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Subsequences

 String P of length m is a subsequence of 

string T of length N

∃i0, ..., im–1 s.t.

0 ≤ i0 < … < im–1 ≤ N-1 and

P[j] = T[ij] for all j = 0, ..., m – 1
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Example
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0123456789

accbabbcabT =

abcP =



Example
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0123456789

accbabbcabT =

abcP =

(0, 3, 7)



Example
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0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)



Example
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0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

(0, 6, 7)
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accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)
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Example
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0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

(0, 6, 7)

(4, 5, 7)

(4, 6, 7)



There can be too many occurrences
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0123456789

ababababab

a a a

a a a

a   a a

a   a a

a a a

P = aaaT =

…

O
𝑁
𝑚

# of choices of 

indices is



Consider only start & end
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0123456789

ababababab

a a a

a a a

a   a a

a   a a

a a a

P = aaaT =

…

(0, 6)

two occurrences are 

equivalent

 they start and end 

at the same positions

there still exist O(N2) 

non-equivalent occurrences



Minimal Subsequence Occurrences

 An occurrence (i0, im–1) of subsequence 

P in T is minimal, if there is no occurrence 

of P in T[i0 : im–1–1] or T[i0+1 : im–1].

 In other words, (i0, im–1) is minimal, 

if there is no other occurrence of P

within T[i0 : im–1].
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Minimal Subsequence Occurrences
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0123456789

ababababab

a a a

a a a

a   a a

a   a a

a a a

P = aaaT =

…

there are only O(N) 

minimal occurrences

(0, 4)

(2, 6)



Problem setting

 We want to solve the problem of computing 

minimal occurrences of a query pattern 

when a text is given in a compressed form.
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Compressed
String

Compressed String Processing

BIG
String

compress

decompress

String 
Processing

Processing without explicit decompression 

can dramatically save time and space

Light

Process
Compressed 

Representation
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An SLP S is a sequence of n assignments 

X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,

a ( )

Xi Xj ( i, j < k ).
exprk :

SLP S for string T is a context free grammar 

in the Chomsky normal form s.t. L(S) = {T}.

Straight Line Program [1/2]

a 



X1 = a

X2 = b

X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6 

X8 = X7X5

n

N

N = O(2n)

T =

SLP S

Straight Line Program [2/2]



N

T =

X8

X7 X5

Straight Line Program [2/2]

X1 = a

X2 = b

X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6 

X8 = X7X5

n

SLP S

N = O(2n)



SLP: Abstract model of compression

 Output of grammar-based compression algorithms 

(e.g., Re-pair, Sequitur, LZ78) of size n can be 

trivially converted to SLPs of size O(n) in O(n) 

time.

 Output of LZ77 of size r can be converted to an 

SLP of size O(r log N) in O(r log N) time.

 Therefore, algorithms working on SLPs are so 

useful that they can be applied to various types of 

compressed strings.
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Our contribution

Given an SLP-compressed text and an 

uncompressed pattern, we propose O(nm) 

algorithms for:

◦ Subsequence pattern matching

◦ FLDC (fixed length don’t care) pattern matching

◦ VLDC (variable length don’t care) pattern 

matching
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n = size of SLP

m = length of pattern
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Subsequence matching



Subsequence Problems on SLP 

[Cégielski et al. 2006]

Several variations, e.g.:
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Input : SLP of size n representing string T , string P

Output : # of minimal subsequence occurrences of P in T

Minimal Subsequence Occurrences

Input : SLP of size n representing T, string P, integer w

Output : # of minimal subsequence occurrences (i0, im–1) 

of P in T satisfying im–1 – i0 ≤ w

Bounded Minimal Subsequence Occurrences



Subsequence problems         

Extensions to pattern matching with Fixed/Variable 

Length Don’t Care Symbols 

Decomp.& [Troníček 2001] 

[Cégielski et al. 2006] 

[Tiskin 2009] 

[Tiskin 2011] 

O(nm2logm)

O(nm1.5)

O(nmlogm)

O(nm)
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This Work

O(nm)

Comparison to previous work

O(Nm) = O(2nm)



串：Stabbed occurrences

For Xi = Xl Xr , an occurrence (u, v) of P is 

said to be a stabbed occurrence in Xi if :

0 ≤ u < |Xl | ≤ v ≤ |Xi | -1.

Xi

Xl Xr

u v

u' v'

串 (KUSHI) is a Kanji character meaning

“skewer”, used to stab food. 26

串

おでん
“ODEN”



Every occurrence is stabbed
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For any interval [u, v] with 0 ≦ u≦ v≦ N-1,

there exists a variable Xi which stabs [u, v].

Xn

Xi

0 N-1
u v

Observation
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Counting minimal occurrences

 Mi : # of minimal occurrences of P in Xi

 M串(l, r): # of stabbed minimal occurrences of P in Xi=XlXr

aabcxabaxcbxcxabxc
stabbed minimal 

occurrences

Xi

Xl Xr
Mi = 4

M串(l, r) = 2

Ml = 1 Mr = 1

Mn is the solution to our Problem

P =abc

Mi = Ml + Mr + M串(l, r)

• If Xi = a   ( a∈Σ ) • If Xi = Xl Xr ( l , r < i )

Mi =
0 if m ≠1 or  P ≠ a

1 if m = 1 and P = a

Computing Mi
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a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a

a b b a b a b b a b a

a a b b a b a b b a b a

Computing M串(l, r)

0

1

2

3

4

5

∞

5

5

2

2

-

k R(l, k)

-
1

4

4

6

6

L(r, m–k)

Xr

Xi

there are at most m – 1

stabbed minimal

occurrences

P=abbba Xl
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shortest suffix of Xl

containing P[0:m-k-1]

shortest prefix of Xr

containing P[m-k:m-1]



a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a

a b b a b a b b a b a

a a b b a b a b b a b a

Computing M串(l, r)

0

1

2

3

4

5

∞

5

5

2

2

-

k R(l, k)

-
1

4

4

6

6

L(r, m–k)

Xr

Xi

Xl
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shortest suffix of Xl

containing P[0:m-k-1]

shortest prefix of Xr

containing P[m-k:m-1]

there are at most m – 1

crossing minimal

occurrences

P=abbba



C := 0, rmin := R(l, 0)

for k := 1 to m – 1

if  rmin > R(l, k) and L(r, m - k) < L(r, m - k - 1)  then

C := C + 1

rmin := R(l, k)

end if

end for

M串(l, r) := C

Computing M串(l, r)

M串(l,r) for all  Xi = Xl Xr can be computed 

in a total of O(nm) time using L and R.
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L(i,j) : Length of shortest prefix of Xi s.t. P[j:m-1] is subsequence

R(i,j) : Length of shortest suffix of Xi s.t. P[0:m-j-1] is subsequence

rmin

R(l, k) L(r, m-k)

L(r, m-k-1)

Xl Xr

Xi

Lemma



Computing Q (to compute L)

Xi

Xl Xr

···

Q(l, j) characters Q(r, j' ) characters

( j' = j + Q(l, j ))

• If Xi = a  ( a∈Σ ) • If Xi = Xl Xr ( l , r < i )

Q(i, j) =
0 if P [ j] ≠ a

1 if P [ j] = a

Q(i, j) = Q(l, j) + Q(r, j' )

Computing Q(i, j)

··· ··· ···

Q(i,j): length of longest prefix of P[j:] which is 

also a subsequence of Xi. (i = 1, ..., n, j = 0, ..., m)

j'j

32



Computing Q (to compute L)

x x a x b x c d x e x x

Xi

Q(l, j) = 2

j' := j + Q(l, j)

Q(r, j' ) = 3

Q(i, j) := Q(l, j)+Q(r, j' )

= 2 + 3 = 5

Xl Xr

For all i=1, ..., n and j=0, ..., m

Q(i, j) can be calculated in O(nm) time using DP.

P[ j:] =abcdef P[ j':] =cdef

33

Lemma [Cégielski et al.]



Computing L

L(i, j): length of shortest prefix of Xi s.t. P[ j:]  is subsequence  

(i = 1,...,n, j = 0,...,m) (∞ if P[j:] is not subsequence of Xi)

Xi

Xl Xr

··· ······

Computing L(i, j)

If Xi = a ( a∈Σ )

L(i, j) =

0 if j = m

1 if P [ j : ] = a

∞ if P [ j : ] ≠ a

L(i, j) =
L(l, j) if j' = m

|Xl | + L(r, j' ) if j' < m

( j' = j + Q(l, j ))

If Xi = Xl Xr• •

L(r, j' )| Xl |

L(i, j) = |Xl| + L(r,j' )

j j'
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Computing L

xabxcxxdexfxx

|Xl | = 6

L(i, j)= |Xl |+L(r, j' )

Q(l, j) = 3

L(l, j) = ∞

L(r, j' ) = 5

= 11

j' := j + 3

Xi
Xl

Xr

L(i, j) can be computed for all i=1, ..., n, j=0, ..., m,

in a total of O(nm) time using Q(i, j).

P[ j:] = abcdef

P[ j' :] =def

[Cégielski et al., 2007]

O(nm2 log m)

35

Lemma



Input : SLP of size n representing string T , string P

Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences Problem

Given an SLP of size n and a pattern of length m,

minimal subsequence occurrences can be computed in 

O(nm) time and space.

Theorem

Result

O(Nm) = O(2nm) Decomp.&[Troníček 2001] 

O(nm2logm)          [Cégielski et al. 2007]

O(nm1.5) [Tiskin 2009]

O(nm log m) [Tiskin 2011]

O(nm)
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FLDC matching



Fixed Length Don’t Care Pattern
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P = abda

T = xaabcdabddx
abdb

 We allow pattern P to contain special 

don’t-care symbol  that matches any 

single character.



Fixed Length Don’t Care
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Bounded Minimal Subsequence Occurrences Problem with 

window size w = |P|  substring matching

Input : SLP of size n representing T, string P, integer w

Output : # of minimal occurrences (i0, im–1) of subsequence 

P in T, where im–1 – i0 ≤ w

Bounded Minimal Subsequence Occurrences Problem

 We can apply the subsequence matching 

algorithm to FLDC matching!

Observation



Fixed Length Don’t Care
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• Set the window-size to m (= |P|)

• Extend algorithm to handle don't care symbol ‘’ 

 Just modify base cases for Q and L,

computation of M and M串 are the same.

Solution

Given SLP of size n and an FLDC pattern of size m,

the FLDC matching problem can be solved in 

O(nm) time and space.

Theorem
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VLDC matching



Variable Length Don’t Care
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P

★

sj

m'

m

VLDC Pattern (★ s0 ★ s1 ★ ··· ★ sm'–1★)

VLDC symbol that matches any string

segment (sj∈Σ+, j = 0,..., m' – 1 )

# of segments

pattern length ( m = |s0|+ |s1|+ ··· + |sm' – 1 | )

sm'-1s0 s1
★ ★ ★ ···★ ★

T

i0 im'-1+|sm'-1|– 1i1i0+|s0|–1 im'-1

(i0 , im'-1+|sm'-1|– 1) is 

an occurrence of P in T



Example
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0123456789

accbabbcabT =

★ab★c★P =



Example
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0123456789

accbabbcabT =

★ab★c★P =

(4 ,7)



VLDC Pattern Matching

···★ ★ ···

···★ ★ ···

···★ ★ ···

Xi

Let Occ串(Xi,sj) denote the stabbed occurrences

of segment sj in Xi (i = 1,...,n, j = 0,...,m' )

Xl Xr

45

All Occ串(Xi, sj) can be computed in a total of O(nm) time. 

Each Occ串(Xi, sj) forms a single arithmetic progression, 

which can be represented in O(1) space 

Theorem [Kida et al., 2003]



Computing Q and L for VLDC

★★ ★ ★ ★

sj

k

sj[k:]
sj'-1

j' := j + Q(l, j, k)

k'

★ ★

L(r, j', k')

Xi

case: Q(l, j, k) ≥ 1  or  k = 0

Q(i, j, k) and L(i, j, k) can 

be computed in O(nm) 

time using Occ串(Xi, sj)

sj'

k' := max{x | x∈Occ串(Xi, sj'), x + L(l, j, k) ≤ |Xl|}

L(l, j, k)

Occ串(Xi, sj')

Q(i, j, k) = Q(l, j, k) + Q(r, j', k' )

46

Lemma



Conclusion

 We proposed O(nm) algorithms on SLPs for:

◦ Subsequence matching

◦ Fixed/Variable Length Don't Care matching

 Existing best algorithm for computing minimal 

subsequence occurrences on uncompressed text 

of length N takes O(Nm) time [Troníček 2001].

◦ Since n = O(N), our O(nm) solution is at least as 

efficient as the O(Nm) solution, and is faster when 

the text is compressible.
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Open Problems

 Matching for patterns which contain 

both FLDC & VLDC symbols.

 Bounding minimum & maximum lengths for 

VLDCs.

 Faster longest common subsequence (LCS)?

◦ Tiskin’s O(nm log m) subsequence matching 

algorithm can be used to compute LCS.

 Succinct index for subsequence matching?
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