CPM 2013

Converting SLP to LZ78
IN almost Linear Time

Hideo Bannai'!, Pawet Gawrychowski?,
Shunsuke Inenaga', Masayuki Takeda'

1. Kyushu University
2. Max-Planck-Institut fur Informatik

"Recompress” SLP to LZ/78

v The problem we consider is kind of recompression,

l.e., convert SLP for string w to LZ78 encoding of w.

v' Example of our motivation:

» NCD of two strings s and t w.r.t. LZ78 compressor:
Determined by |[LZ78(s)|, |[LZ78(t)| , and [LZ78(st)|.

» See [Bannai et al., SPIRE 2012] for more.

v Why LZ78?
» Widely used (GIF, PDF, TIFF, etc.).
» Nice CSP algorithms (cf., [Gawrychowski 2011, 2012]).

Straight Line Program (SLP)
4)

An SLP is a sequence of productions

Xy = expry, X, =expr,, ---, X, =expr,

* expr;=a (a €X)
o expr; =X X, (l,r<i)

o /

v The size of the SLP is the number n of productions.
v" An SLP is essentially a CFG deriving a single string.

v" SLPs model outputs of grammar-based compression
algorithms (e.g., Re-pair, Sequitur, LCAcomp, etc|.

Example of SLP

derivation tree for G

SLP G

(3]

()
(6,
(5) (5)
OO OENO

LOOLOOLLLO O G

\

a

a

a b a a a b a b
J

|

string w represented by G

DAG Representation of SLP

SLP G derivation tree for G
X;=a (7.
X, =Db 6)
X3 = X1 Xy (5) (5)

X5 = X3 X
o LDOOLOOLLOLO O G

X7 = X5 Xg a a a b a a a b a b

v" DAG is compressed representation of derivation tree.
v SLP is compressed representation of string.

LZ78 Factorization

The LZ78 factorization of string w is a factorization A
w="ff, ..

where fj is the longest prefix of f;... f; such that

fj=ficforsome 0 <k<]j(letfy=¢)andc e X. y

LZ78 trie of W
W=aaabaaabab @

LZ78 Factorization

The LZ78 factorization of string w is a factorization A
w=ff,..f
where fj is the longest prefix of f;... f; such that
fj=ficforsome 0 <k<]j(letfy=¢)andc e X. y
LZ78 trie of w
W=alaabaaabab 00
T

LZ78 Factorization

N
The LZ78 factorization of string w is a factorization
w=ff,..f

where fj is the longest prefix of f;... f; such that
fj=ficforsome 0 <k<]j(letfy=¢)andc e X.
S
LZ78 trie of w
W =
alaabaaabab 53/0

LZ78 Factorization

N
The LZ78 factorization of string w is a factorization
w=ff,..f

where fj is the longest prefix of f;... f; such that
fj=ficforsome 0 <k<]j(letfy=¢)andc e X.
S
LZ78 trie of w
W =
ala albaaabab 53/0
| 1 ()

LZ78 Factorization

N
The LZ78 factorization of string w is a factorization
w=ff,..f

where fj is the longest prefix of f;... f; such that
fj=ficforsome 0 <k<]j(letfy=¢)andc e X.
S
LZ78 trie of w
W =
ala albaaabab 53/0
| 1 gil/@

LZ78 Factorization

N
The LZ78 factorization of string w is a factorization
w=ff,..f

where fj is the longest prefix of f;... f; such that
fj=ficforsome 0 <k<]j(letfy=¢)andc e X.
S
LZ78 trie of w
W =
ala alblaaabab 53/0
] & |f ?/0

LZ78 Factorization

The LZ78 factorization of string w is a factorization A
w="ff, ..

where fj is the longest prefix of f;... f; such that

fj=ficforsome 0 <k<]j(letfy=¢)andc e X. y

LZ78 trie of W

W=ala alblaaabalb a N
bl f|fs a/e/ﬁ\e

LZ78 Factorization

The LZ78 factorization of string w is a factorization A
w="ff, ..

where fj is the longest prefix of f;... f; such that

fj=ficforsome 0 <k<]j(letfy=¢)andc e X. y

LZ78 trie of W

W=ala albla a alb al|b b

a

el

d

6
a
4

Converting SLP to LZ/78 [Cont]

(SLP G of size n\

7 4 LZ78 trie of size m\
Go this way!
5 0 €D
QL @ 6 &
. a b Y \ W,

derivation tree of G

aaabaaabab
\ Y o

Previous Result & our Hero Joined

Theorem 1 [Bannai, Inenaga, Takeda, SPIRE 201 2]

Given an SLP of size n describing string w,
we can compute the LZ78 trie of w of size m
in O(nL + m log N) time.

» N is the length of uncompressed string w
»> L is the length of longest LZ78 factor of w

Hmmm, this can
be improved!

New Result

Theorem 2 (newl)

Given an SLP of size n describing string w,
we can compute the LZ78 trie of w of size m

in O(n + m log m) time.

v Improved from O(nL + m log N) to O(n + m log m)

> L=0(/N)is the length of the longest LZ78 factor

G-parsing

4 derivation tree for SLP G

Prune the subtree
rooted at internal node,
If the label of the node 0

also appears to the left @

(5) (5]
O OENO OO
LOOLOOLLOLO O

a a a b a a a b a b

\.

G-parsing

4 derivation tree for SLP G

Prune the subtree
rooted at internal node,
If the label of the node
also appears to the left

\.

G-parsing

4 derivation tree for SLP G

Prune the subtree
rooted at internal node,
If the label of the node
also appears to the left

\.

G-parsing

4 derivation tree for SLP G

Prune the subtree
rooted at internal node,
If the label of the node
also appears to the left

\.

G-parsing of string w

G-parsing [Cont.]

Lemma 1 [Rytter 2003]

For SLP G of size n, the G-parsing contains
O(n) blocks and can be computed in O(n) time.

v Each block of G-parsing is represented by
Its beginning and ending positions,
thus taking O(1) space.

LZ/8 Factorization on SLP

LZ factors
1 ii+1 N
\Q v Suppose we have computed
LZ factors for w[1..i].
v' We compare w[i+1..N] and
log m - previous LZ factors in BST.

v' Each new LZ factor requires
at most logm comparisons.

BST for previous

How do we compare previous
LZ factors

LZ factor f; and w[i+1..N] 7
< y

LZ78 Factorization on SLP [Cont.]

derivation tree of G

. Xy Xy

1 1 i+1 N

" f Next LZ factor
e compare f; is at least of
and suffixes of — — this length + 1.
LZ factors. f. f

G-parsing

LZ factors

LZ78 Factorization on SLP [Cont.]

derivation tree of G

-
We merge these LZ factors and
represent it as an LZ chunk X,
(a suffix of an LZ factor). /\/\
\
m—
G-parsing \
£ factors A
LZ chunks 1 \ i|i+1
—] / m——]

LZ78 Factorization on SLP [Cont.]

v Towards an O(n + m log m) bound:

> Each LZ factor is computed by O(log m)
comparisons to previous LZ factors.

» The total number of LZ chunks that are
involved in comparisons is O(m log m).

» S0, what remains is how to perform
LCP query for two any LZ chunks in O(1) time!

LCP of Chunks

v Divide chunks into three types:
1. Short chunks of length < log m
2. Medium chunks of length < log® m
3. Long chunks of length > log? m

v' Maintain a dynamic LCP data structure
for each of them.

LCP of Short Chunks

Lemma 2

We can maintain a structure of size O(m log m)
which supports updates in O(log m) time and

LCP query of two short chunks (< log m) in
O(1) time.

LCP of Short Chunks [Cont.]

LZ78 trie

/ \

short chunks
(< logm)

trie of all short chunks

%\ - log m

O(m log m) nodes in this trie.
LCA gives LCP in O(1) time.

A careful update procedure
takes only O(log m) time,
independently of alphabet.

LCP of Medium Chunks

Lemma 3

We can maintain a structure of size O(m log m)
which supports updates in O(log m) time and
LCP query of two medium chunks (< log? m)
of length being multiple of log m in O(1) time.

v' The structure for short chunks works independently
of the alphabet size.

v Regard a chunk of length log m as a meta-character,
and use the structure for short chunks.

LCP of Medium Chunks [Cont.]

LZ78 trie

logm

Iogm/ logm
Iogm/ logm

medium chunks (< log? m)

trie of short chunks
over meta-characters

LCA gives {LCP ‘

logm

Last fragment can be
computed by Lemma 2.

Towards LCP of Long Chunks

Let | be length of LZ factor

_ of length > log? m.
LZ78 trie

If =jlogm+k (mod log?m),
select two chunks of length
21 1og2m and 2¢log? m.

selected chunks

Towards LCP of Long Chunks [Cont.]

Lemma 4

We can maintain a structure of size O(m log m)
which supports updates in O(log m) time and
LCP query of two selected chunks (2 log?m) of
the same length in O(1) time.

v Details are omitted here.

v’ Please see the paper for details.

LCP of Long Chunks

Lemma 5

We can maintain a structure of size O(m log m)
which supports updates in O(log m) time and
LCP query of two long chunks (> log?m) in O(1)
time.

LCP of Long Chunks [Cont.]

Let t be length of chunks.

LZ78 trie
Firstly, compare prefixes of length

d=1log?m + (t mod log?m)
in O(1) time by Lemmas 2 & 3.

long chunks

LCP of Long Chunks [Cont.]

LZ78 trie

d / \d

long chunks

Assume the prefixes are equal.

There exists d’ < d s.t. selected
chunks of same length starts at
(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

Assume the prefixes are equal.

LZ78 trie There exists d’ < d s.t. selected

chunks of same length starts at
(d’+1)th node, so we compute
LCP of largest selected chunks.

d d’
=log?m + (t mod log?m)
2% log2m
(selected chunks)

long chunks

Dynamic O(1)-time Chunk LCP

Theorem 3

For a growing trie with at most m nodes,

we can maintain a structure of size O(m log m)
which supports updates in O(log m) time and
LCP query for two any chunks (i.e., any paths)
in O(1) time.

Concluding Remarks

v' We proposed an O(n + m log m) time & space
algorithm which converts any SLP to LZ7/8.

v An O(n + m) space & O((n + m) log m) time
variant exists.

v The dynamic LCP data structure can be used
for any growing trie.

Appendices

Longest Common Suffix of Chunks

Lemma 2

We can maintain a structure of size O(m)
which supports updates in O(log m) time and
LCS query of any two chunks in O(1) time.

reversed
compact trie

LZ78 trie

/ .\

chunks

Dynamic LCA
[Cole & Hariharan, 1999]

Longest Common Suffix of Chunks [Cont.]

Lemma 2

We can maintain a structure of size O(m)

which supports updates in O(log m) time and
LCS query of any two chunks in O(1) time.

v A new reversed LZ factor can be inserted in
O(log m) time (independently of the alphabet size).

» BST for the reversed LZ factors;
» Dynamic LCA [Cole & Hariharan, 1999]
» Dynamic level ancestor [Alstrup & Holm, 2000];

Selected Chunks

Let | be length of LZ factor.
LZ78 trie

If =jlogm+k (mod log?m),
select two chunks of length
211og2m and 2¢log? m.

selected chunks

LCP of Long Chunks [Cont.]

Assume the prefixes are equal.

LZ78 trie There exists d’ < d s.t. selected

chunks of same length starts at
(d’+1)th node, so we compute
LCP of largest selected chunks.

d d’
=log?m + (t mod log?m)
2% log2m
(selected chunks)

long chunks

