Faster Subsequence and Don’t-Care
Pattern Matching on Compressed Texts

Takanori Yamamoto, Hideo Bannal,
Shunsuke Inenaga, Masayuki Takeda

Department of Informatics,
Kyushu University, JAPAN

Originally presented at CPM 2011

Self introduction

» Name: Shunsuke Inenaga (Fg7k £ T)
» Affiliation: Kyushu University, Japan

» Research interests: String matching,
Text compression, Algorithms, Data structures

Agenda

» Subsequence Pattern Matching
o Compressed String Processing
e Straight Line Program (SLP)

 Algorithms
> Minimum Subseguence Occurrences on SLP
> Fixed Length Don’t Care Matching on SLP
> Variable Length Don’t Care Matching on SLP

e Summary

Subsequences

» String P of length m Is a subsequence of
string T of length N
& gy eery 1y 1 ST
0<I,<...<Il,;<N-1land
POl =Tl forallj=0,..,m-1

Example

0123456789
T=accbabbcab

P= abc

Example

0123456789
T=accbabbcab

(0, 3, 7)
P= abc

Example

0123456789
T=accbabbcab

(0, 3,7)

P=abc (0,5.7)

Example

0123456789
T=accbabbcab

(0, 3,7)
(0, 5,7)

P= abc (0. 6. 7)

Example

0123456789
T=accbabbcab

P= abc

(0, 3, 7)
(0, 5, 7)
(0, 6, 7)
(4,5, 7)

Example

0123456789
T=accbabbcab

P= abc

(0, 3, 7)
(0, 5, 7)
(0, 6,7)
(4, 0, 7)
(4, 6, 7)

There can be too many occurrences

0123456789
T= ababababab

d

@ v Q@

ada d

ad

@ @ Q@

© Q

Q)

P=aaa

-

\.

of choices of
indices is O((f;’l))

/

Consider only start & end

0123456789
T= ababababab

da 4ad d
ad d
a
d

© Q

0, 6){

@ @ Q@
Q)
Q)

P=aaa

/

two occurrences are
equivalent

<~ they start and end
at the same positions

there still exist O(N?)
non-equivalent occurrences

~N

/

Minimal Subsequence Occurrences

» An occurrence (i, 1,) of subsequence
P in T is minimal, if there Is no occurrence
of PinT[ig: 1. ,—1]or T[ig+1:1 4]

e In other words, (iy, I, ;) 1S minimal,
If there 1s no other occurrence of P
within T[iy 1. 4].

Minimal Subsequence Occurrences

0123456789
T= ababababab P=aaa

(0,4) (a a a)

a a a

a a a

5 3 3 thfarfe are only O(N)
(2. 6) (a 3 a) minimal occurrences

Problem setting

» \We want to solve the problem of computing
minimal occurrences of a query pattern
when a text is given in a compressed form.

Compressed String Processing

String

Processing

Process
Compressed

Representation
compress
Compressed
decompress String

Light

Processing without explicit decompression
can dramatically save time and space

Straight Line Program [1/2]

An SLP S is a sequence of n assignments

X1 =expri; Xo=expra; ... ; Xn = exprn;
Xk . variable,
oor .) 8 (ael)

Pl XiX; (1,)<k).

SLP S for string T Is a context free grammar
In the Chomsky normal form s.t. L(S) = {T}.

Straight Line Program [2/2]

SLP S
X =
X, =
X3 =
n |X4=
X5 =
Xe =
X7 =
Xg =

d

b

Xlx2
X3xl
X3X4
X5X5
X, Xs
X, Xs

N = O(2")

T—abaababaababaababa

N

Straight Line Program [2/2]

SLP S
X =
X, =
X3 =
n |X4=
X5 =
Xe =
X7 =
Xg =

d

b

Xlx2
X3xl
X3X4
X5X5
X, Xs
X, Xs

N = O(2")

T—abaababaababaababa

N

SLP: Abstract model of compression

» Output of grammar-based compression algorithms
(e.g., Re-pair, Sequitur, LZ78) of size n can be
trivially converted to SLPs of size O(n) in O(n)
time.

o Output of LZ77 of size r can be converted to an
SLP of size O(r log N) in O(r log N) time.

» Therefore, algorithms working on SLPs are so
useful that they can be applied to various types of
compressed strings.

Our contribution

)

Given an SLP-compressed text and an
uncompressed pattern, we propose O(nm)
algorithms for:

> Subsequence pattern matching
- FLDC (fixed length don’t care) pattern matching

> VLDC (variable length don’t care) pattern
matching

J

n =size of SLP
m = length of pattern

Subseguence matching

Subsequence Problems on SLP
[Cégielski et al. 2006}

Minimal Subsequence Occurrences

\.

Input : SLP of size n representing string T, string P

Output : # of minimal subsequence occurrences of Pin T

Several variations, e.g.:

(‘

Bounded Minimal Subsequence Occurrences

.

Input : SLP of size n representing T, string P, integer w
Output : # of minimal subsequence occurrences (i, I, 1)
of P in T satisfying i, ;—ip<w

Comparison to previous work

Decomp.& [Tronicek 2001] =» O(Nm) = O(2"m)

Cégielski et al. 2006] =2 O(nm?logm)
‘Tiskin 2009 =2 O(nm!-d)
Tiskin 2011] =2 O(nmlogm)
(] This Work |
Subsequence problems =2 O(nm) A

Extensions to pattern matching with Fixed/Variable

\Length Don’t Care Symbols = O(nm))

g8 : Stabbed occurrences

" For X = X, X, an occurrence (u, v) of P is
said to be a stabbed occurrence in X; if :
. O<u<|X|<v<|Xi| -1,
X
x,xr
T
u PV RV Y
Y $TA
E(\ $ /7 ‘ “ODEN”

£ (KUSH]I) is a Kanji character meaning
“skewer”, used to stab food.

Every occurrence Is stabbed

Observation

For any interval [u, v]withO = u = v = N-1,
there exists a variable X; which stabs [u, v].

Counting minimal occurrences

P
o M, : # of minimal occurrences of P in X,
o M#(l, r): # of stabbed minimal occurrences of P in X,=XX,

M, is the solution to our Problem

_

Computing M,

° Ifxlza (aEZ) ¢ Iin:X|Xr (I,r<|)
O ifm#1 or P #a
1 fm=1and P =a

M: = |\/Ii:MI'I'Mr-I_M$(I’ r)

stabbed minimal
=2 —
M# (1) =2

there are at most m—1

Computing M¥(l,r) iz
1 X

P=abbba X X

k R(|,k) aabbab:.abbaba L(r,m—k)

1| 5 abb bfa 1

2| 5 abb § b a 4

3| 2 abl bba 4
A2 a | bb_bal 6

5| - Gbb ba 6

shortest suffix of X shortest prefix of X,
containing P[0:m-k-1] i containing P[m-k:m-1]

there are at most m—1

Computing M#(l, 1) ZZma™
1 X

P =abbba X) X,

shortest suffix of X shortest prefix of X,
containing P[0:m-k-1] i containing P[m-k:m-1]

Computing M=(l, r)
Lemma
{ M#=(1,r) for all X, =X, X, can be computed]

In a total of O(nm) time using L and R.

C:=0, rmin:=R(l, 0)
fork:=1tom-1 |
if rmin>R(l,k) and L(r,m-k) <L(r,m-k-1) |then

C=C+1 Xi
rmin := R(l, k) X %
end if
end for
M#(I, 1) == C

L(i,J) : Length of shortest prefix of X; s.t. P[j:m-1] is subsequence
R(i,J) : Length of shortest suffix of X; s.t. P[0:m-]-1] is subsequence

Computing Q (to compute L)

Q(1,)): length of longest prefix of P[j:] which is
also a subsequence of X.. (i=1, ..., n, j=0, ..., m)

Computing Q(i, J)

« If X;=a (a€X) « IFX =XX (I,r<i)
Q. j) = { ¢ PLil#a QG.J)=Q(Lj)+Q)
¢ PLil=a (7' =+ Q,}))

Q(l,J) characters Q(r,J'") characters

Computing Q (to compute L)

xxaxbxicdxexx
P[):] =abcdef :

Q=2 | Qrj)=3

PLj]1=cdef

Voo T Qi =)
1=1+Q0N | | =2+3=5 |
A Lemma [Cégielski et al.] ~

Foralli=1, ..., nand =0, .., m

Q(l, J) can be calculated in O(nm) time using DP.

J

Computing L

L(i, J): length of shortest prefix of X; s.t. P[]:] is subsequence
(i=1,...,n, j=0,...m) (oo if P[j:] is not subsequence of X;)

Computing L(i, J)
- If Xi=a(a€x) « IfXi =X/ X,

(0 if j= () f =
L@, j)=q1 if P[J:]=a I—(',J):{|x,|+L(r,j_') if j'<m
SRR (i'=i+Q(. 1)

J' 1Xi] L

L(i,j) = X + L(r,j")

T [Cegielski et al., 2007]
COmpUtlng L g)(nmziogm)
v
Lemma

=
L(1, J) can be computed for all i1=1, ..., n, J=0, ..., m,
In a total of O(nm) time using Q(1,]).

P[j:]=abcdef
XI
xabxcxxdexfixx
L(l,j)=c | : i
J=1+3 i N
Q(,j)=3 iL(rj)=5 i iPLIu]=def
P 1X| =6 9 ; i
L(i,))=|X,|+L(r,j") 5:11§

Result

—| Minimal Subsequence Occurrences Problem

Input : SLP of size n representing string T, string P
Output : # of minimal occurrences of subsequence Pin T

\.

1 Theorem

Given an SLP of size n and a pattern of length m,
minimal subsequence occurrences can be computed in

O(nm) time and space.

\,

O(Nm) = O(2"m) Decomp.&[Tronitek 2001]
O(nm?logm) [Cégielski et al. 2007]
O(nmto) [Tiskin 2009]

O(nm log m) [Tiskin 2011]

O(nm)

FLDC matching

Fixed Length Don’t Care Pattern

» \We allow pattern P to contain special
don t-care symbol O that matches any
single character.

P = abOdOa

T =xaabcdabddx
abOdOb

Fixed Length Don’t Care

» \We can apply the subsequence matching
algorithm to FLDC matching!

Bounded Minimal Subsequence Occurrences Problem

\

Input : SLP of size n representing T, string P, integer w
Output : # of minimal occurrences (i, 1., ;) of subsequence
PinT,wherei ;—I,<w

~

W,

Observation

Bounded Minimal Subsequence Occurrences Problem with
window size w = |P| < substring matching

Fixed Length Don’t Care

Solution

* Set the window-size to m (= |P|)

» Extend algorithm to handle don't care symbol ‘O’
=>» Just modify base cases for Qand L,
computation of M and M# are the same.
_ W,

Theorem
a)

Given SLP of size n and an FLDC pattern of size m,
the FLDC matching problem can be solved in

O(nm) time and space.
\. W,

—

VLDC matching

Variable Length Don’t Care

P VLDC Pattern (% Sy % S; % - % S 1 %)
* VLDC symbol that matches any string

Sj segment (s;€X*, j=0,...,m'-1)

m # of segments

m pattern length (m=|sy|+ S|+ - +[S_1])

* [* [* - * L (lgs Iy +[Spyg| = 1) s
- \‘| ———— anoccurrence of PinT

|
l '0+{0|—1 Iy v D t[Spmoal—1

Example

0123456789
T= accbabbcab

P= %ab%cx

Example

0123456789
T = accb}ab;b/c/ab

P= xabcxk

(4,7)

VLDC Pattern Matching

4)
Let Occ®(X,, s;) denote the stabbed occurrences
of segment s;in X; (i=1,..,n, j=0,..,m")
. J
X
P adb--
ce < |*...
ok P | Y -
ok [P | Y -
p Theorem [Kida et al., 2003] ~

All Occ®(X;, 5;) can be computed in a total of O(nm) time.
Each Occ® (X, s;) forms a single arithmetic progression,

which can be represented in O(1) space
_ W,

Computing Q and L for VLDC

. : case: Q(l, j,k)>1 or k=0
=1+ Q(k) |
k' := max{x | x € Occ®(X;,s;), x + L(I,j, k) < X[}

Q(1,J,K) = Q(l,), k) +Q(r,)", k') X

N :
* <_> j e~
S; ~—— Sii 4 S !
Lemma ~ Occ®(X;, s;)

(oG RandL(ijkcan | —

be computed in O(nm) _

- - By o .
time using Occ™(X;, s;)) o

_

Conclusion

» We proposed O(nm) algorithms on SLPs for:
> Subsequence matching
> Fixed/Variable Length Don't Care matching

» EXxisting best algorithm for computing minimal
subsequence occurrences on uncompressed text
of length N takes O(Nm) time [Troni¢ek 2001].

> Since n = O(N), our O(nm) solution is at least as
efficient as the O(Nm) solution, and is faster when
the text is compressible.

Open Problems

e Matching for patterns which contain
both FLDC & VLDC symbols.

» Bounding minimum & maximum lengths for
VLDCs.

» Faster longest common subsequence (LCS)?

o Tiskin’s O(nm log m) subsequence matching
algorithm can be used to compute LCS.

» Succinct index for subsequence matching?

