
CPM 2013

Converting SLP to LZ78

in almost Linear Time

Hideo Bannai1, Paweł Gawrychowski2,

Shunsuke Inenaga1, Masayuki Takeda1

1. Kyushu University

2. Max-Planck-Institut für Informatik

“Recompress” SLP to LZ78

 The problem we consider is kind of recompression,

i.e., convert SLP for string w to LZ78 encoding of w.

 Example of our motivation:

 NCD of two strings s and t w.r.t. LZ78 compressor:

Determined by |LZ78(s)|, |LZ78(t)| , and |LZ78(st)|.

 See [Bannai et al., SPIRE 2012] for more.

 Why LZ78?

 Widely used (GIF, PDF, TIFF, etc.).

 Nice CSP algorithms (cf., [Gawrychowski 2011, 2012]).

Straight Line Program (SLP)

An SLP is a sequence of productions

X1 = expr1, X2 = expr2, ···, Xn = exprn

• expri = a (a ∈ Σ)

• expri = Xl Xr (l, r < i)

 The size of the SLP is the number n of productions.

 An SLP is essentially a CFG deriving a single string.

 SLPs model outputs of grammar-based compression

algorithms (e.g., Re-pair, Sequitur, LCAcomp, etc).

SLP G

X1 = a

X2 = b

X3 = X1 X1

X4 = X1 X2

X5 = X3 X4

X6 = X5 X4

X7 = X5 X6

Example of SLP

string w represented by G

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

derivation tree for G

DAG for SLP S

7

6

5

3 4

1 2

a b

DAG Representation of SLP

 DAG is compressed representation of derivation tree.

 SLP is compressed representation of string.

derivation tree for G

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

SLP G

X1 = a

X2 = b

X3 = X1 X1

X4 = X1 X2

X5 = X3 X4

X6 = X5 X4

X7 = X5 X6

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

a

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3 3

b

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3

b
f4

4

a

f5

5

a
f6 3, 6

7

6
5

3 4

1 2

a b

LZ78 trie of size m

0

1

a

2

a

b

4

a
5

a 3, 6

SLP G of size n

6
7

5

11

a a

3

21

a b

4

5

11

a a

3

21

a b

4

21

a b

4

derivation tree of G

O(2n) time!!

Go this way!

Converting SLP to LZ78 [Cont.]

ROAD

CLOSED

Previous Result & our Hero Joined

Theorem 1 [Bannai, Inenaga, Takeda, SPIRE 2012]

Given an SLP of size n describing string w,

we can compute the LZ78 trie of w of size m

in O(nL + m log N) time.

 N is the length of uncompressed string w

 L is the length of longest LZ78 factor of w

Hmmm, this can

be improved!

New Result

 Improved from O(nL + m log N) to O(n + m log m)

 L = O(𝑁) is the length of the longest LZ78 factor

Theorem 2 (new!)

Given an SLP of size n describing string w,

we can compute the LZ78 trie of w of size m

in O(n + m log m) time.

G-parsing

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

1 2

4

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

4

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

4

G-parsing of string w

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

G-parsing [Cont.]

Lemma 1 [Rytter 2003]

For SLP G of size n, the G-parsing contains

O(n) blocks and can be computed in O(n) time.

 Each block of G-parsing is represented by

its beginning and ending positions,

thus taking O(1) space.

LZ78 Factorization on SLP

LZ factors

i i+1 N1

BST for previous

LZ factors

 Suppose we have computed

LZ factors for w[1..i].

 We compare w[i+1..N] and

previous LZ factors in BST.

 Each new LZ factor requires

at most log m comparisons.

How do we compare previous

LZ factor fj and w[i+1..N] ?

log m

LZ78 Factorization on SLP [Cont.]

LZ factors

i i+1 N

G-parsing

derivation tree of G

1

XkXk

fjfj

We compare fj

and suffixes of
LZ factors.

Next LZ factor
is at least of
this length + 1.

LZ78 Factorization on SLP [Cont.]

LZ factors

i i+1 N

G-parsing

derivation tree of G

XkXk

fjfj

We merge these LZ factors and
represent it as an LZ chunk
(a suffix of an LZ factor).

LZ chunks 1

LZ78 Factorization on SLP [Cont.]

 Towards an O(n + m log m) bound:

 Each LZ factor is computed by O(log m)

comparisons to previous LZ factors.

 The total number of LZ chunks that are

involved in comparisons is O(m log m).

 So, what remains is how to perform

LCP query for two any LZ chunks in O(1) time!

LCP of Chunks

 Divide chunks into three types:

1. Short chunks of length ≤ log m

2. Medium chunks of length ≤ log2 m

3. Long chunks of length > log2 m

 Maintain a dynamic LCP data structure

for each of them.

Lemma 2

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two short chunks (≤ log m) in

O(1) time.

LCP of Short Chunks

LZ78 trie

short chunks

(≤ log m)

trie of all short chunks

log m

O(m log m) nodes in this trie.

LCA gives LCP in O(1) time.

A careful update procedure

takes only O(log m) time,

independently of alphabet.

LCP of Short Chunks [Cont.]

LCP of Medium Chunks

Lemma 3

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two medium chunks (≤ log2 m)

of length being multiple of log m in O(1) time.

 The structure for short chunks works independently

of the alphabet size.

 Regard a chunk of length log m as a meta-character,
and use the structure for short chunks.

LZ78 trie

medium chunks (≤ log2 m)

logm

logm

logm

logm
logm

logm

logm

logm
LCA gives

LCP

log𝑚
.

Last fragment can be

computed by Lemma 2.

trie of short chunks

over meta-characters

LCP of Medium Chunks [Cont.]

Towards LCP of Long Chunks

LZ78 trie

l

2k log2 m
2 j log2 m

selected chunks

Let l be length of LZ factor

of length > log2 m.

If l = j log m + k (mod log2 m),

select two chunks of length

2 j log2 m and 2k log2 m.

Towards LCP of Long Chunks [Cont.]

Lemma 4

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two selected chunks (2k log2 m) of

the same length in O(1) time.

 Details are omitted here.

 Please see the paper for details.

LCP of Long Chunks

Lemma 5

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two long chunks (> log2 m) in O(1)

time.

LZ78 trie
Let t be length of chunks.

Firstly, compare prefixes of length

d = log2 m + (t mod log2 m)

in O(1) time by Lemmas 2 & 3.

LCP of Long Chunks [Cont.]

d d

long chunks

LZ78 trie
Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d

long chunks

d

LZ78 trie

2 k log2 m
(selected chunks)

Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d d’ d’

long chunks

d

d = log2 m + (t mod log2 m)

Dynamic O(1)-time Chunk LCP

Theorem 3

For a growing trie with at most m nodes,

we can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query for two any chunks (i.e., any paths)

in O(1) time.

Concluding Remarks

 We proposed an O(n + m log m) time & space
algorithm which converts any SLP to LZ78.

 An O(n + m) space & O((n + m) log m) time
variant exists.

 The dynamic LCP data structure can be used
for any growing trie.

Appendices

Longest Common Suffix of Chunks

Lemma 2

We can maintain a structure of size O(m)

which supports updates in O(log m) time and

LCS query of any two chunks in O(1) time.

LZ78 trie reversed

compact trie

chunks

Dynamic LCA

[Cole & Hariharan, 1999]

Longest Common Suffix of Chunks [Cont.]

 A new reversed LZ factor can be inserted in

O(log m) time (independently of the alphabet size).

 BST for the reversed LZ factors;

 Dynamic LCA [Cole & Hariharan, 1999]

 Dynamic level ancestor [Alstrup & Holm, 2000];

Lemma 2

We can maintain a structure of size O(m)

which supports updates in O(log m) time and

LCS query of any two chunks in O(1) time.

Selected Chunks

LZ78 trie

l

2k log2 m
2 j log2 m

selected chunks

Let l be length of LZ factor.

If l = j log m + k (mod log2 m),

select two chunks of length

2 j log2 m and 2k log2 m.

LZ78 trie

2 k log2 m
(selected chunks)

Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d d’ d’

long chunks

d

d = log2 m + (t mod log2 m)

