

Converting SLP to LZ78 in almost Linear Time

Hideo Bannai¹, Paweł Gawrychowski², Shunsuke Inenaga¹, Masayuki Takeda¹

> 1. Kyushu University 2. Max-Planck-Institut für Informatik

"Recompress" SLP to LZ78

- \checkmark The problem we consider is kind of recompression, i.e., convert SLP for string *w* to LZ78 encoding of *w*.
- \checkmark Example of our motivation:
	- NCD of two strings *s* and *t* w.r.t. LZ78 compressor: Determined by |LZ78(*s*)|, |LZ78(*t*)| , and |LZ78(*st*)|.
	- \triangleright See [Bannai et al., SPIRE 2012] for more.
- \checkmark Why LZ78?
	- \triangleright Widely used (GIF, PDF, TIFF, etc.).
	- \triangleright Nice CSP algorithms (cf., [Gawrychowski 2011, 2012]).

Straight Line Program (SLP)

An SLP is a sequence of productions
\n
$$
X_1 = expr_1
$$
, $X_2 = expr_2$, \dots , $X_n = expr_n$
\n• $expr_i = a$ $(a \in \Sigma)$
\n• $expr_i = X_iX_r$ $(l, r < i)$

- \checkmark The size of the SLP is the number *n* of productions.
- \checkmark An SLP is essentially a CFG deriving a single string.
- \checkmark SLPs model outputs of grammar-based compression algorithms (e.g., Re-pair, Sequitur, LCAcomp, etc).

Example of SLP

derivation tree for *G*

SLP *G*

string *w* represented by *G*

DAG Representation of SLP

 SLP *G*

derivation tree for *G*

 \checkmark DAG is compressed representation of derivation tree. \checkmark SLP is compressed representation of string.

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

LZ78 trie of *w*

 $w = a$ aabaaabab 0

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

LZ78 trie of
$$
w
$$

$$
w = a \mid a \text{ a b a a b a b}
$$

 \mathbf{I}

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

$$
w = a \begin{vmatrix} a & a & b & a & a & b & a & b \\ f_1 & & & & & & & a \\ 0 & & & & & & a & 0 \\ 0 & & & & & & & a \end{vmatrix}
$$

LZ78 trie of *w*

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

$$
w = a \begin{vmatrix} a & a \end{vmatrix} b \ a \ a \ a \ b \ a \ b
$$

LZ78 trie of *w*

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

$$
w = a \begin{vmatrix} a & a \\ f_1 & f_2 \end{vmatrix} b \ a \ a \ a \ b \ a \ b
$$

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

$$
w = a \begin{vmatrix} a & a \\ f_1 & f_2 \end{vmatrix} b \begin{vmatrix} a & a & b \\ a & b & a \end{vmatrix}
$$

LZ78 trie of *w*

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

$$
w = a \begin{vmatrix} a & a \\ f_1 & f_2 \end{vmatrix} b \begin{vmatrix} a & a & a & b \\ a & a & b \end{vmatrix}
$$

LZ78 trie of *w*

The LZ78 factorization of string *w* is a factorization
\n
$$
w = f_1 f_2 ... f_m
$$
\nwhere f_j is the longest prefix of $f_j ... f_m$ such that
\n $f_j = f_k c$ for some $0 \le k < j$ (let $f_0 = \varepsilon$) and $c \in \Sigma$.

Converting SLP to LZ78 [Cont.]

Previous Result & our Hero Joined

Theorem 1 [Bannai, Inenaga, Takeda, SPIRE 2012]

Given an SLP of size *n* describing string *w*, we can compute the LZ78 trie of *w* of size *m* in $O(nL + m \log N)$ time.

> *N* is the length of uncompressed string *w* \triangleright *L* is the length of longest LZ78 factor of *w*

New Result

Theorem 2 (new!)

Given an SLP of size *n* describing string *w*, we can compute the LZ78 trie of *w* of size *m* in $O(n + m \log m)$ time.

 \checkmark Improved from $O(nL + m \log N)$ to $O(n + m \log m)$

 $L = O(\sqrt{N})$ is the length of the longest LZ78 factor

*G-*parsing of string *w*

G-parsing [Cont.]

Lemma 1 [Rytter 2003]

For SLP *G* of size *n*, the *G-*parsing contains $O(n)$ blocks and can be computed in $O(n)$ time.

 \checkmark Each block of G-parsing is represented by its beginning and ending positions, thus taking *O*(1) space.

LZ78 Factorization on SLP

LZ factors

log *m*

 \checkmark Suppose we have computed LZ factors for *w*[1..*i*].

1 *i i*+1 *N*

- \checkmark We compare $w[i+1..N]$ and previous LZ factors in BST.
- \checkmark Each new LZ factor requires at most log *m* comparisons.

BST for previous LZ factors

How do we compare previous LZ factor f_j and $w[i{+}1..N]$?

LZ78 Factorization on SLP [Cont.]

LZ78 Factorization on SLP [Cont.]

- \checkmark Towards an $O(n + m \log m)$ bound:
	- \triangleright Each LZ factor is computed by $O(\log m)$ comparisons to previous LZ factors.
	- \triangleright The total number of LZ chunks that are involved in comparisons is *O*(*m* log *m*).
	- \triangleright So, what remains is how to perform LCP query for two any LZ chunks in *O*(1) time!

LCP of Chunks

- \checkmark Divide chunks into three types:
	- 1. Short chunks of length $\leq \log m$
	- 2. Medium chunks of length $\leq \log^2 m$
	- 3. Long chunks of length $> \log^2 m$
- \checkmark Maintain a dynamic LCP data structure for each of them.

LCP of Short Chunks

Lemma 2

We can maintain a structure of size *O*(*m* log *m*) which supports updates in *O*(log *m*) time and LCP query of two short chunks (≤ log *m*) in *O*(1) time.

LCP of Short Chunks [Cont.]

short chunks (≤ log *m*)

LZ78 trie

trie of all short chunks

O(*m* log *m*) nodes in this trie.

LCA gives LCP in *O*(1) time.

A careful update procedure takes only *O*(log *m*) time, independently of alphabet.

LCP of Medium Chunks

Lemma 3

We can maintain a structure of size *O*(*m* log *m*) which supports updates in *O*(log *m*) time and LCP query of two medium chunks $| \leq \log^2 m |$ of length being multiple of log *m* in *O*(1) time.

- \checkmark The structure for short chunks works independently of the alphabet size.
- \checkmark Regard a chunk of length $\log m$ as a meta-character, and use the structure for short chunks.

LCP of Medium Chunks [Cont.]

trie of short chunks over meta-characters

Last fragment can be computed by Lemma 2.

Towards LCP of Long Chunks

Towards LCP of Long Chunks [Cont.]

Lemma 4

We can maintain a structure of size *O*(*m* log *m*) which supports updates in *O*(log *m*) time and LCP query of two selected chunks ($2^k \log^2 m$) of the same length in $O(1)$ time.

- \checkmark Details are omitted here.
- \checkmark Please see the paper for details.

LCP of Long Chunks

Lemma 5

We can maintain a structure of size *O*(*m* log *m*) which supports updates in *O*(log *m*) time and LCP query of two long chunks $|> \log^2 m|$ in $O(1)$ time.

LZ78 trie

Let *t* be length of chunks.

Firstly, compare prefixes of length $d = \log^2 m + (t \mod \log^2 m)$ in $O(1)$ time by Lemmas 2 & 3.

long chunks

 $d \neq$ $\qquad \qquad$ \qquad \qquad

d

LZ78 trie

d

Assume the prefixes are equal.

There exists $d' \leq d$ s.t. selected chunks of same length starts at (*d'*+1)th node, so we compute LCP of largest selected chunks.

long chunks

Dynamic *O*(1)-time Chunk LCP

Theorem 3

For a growing trie with at most *m* nodes, we can maintain a structure of size *O*(*m* log *m*) which supports updates in *O*(log *m*) time and LCP query for two any chunks (i.e., any paths) in $O(1)$ time.

Concluding Remarks

- \checkmark We proposed an $O(n + m \log m)$ time & space algorithm which converts any SLP to LZ78.
- \checkmark An $O(n+m)$ space $\& O((n+m) \log m)$ time variant exists.
- \checkmark The dynamic LCP data structure can be used for any growing trie.

Appendices

Longest Common Suffix of Chunks

Lemma 2

We can maintain a structure of size *O*(*m*) which supports updates in *O*(log *m*) time and LCS query of any two chunks in *O*(1) time.

Longest Common Suffix of Chunks [Cont.]

Lemma 2

We can maintain a structure of size *O*(*m*) which supports updates in *O*(log *m*) time and LCS query of any two chunks in *O*(1) time.

- \checkmark A new reversed LZ factor can be inserted in *O*(log *m*) time (independently of the alphabet size).
	- \triangleright BST for the reversed LZ factors;
	- Dynamic LCA [Cole & Hariharan, 1999]
	- Dynamic level ancestor [Alstrup & Holm, 2000];

Selected Chunks

