
Faster Subsequence and Don’t-Care

Pattern Matching on Compressed Texts

Takanori Yamamoto, Hideo Bannai,

Shunsuke Inenaga, Masayuki Takeda

Department of Informatics,

Kyushu University, JAPAN

1
Originally presented at CPM 2011

Self introduction

2

 Name: Shunsuke Inenaga（稲永俊介）

 Affiliation: Kyushu University, Japan

 Research interests: String matching,

Text compression, Algorithms, Data structures

Agenda

 Subsequence Pattern Matching

 Compressed String Processing

 Straight Line Program (SLP)

 Algorithms

◦ Minimum Subsequence Occurrences on SLP

◦ Fixed Length Don’t Care Matching on SLP

◦ Variable Length Don’t Care Matching on SLP

 Summary

3

Subsequences

 String P of length m is a subsequence of

string T of length N

∃i0, ..., im–1 s.t.

0 ≤ i0 < … < im–1 ≤ N-1 and

P[j] = T[ij] for all j = 0, ..., m – 1

4

Example

5

0123456789

accbabbcabT =

abcP =

Example

6

0123456789

accbabbcabT =

abcP =

(0, 3, 7)

Example

7

0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

Example

8

0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

(0, 6, 7)

Example

9

0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

(0, 6, 7)

(4, 5, 7)

Example

10

0123456789

accbabbcabT =

abcP =

(0, 3, 7)

(0, 5, 7)

(0, 6, 7)

(4, 5, 7)

(4, 6, 7)

There can be too many occurrences

11

0123456789

ababababab

a a a

a a a

a a a

a a a

a a a

P = aaaT =

…

O
𝑁
𝑚

of choices of

indices is

Consider only start & end

12

0123456789

ababababab

a a a

a a a

a a a

a a a

a a a

P = aaaT =

…

(0, 6)

two occurrences are

equivalent

 they start and end

at the same positions

there still exist O(N2)

non-equivalent occurrences

Minimal Subsequence Occurrences

 An occurrence (i0, im–1) of subsequence

P in T is minimal, if there is no occurrence

of P in T[i0 : im–1–1] or T[i0+1 : im–1].

 In other words, (i0, im–1) is minimal,

if there is no other occurrence of P

within T[i0 : im–1].

13

Minimal Subsequence Occurrences

14

0123456789

ababababab

a a a

a a a

a a a

a a a

a a a

P = aaaT =

…

there are only O(N)

minimal occurrences

(0, 4)

(2, 6)

Problem setting

 We want to solve the problem of computing

minimal occurrences of a query pattern

when a text is given in a compressed form.

15

Compressed
String

Compressed String Processing

BIG
String

compress

decompress

String
Processing

Processing without explicit decompression

can dramatically save time and space

Light

Process
Compressed

Representation

16

An SLP S is a sequence of n assignments

X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,

a ()

Xi Xj (i, j < k).
exprk :

SLP S for string T is a context free grammar

in the Chomsky normal form s.t. L(S) = {T}.

Straight Line Program [1/2]

a

X1 = a

X2 = b

X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6

X8 = X7X5

n

N

N = O(2n)

T =

SLP S

Straight Line Program [2/2]

N

T =

X8

X7 X5

Straight Line Program [2/2]

X1 = a

X2 = b

X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6

X8 = X7X5

n

SLP S

N = O(2n)

SLP: Abstract model of compression

 Output of grammar-based compression algorithms

(e.g., Re-pair, Sequitur, LZ78) of size n can be

trivially converted to SLPs of size O(n) in O(n)

time.

 Output of LZ77 of size r can be converted to an

SLP of size O(r log N) in O(r log N) time.

 Therefore, algorithms working on SLPs are so

useful that they can be applied to various types of

compressed strings.

21

Our contribution

Given an SLP-compressed text and an

uncompressed pattern, we propose O(nm)

algorithms for:

◦ Subsequence pattern matching

◦ FLDC (fixed length don’t care) pattern matching

◦ VLDC (variable length don’t care) pattern

matching

22

n = size of SLP

m = length of pattern

23

Subsequence matching

Subsequence Problems on SLP

[Cégielski et al. 2006]

Several variations, e.g.:

24

Input : SLP of size n representing string T , string P

Output : # of minimal subsequence occurrences of P in T

Minimal Subsequence Occurrences

Input : SLP of size n representing T, string P, integer w

Output : # of minimal subsequence occurrences (i0, im–1)

of P in T satisfying im–1 – i0 ≤ w

Bounded Minimal Subsequence Occurrences

Subsequence problems

Extensions to pattern matching with Fixed/Variable

Length Don’t Care Symbols

Decomp.& [Troníček 2001]

[Cégielski et al. 2006]

[Tiskin 2009]

[Tiskin 2011]

O(nm2logm)

O(nm1.5)

O(nmlogm)

O(nm)

25

This Work

O(nm)

Comparison to previous work

O(Nm) = O(2nm)

串：Stabbed occurrences

For Xi = Xl Xr , an occurrence (u, v) of P is

said to be a stabbed occurrence in Xi if :

0 ≤ u < |Xl | ≤ v ≤ |Xi | -1.

Xi

Xl Xr

u v

u' v'

串 (KUSHI) is a Kanji character meaning

“skewer”, used to stab food. 26

串

おでん
“ODEN”

Every occurrence is stabbed

27

For any interval [u, v] with 0 ≦ u≦ v≦ N-1,

there exists a variable Xi which stabs [u, v].

Xn

Xi

0 N-1
u v

Observation

June 27-29, CPM 2011 @ Palermo

Counting minimal occurrences

 Mi : # of minimal occurrences of P in Xi

 M串(l, r): # of stabbed minimal occurrences of P in Xi=XlXr

aabcxabaxcbxcxabxc
stabbed minimal

occurrences

Xi

Xl Xr
Mi = 4

M串(l, r) = 2

Ml = 1 Mr = 1

Mn is the solution to our Problem

P =abc

Mi = Ml + Mr + M串(l, r)

• If Xi = a (a∈Σ) • If Xi = Xl Xr (l , r < i)

Mi =
0 if m ≠1 or P ≠ a

1 if m = 1 and P = a

Computing Mi

28

a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a

a b b a b a b b a b a

a a b b a b a b b a b a

Computing M串(l, r)

0

1

2

3

4

5

∞

5

5

2

2

-

k R(l, k)

-
1

4

4

6

6

L(r, m–k)

Xr

Xi

there are at most m – 1

stabbed minimal

occurrences

P=abbba Xl

29

shortest suffix of Xl

containing P[0:m-k-1]

shortest prefix of Xr

containing P[m-k:m-1]

a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a
a b b a b a b b a b a

a b b a b a b b a b a

a a b b a b a b b a b a

Computing M串(l, r)

0

1

2

3

4

5

∞

5

5

2

2

-

k R(l, k)

-
1

4

4

6

6

L(r, m–k)

Xr

Xi

Xl

30

shortest suffix of Xl

containing P[0:m-k-1]

shortest prefix of Xr

containing P[m-k:m-1]

there are at most m – 1

crossing minimal

occurrences

P=abbba

C := 0, rmin := R(l, 0)

for k := 1 to m – 1

if rmin > R(l, k) and L(r, m - k) < L(r, m - k - 1) then

C := C + 1

rmin := R(l, k)

end if

end for

M串(l, r) := C

Computing M串(l, r)

M串(l,r) for all Xi = Xl Xr can be computed

in a total of O(nm) time using L and R.

31

L(i,j) : Length of shortest prefix of Xi s.t. P[j:m-1] is subsequence

R(i,j) : Length of shortest suffix of Xi s.t. P[0:m-j-1] is subsequence

rmin

R(l, k) L(r, m-k)

L(r, m-k-1)

Xl Xr

Xi

Lemma

Computing Q (to compute L)

Xi

Xl Xr

···

Q(l, j) characters Q(r, j') characters

(j' = j + Q(l, j))

• If Xi = a (a∈Σ) • If Xi = Xl Xr (l , r < i)

Q(i, j) =
0 if P [j] ≠ a

1 if P [j] = a

Q(i, j) = Q(l, j) + Q(r, j')

Computing Q(i, j)

··· ··· ···

Q(i,j): length of longest prefix of P[j:] which is

also a subsequence of Xi. (i = 1, ..., n, j = 0, ..., m)

j'j

32

Computing Q (to compute L)

x x a x b x c d x e x x

Xi

Q(l, j) = 2

j' := j + Q(l, j)

Q(r, j') = 3

Q(i, j) := Q(l, j)+Q(r, j')

= 2 + 3 = 5

Xl Xr

For all i=1, ..., n and j=0, ..., m

Q(i, j) can be calculated in O(nm) time using DP.

P[j:] =abcdef P[j':] =cdef

33

Lemma [Cégielski et al.]

Computing L

L(i, j): length of shortest prefix of Xi s.t. P[j:] is subsequence

(i = 1,...,n, j = 0,...,m) (∞ if P[j:] is not subsequence of Xi)

Xi

Xl Xr

··· ······

Computing L(i, j)

If Xi = a (a∈Σ)

L(i, j) =

0 if j = m

1 if P [j :] = a

∞ if P [j :] ≠ a

L(i, j) =
L(l, j) if j' = m

|Xl | + L(r, j') if j' < m

(j' = j + Q(l, j))

If Xi = Xl Xr• •

L(r, j')| Xl |

L(i, j) = |Xl| + L(r,j')

j j'

34

Computing L

xabxcxxdexfxx

|Xl | = 6

L(i, j)= |Xl |+L(r, j')

Q(l, j) = 3

L(l, j) = ∞

L(r, j') = 5

= 11

j' := j + 3

Xi
Xl

Xr

L(i, j) can be computed for all i=1, ..., n, j=0, ..., m,

in a total of O(nm) time using Q(i, j).

P[j:] = abcdef

P[j' :] =def

[Cégielski et al., 2007]

O(nm2 log m)

35

Lemma

Input : SLP of size n representing string T , string P

Output : # of minimal occurrences of subsequence P in T

Minimal Subsequence Occurrences Problem

Given an SLP of size n and a pattern of length m,

minimal subsequence occurrences can be computed in

O(nm) time and space.

Theorem

Result

O(Nm) = O(2nm) Decomp.&[Troníček 2001]

O(nm2logm) [Cégielski et al. 2007]

O(nm1.5) [Tiskin 2009]

O(nm log m) [Tiskin 2011]

O(nm)

36

37

FLDC matching

Fixed Length Don’t Care Pattern

38

P = abda

T = xaabcdabddx
abdb

 We allow pattern P to contain special

don’t-care symbol that matches any

single character.

Fixed Length Don’t Care

39

Bounded Minimal Subsequence Occurrences Problem with

window size w = |P| substring matching

Input : SLP of size n representing T, string P, integer w

Output : # of minimal occurrences (i0, im–1) of subsequence

P in T, where im–1 – i0 ≤ w

Bounded Minimal Subsequence Occurrences Problem

 We can apply the subsequence matching

algorithm to FLDC matching!

Observation

Fixed Length Don’t Care

40

• Set the window-size to m (= |P|)

• Extend algorithm to handle don't care symbol ‘’

 Just modify base cases for Q and L,

computation of M and M串 are the same.

Solution

Given SLP of size n and an FLDC pattern of size m,

the FLDC matching problem can be solved in

O(nm) time and space.

Theorem

41

VLDC matching

Variable Length Don’t Care

42

P

★

sj

m'

m

VLDC Pattern (★ s0 ★ s1 ★ ··· ★ sm'–1★)

VLDC symbol that matches any string

segment (sj∈Σ+, j = 0,..., m' – 1)

of segments

pattern length (m = |s0|+ |s1|+ ··· + |sm' – 1 |)

sm'-1s0 s1
★ ★ ★ ···★ ★

T

i0 im'-1+|sm'-1|– 1i1i0+|s0|–1 im'-1

(i0 , im'-1+|sm'-1|– 1) is

an occurrence of P in T

Example

43

0123456789

accbabbcabT =

★ab★c★P =

Example

44

0123456789

accbabbcabT =

★ab★c★P =

(4 ,7)

VLDC Pattern Matching

···★ ★ ···

···★ ★ ···

···★ ★ ···

Xi

Let Occ串(Xi,sj) denote the stabbed occurrences

of segment sj in Xi (i = 1,...,n, j = 0,...,m')

Xl Xr

45

All Occ串(Xi, sj) can be computed in a total of O(nm) time.

Each Occ串(Xi, sj) forms a single arithmetic progression,

which can be represented in O(1) space

Theorem [Kida et al., 2003]

Computing Q and L for VLDC

★★ ★ ★ ★

sj

k

sj[k:]
sj'-1

j' := j + Q(l, j, k)

k'

★ ★

L(r, j', k')

Xi

case: Q(l, j, k) ≥ 1 or k = 0

Q(i, j, k) and L(i, j, k) can

be computed in O(nm)

time using Occ串(Xi, sj)

sj'

k' := max{x | x∈Occ串(Xi, sj'), x + L(l, j, k) ≤ |Xl|}

L(l, j, k)

Occ串(Xi, sj')

Q(i, j, k) = Q(l, j, k) + Q(r, j', k')

46

Lemma

Conclusion

 We proposed O(nm) algorithms on SLPs for:

◦ Subsequence matching

◦ Fixed/Variable Length Don't Care matching

 Existing best algorithm for computing minimal

subsequence occurrences on uncompressed text

of length N takes O(Nm) time [Troníček 2001].

◦ Since n = O(N), our O(nm) solution is at least as

efficient as the O(Nm) solution, and is faster when

the text is compressible.

47

Open Problems

 Matching for patterns which contain

both FLDC & VLDC symbols.

 Bounding minimum & maximum lengths for

VLDCs.

 Faster longest common subsequence (LCS)?

◦ Tiskin’s O(nm log m) subsequence matching

algorithm can be used to compute LCS.

 Succinct index for subsequence matching?

48

