Faster Subsequence and Don't-Care Pattern Matching on Compressed Texts

Takanori Yamamoto, Hideo Bannai, <u>Shunsuke Inenaga</u>, Masayuki Takeda

> Department of Informatics, Kyushu University, JAPAN

Originally presented at CPM 2011

Self introduction

- Name: Shunsuke Inenaga (稲永 俊介)
- Affiliation: Kyushu University, Japan
- Research interests: String matching, Text compression, Algorithms, Data structures

Agenda

- Subsequence Pattern Matching
- Compressed String Processing
- Straight Line Program (SLP)
- Algorithms
 - <u>Minimum Subsequence Occurrences on SLP</u>
 - Fixed Length Don't Care Matching on SLP
 - Variable Length Don't Care Matching on SLP
- Summary

Subsequences

• String *P* of length *m* is a <u>subsequence</u> of string *T* of length *N* $\Leftrightarrow \exists i_0, ..., i_{m-1}$ s.t. $0 \le i_0 < ... < i_{m-1} \le N-1$ and $P[j] = T[i_j]$ for all j = 0, ..., m-1

T = accbabbcabP = abc

0123456789T = accbabbcabP = abc

(0, 3, 7)

0123456789T = accbabbcabP = abc

(0, 3, 7)(0, 5, 7)

0123456789T = accbabbcabP = abc

(0, 3, 7)(0, 5, 7)(0, 6, 7)

0123456789T = accbabbcab

P = abc

(0, 3, 7)(0, 5, 7)(0, 6, 7)(4, 5, 7)

0123456789T = accbabbcab

P = abc

(0, 3, 7)(0, 5, 7)(0, 6, 7)(4, 5, 7)(4, 6, 7)

There can be too many occurrences

0123456789 T = ababababab = P = aaaa a a a a a a a a # of choices of a a indices is $O\left(\binom{N}{m}\right)$ a a a a

Minimal Subsequence Occurrences

- An occurrence (i_0, i_{m-1}) of subsequence *P* in *T* is <u>minimal</u>, if there is *no* occurrence of *P* in $T[i_0: i_{m-1}-1]$ or $T[i_0+1: i_{m-1}]$.
- In other words, (i_0, i_{m-1}) is minimal, if there is no other occurrence of *P* within $T[i_0 : i_{m-1}]$.

Problem setting

• We want to solve the problem of computing minimal occurrences of a query pattern when a text is given in a *compressed form*.

Straight Line Program [1/2]

An SLP S is a sequence of *n* assignments $X_1 = expr_1$; $X_2 = expr_2$; ...; $X_n = expr_n$;

 $X_k : \text{variable,}$ $expr_k : \begin{cases} a & (a \in \Sigma) \\ X_i X_j & (i, j < k). \end{cases}$

SLP S for string T is a context free grammar in the Chomsky normal form s.t. $L(S) = \{T\}$.

Straight Line Program [2/2]

Straight Line Program [2/2]

SLP: Abstract model of compression

- Output of grammar-based compression algorithms (e.g., Re-pair, Sequitur, LZ78) of size *n* can be trivially converted to SLPs of size *O*(*n*) in *O*(*n*) time.
- Output of LZ77 of size *r* can be converted to an SLP of size *O*(*r* log *N*) in *O*(*r* log *N*) time.
- Therefore, algorithms working on SLPs are so useful that they can be applied to various types of compressed strings.

Our contribution

Given an SLP-compressed text and an uncompressed pattern, we propose O(nm) algorithms for:

- Subsequence pattern matching
- FLDC (fixed length don't care) pattern matching
- VLDC (variable length don't care) pattern matching

n = size of SLPm = length of pattern

Subsequence matching

Subsequence Problems on SLP [Cégielski *et al.* 2006]

Minimal Subsequence Occurrences

Input : SLP of size *n* representing string *T*, string *P* Output : # of minimal subsequence occurrences of *P* in *T*

Several variations, e.g.:

Bounded Minimal Subsequence Occurrences

Input : SLP of size *n* representing *T*, string *P*, integer *w* Output : # of minimal subsequence occurrences (i_0, i_{m-1}) of *P* in *T* satisfying $i_{m-1} - i_0 \le w$

串: Stabbed occurrences

For $X_i = X_l X_r$, an occurrence (u, v) of *P* is said to be a *stabbed occurrence* in X_i if : $0 \le u < |X_l| \le v \le |X_i| - 1$.

串 (KUSHI) is a Kanji character meaning "skewer", used to stab food.

Every occurrence is stabbed

Observation

For any interval [u, v] with $0 \le u \le v \le N-1$, there exists a variable X_i which stabs [u, v].

Counting minimal occurrences

• M_i : # of minimal occurrences of P in X_i

Computing M_i

If $X_i = a \quad (a \in \Sigma)$

• $M^{\ddagger}(l, r)$: # of *stabbed* minimal occurrences of P in $X_i = X_l X_r$

 M_n is the solution to our Problem

• If $X_i = X_l X_r$ (*l*, *r* < *i*)

$$M_i = \begin{cases} 0 & \text{if } m \neq 1 \text{ or } P \neq a \\ 1 & \text{if } m = 1 \text{ and } P = a \end{cases} \qquad M_i = M_l + M_r + M^{\ddagger}(l, r)$$

Lemma

 $M^{\ddagger}(l,r)$ for all $X_i = X_l X_r$ can be computed in a total of O(nm) time using L and R.

L(i,j): Length of shortest prefix of X_i s.t. P[j:m-1] is subsequence R(i,j): Length of shortest suffix of X_i s.t. P[0:m-j-1] is subsequence

Computing Q (to compute L)

Q(i,j): length of longest prefix of P[j:] which is also a subsequence of X_i . (i=1, ..., n, j=0, ..., m)

Computing Q(i, j)

• If $X_i = a \ (a \in \Sigma)$ $Q(i, j) = \begin{cases} 0 & \text{if } P[j] \neq a \\ 1 & \text{if } P[j] = a \end{cases}$ • If $X_i = X_l X_r \ (l, r < i)$ $Q(i, j) = Q(l, j) + Q(r, j') \\ (j' = j + Q(l, j))$

Computing L

L(*i*, *j*): length of shortest prefix of X_i s.t. *P*[*j*:] is subsequence (*i*=1,...,*n*, *j*=0,...,*m*) (∞ if *P*[*j*:] is not subsequence of X_i)

Computing L(i, j)

• If $X_i = a \ (a \in \Sigma)$ $L(i, j) = \begin{cases} 0 & \text{if } j = m \\ 1 & \text{if } P[j:] = a \\ \infty & \text{if } P[j:] \neq a \end{cases}$ • If $X_i = X_l X_r$ $L(i, j) = \begin{cases} L(l, j) & \text{if } j' = m \\ |X_l| + L(r, j') & \text{if } j' < m \\ (j' = j + Q(l, j)) \end{cases}$

Result

Minimal Subsequence Occurrences Problem

Input : SLP of size *n* representing string *T*, string *P* Output : # of minimal occurrences of subsequence *P* in *T*

Theorem

Given an SLP of size n and a pattern of length m, minimal subsequence occurrences can be computed in O(nm) time and space.

 $O(Nm) = O(2^{n}m)$ $O(nm^{2}\log m)$ $O(nm^{1.5})$ $O(nm \log m)$

Decomp.&[Troníček 2001] [Cégielski et al. 2007]

[Tiskin 2009]

[Tiskin 2011]

FLDC matching

Fixed Length Don't Care Pattern

 We allow pattern *P* to contain special <u>don't-care</u> symbol **O** that matches any single character.

P = a b O d O a

$$T = xaabcdabddx$$

 $abOdOb$

Fixed Length Don't Care

• We can apply the subsequence matching algorithm to FLDC matching!

Bounded Minimal Subsequence Occurrences Problem

Input : SLP of size *n* representing *T*, string *P*, integer *w* Output : # of minimal occurrences (i_0, i_{m-1}) of subsequence *P* in *T*, where $i_{m-1} - i_0 \le w$

Observation

Bounded Minimal Subsequence Occurrences Problem with window size $w = |P| \Leftrightarrow$ substring matching

Fixed Length Don't Care

Solution

- Set the window-size to m (= |P|)
- Extend algorithm to handle don't care symbol 'O'
 → Just modify base cases for *Q* and *L*, computation of *M* and *M*^{\#} are the same.

Theorem

Given SLP of size n and an FLDC pattern of size m, the FLDC matching problem can be solved in O(nm) time and space.

VLDC matching

Variable Length Don't Care

PVLDC Pattern ($\star s_0 \star s_1 \star \cdots \star s_{m'-1} \star$) \star VLDC symbol that matches any string s_j segment ($s_j \in \Sigma^+, j = 0, ..., m' - 1$)m'# of segmentsmpattern length ($m = |s_0| + |s_1| + \cdots + |s_{m'-1}|$)

T = accbabbcab

$P = \star ab \star c \star$

VLDC Pattern Matching

Let $Occ^{\ddagger}(X_i, s_j)$ denote the stabbed occurrences of segment s_j in X_i (i=1,...,n, j=0,...,m')

Theorem [Kida et al., 2003]

All $Occ^{\ddagger}(X_i, s_j)$ can be computed in a total of O(nm) time. Each $Occ^{\ddagger}(X_i, s_j)$ forms a single arithmetic progression, which can be represented in O(1) space

Computing *Q* and *L* for VLDC

Conclusion

- We proposed *O*(*nm*) algorithms on SLP*s* for:
 - Subsequence matching
 - Fixed/Variable Length Don't Care matching
- Existing best algorithm for computing minimal subsequence occurrences on *uncompressed* text of length *N* takes *O*(*Nm*) time [Troníček 2001].
 - Since n = O(N), our O(nm) solution is at least as efficient as the O(Nm) solution, and is faster when the text is compressible.

Open Problems

- Matching for patterns which contain *both* FLDC & VLDC symbols.
- Bounding minimum & maximum lengths for VLDCs.
- Faster longest common subsequence (LCS)?
 - Tiskin's *O*(*nm* log *m*) subsequence matching algorithm can be used to compute LCS.
- Succinct index for subsequence matching?