
On-line Linear-time
Construction of

Word Suffix Trees

Shunsuke Inenaga
(Japan Society for the Promotion of Science

& Kyushu University)

Masayuki Takeda
(Kyushu University & JST)

Pattern Searching Problem

 Given：text T in Σ∗ and pattern P in Σ∗

 Find：an occurrence of P in T

 Σ: alphabet
 Σ∗: set of strings

 Using an indexing structure for T, we can solve the
above problem in O(|P|) time.

Suffix Trie

 A trie representing all suffixes of T

a

a

c

b

$

c

b

$

c

b

$

b

$

$T = aacb$

aacb$
acb$
cb$
b$
$

Introducing Word Separator #

 # : word separator - special symbol not in Σ
 D = Σ∗ # : dictionary of words

 Text T : an element of D+

(T is a sequence T1T2…Tk of k words in D)

 e.g., T = This#is#a#pen#

 Σ = {A,…,z}
 D = {...,This#,...,a#,...is#,...pen#,...}

Word-level Pattern Searching Problem

 Given: text T in D+ and pattern P in D+

 Find: an occurrence of P in T which immediately
follows #

e.g.
The#space#runner#is#not#your#good#pace#runner#

Word-level Pattern Searching Problem

 Given: text T in D+ and pattern P in D+

 Find: an occurrence of P in T which immediately
follows #

e.g.
The#space#runner#is#not#your#good#pace#runner#

Word Suffix Trie

 A trie representing the suffixes of T which
immediately follows # (and T itself).

T = aa#b#

aa#b#
a#b#
#b#
b#
#

a

a

#

b

#

b

#

Comparison

a

a

#

b

#

b

#

a

a

#

b

#

#

b

#

#

b

#

b

#

T = aa#b#

Suffix Trie Word Suffix Trie

Construction

 Suffix Trie ： Ukkonen’s on-line algorithm （1995）

 Word Suffix Trie ： We modify Ukkonen’s algorithm by:

 Using minimum DFA accepting dictionary D
 Redefining suffix links

Minimum DFA

 The minimum DFA accepting D = Σ∗ # clearly
requires constant space (for fixed Σ).

 We replace the root node of the suffix trie with the
final state of the DFA.

#

Σ

Suffix Links

T = aa#b#

#

a,b

a

a

#

b

b

#

#

Word Suffix Trie

Suffix Links [cont.]

a

a

#

b

#

#

b

#

#

b

#

b

#

T = aa#b# a,b

a

a

#

b

b

#

#

Suffix Trie Word Suffix Trie

#

On-line Construction

Σ, #

a

T = aa#b# a,b

a

Suffix Trie Word Suffix Trie

#

On-line Construction

a

a

T = aa#b# a,b

a

a

Suffix Trie Word Suffix Trie

#Σ, #

Σ, # #

On-line Construction

a

a

#
#

#

T = aa#b# a,b

a

a

#

Suffix Trie Word Suffix Trie

Σ, # #

On-line Construction

a

a

#
#

#

T = aa#b#

b
b

b

b

a,b

a

a

#

b

b

Suffix Trie Word Suffix Trie

Σ, # #

On-line Construction

a

a

#
#

#

T = aa#b#

b
b

b

b

#

#

#

a,b

a

a

#

b

b

#

#

Suffix Trie Word Suffix Trie

Pseudo Code
Just change here!!

a

a

#

b

#

b

#

a

a

#

b

#

#

b

#

#

b

#

b

#

#

a,b
#

Σ,#

Drawback of Word Suffix Trie

 Word suffix tries require O(k|T|) space.

 Andersson et al. introduced word suffix trees which
can be implemented in O(k) space.

Construction of Word Suffix Trees

 Algorithm by Andersson et al.（1996）

 for text T = T1T2…Tk, constructs word suffix trees in
O(|T|) expected time with O(k) space.

 Our algorithm

 simulates the on-line word suffix trie algorithm on word
suffix trees.

 runs in O(|T|) time in the worst cases, with O(k) space.

Normal and Word Suffix Trees

a
a

#
b

#

b
#

a

a
#

b
#

#
b
#

#
b
#

b
#

#

T = aa#b#

Suffix Tree Word Suffix Tree

Construction Algorithm

Just change here!!

Conclusions

 We first proposed an on-line word suffix trie
construction algorithm.

 The keys to the algorithm are the minimal DFA
accepting D and the re-defined suffix links.

 Further, we introduced an on-line algorithm to build
word suffix trees that works with O(k) space and in
O(|T|) time in the worst cases.

Further Work

 “Sparse Directed Acyclic Word Graphs”
by Shunsuke Inenaga and Masayuki Takeda
Accepted to SPIRE’06

 “Sparse Compact Directed Acyclic Word Graphs”
by Shunsuke Inenaga and Masayuki Takeda
Accepted to PSC’06

	On-line Linear-time Construction of �Word Suffix Trees
	Pattern Searching Problem
	Suffix Trie
	Introducing Word Separator #
	Word-level Pattern Searching Problem
	Word-level Pattern Searching Problem
	Word Suffix Trie
	Comparison
	Construction
	Minimum DFA
	Suffix Links
	Suffix Links [cont.]
	On-line Construction
	On-line Construction
	On-line Construction
	On-line Construction
	On-line Construction
	Pseudo Code
	Drawback of Word Suffix Trie
	Construction of Word Suffix Trees
	Normal and Word Suffix Trees
	Construction Algorithm
	Conclusions
	Further Work

