O(k) space.



Construction of Word Suffix Trees

 Algorithm by Andersson et al.（1996）

 for text T = T1T2…Tk, constructs word suffix trees in 
O(|T|) expected time with O(k) space.

 Our algorithm

 simulates the on-line word suffix trie algorithm on word 
suffix trees.

 runs in O(|T|) time in the worst cases, with O(k) space.



Normal and Word Suffix Trees
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Construction Algorithm

Just change here!!



Conclusions

 We first proposed an on-line word suffix trie 
construction algorithm.

 The keys to the algorithm are the minimal DFA 
accepting D and the re-defined suffix links.

 Further, we introduced an on-line algorithm to build 
word suffix trees that works with O(k) space and in 
O(|T|) time in the worst cases.



Further Work

 “Sparse Directed Acyclic Word Graphs”
by Shunsuke Inenaga and Masayuki Takeda
Accepted to SPIRE’06

 “Sparse Compact Directed Acyclic Word Graphs”
by Shunsuke Inenaga and Masayuki Takeda
Accepted to PSC’06
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