
CPM 2013

Converting SLP to LZ78

in almost Linear Time

Hideo Bannai1, Paweł Gawrychowski2,

Shunsuke Inenaga1, Masayuki Takeda1

1. Kyushu University

2. Max-Planck-Institut für Informatik

“Recompress” SLP to LZ78

 The problem we consider is kind of recompression,

i.e., convert SLP for string w to LZ78 encoding of w.

 Example of our motivation:

 NCD of two strings s and t w.r.t. LZ78 compressor:

Determined by |LZ78(s)|, |LZ78(t)| , and |LZ78(st)|.

 See [Bannai et al., SPIRE 2012] for more.

 Why LZ78?

 Widely used (GIF, PDF, TIFF, etc.).

 Nice CSP algorithms (cf., [Gawrychowski 2011, 2012]).

Straight Line Program (SLP)

An SLP is a sequence of productions

X1 = expr1, X2 = expr2, ···, Xn = exprn

• expri = a (a ∈ Σ)

• expri = Xl Xr (l, r < i)

 The size of the SLP is the number n of productions.

 An SLP is essentially a CFG deriving a single string.

 SLPs model outputs of grammar-based compression

algorithms (e.g., Re-pair, Sequitur, LCAcomp, etc).

SLP G

X1 = a

X2 = b

X3 = X1 X1

X4 = X1 X2

X5 = X3 X4

X6 = X5 X4

X7 = X5 X6

Example of SLP

string w represented by G

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

derivation tree for G

DAG for SLP S

7

6

5

3 4

1 2

a b

DAG Representation of SLP

 DAG is compressed representation of derivation tree.

 SLP is compressed representation of string.

derivation tree for G

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

SLP G

X1 = a

X2 = b

X3 = X1 X1

X4 = X1 X2

X5 = X3 X4

X6 = X5 X4

X7 = X5 X6

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

a

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3 3

b

The LZ78 factorization of string w is a factorization

w = f1 f2 ... fm

where fj is the longest prefix of fj ... fm such that

fj = fk c for some 0 ≤ k < j (let f0 = ε) and c ∈ Σ.

LZ78 Factorization

w = a a a b a a a b a b
0

LZ78 trie of w

f1 1

a
f2

2

af3

b
f4

4

a

f5

5

a
f6 3, 6

7

6
5

3 4

1 2

a b

LZ78 trie of size m

0

1

a

2

a

b

4

a
5

a 3, 6

SLP G of size n

6
7

5

11

a a

3

21

a b

4

5

11

a a

3

21

a b

4

21

a b

4

derivation tree of G

O(2n) time!!

Go this way!

Converting SLP to LZ78 [Cont.]

ROAD

CLOSED

Previous Result & our Hero Joined

Theorem 1 [Bannai, Inenaga, Takeda, SPIRE 2012]

Given an SLP of size n describing string w,

we can compute the LZ78 trie of w of size m

in O(nL + m log N) time.

 N is the length of uncompressed string w

 L is the length of longest LZ78 factor of w

Hmmm, this can

be improved!

New Result

 Improved from O(nL + m log N) to O(n + m log m)

 L = O(𝑁) is the length of the longest LZ78 factor

Theorem 2 (new!)

Given an SLP of size n describing string w,

we can compute the LZ78 trie of w of size m

in O(n + m log m) time.

G-parsing

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

1 2

4

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

4

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

6

7

a a a b a a a b a b

5

1 2

4

1

3

1

5

4

G-parsing of string w

G-parsing

Prune the subtree
rooted at internal node,
if the label of the node
also appears to the left

derivation tree for SLP G

G-parsing [Cont.]

Lemma 1 [Rytter 2003]

For SLP G of size n, the G-parsing contains

O(n) blocks and can be computed in O(n) time.

 Each block of G-parsing is represented by

its beginning and ending positions,

thus taking O(1) space.

LZ78 Factorization on SLP

LZ factors

i i+1 N1

BST for previous

LZ factors

 Suppose we have computed

LZ factors for w[1..i].

 We compare w[i+1..N] and

previous LZ factors in BST.

 Each new LZ factor requires

at most log m comparisons.

How do we compare previous

LZ factor fj and w[i+1..N] ?

log m

LZ78 Factorization on SLP [Cont.]

LZ factors

i i+1 N

G-parsing

derivation tree of G

1

XkXk

fjfj

We compare fj

and suffixes of
LZ factors.

Next LZ factor
is at least of
this length + 1.

LZ78 Factorization on SLP [Cont.]

LZ factors

i i+1 N

G-parsing

derivation tree of G

XkXk

fjfj

We merge these LZ factors and
represent it as an LZ chunk
(a suffix of an LZ factor).

LZ chunks 1

LZ78 Factorization on SLP [Cont.]

 Towards an O(n + m log m) bound:

 Each LZ factor is computed by O(log m)

comparisons to previous LZ factors.

 The total number of LZ chunks that are

involved in comparisons is O(m log m).

 So, what remains is how to perform

LCP query for two any LZ chunks in O(1) time!

LCP of Chunks

 Divide chunks into three types:

1. Short chunks of length ≤ log m

2. Medium chunks of length ≤ log2 m

3. Long chunks of length > log2 m

 Maintain a dynamic LCP data structure

for each of them.

Lemma 2

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two short chunks (≤ log m) in

O(1) time.

LCP of Short Chunks

LZ78 trie

short chunks

(≤ log m)

trie of all short chunks

log m

O(m log m) nodes in this trie.

LCA gives LCP in O(1) time.

A careful update procedure

takes only O(log m) time,

independently of alphabet.

LCP of Short Chunks [Cont.]

LCP of Medium Chunks

Lemma 3

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two medium chunks (≤ log2 m)

of length being multiple of log m in O(1) time.

 The structure for short chunks works independently

of the alphabet size.

 Regard a chunk of length log m as a meta-character,
and use the structure for short chunks.

LZ78 trie

medium chunks (≤ log2 m)

logm

logm

logm

logm
logm

logm

logm

logm
LCA gives

LCP

log𝑚
.

Last fragment can be

computed by Lemma 2.

trie of short chunks

over meta-characters

LCP of Medium Chunks [Cont.]

Towards LCP of Long Chunks

LZ78 trie

l

2k log2 m
2 j log2 m

selected chunks

Let l be length of LZ factor

of length > log2 m.

If l = j log m + k (mod log2 m),

select two chunks of length

2 j log2 m and 2k log2 m.

Towards LCP of Long Chunks [Cont.]

Lemma 4

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two selected chunks (2k log2 m) of

the same length in O(1) time.

 Details are omitted here.

 Please see the paper for details.

LCP of Long Chunks

Lemma 5

We can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query of two long chunks (> log2 m) in O(1)

time.

LZ78 trie
Let t be length of chunks.

Firstly, compare prefixes of length

d = log2 m + (t mod log2 m)

in O(1) time by Lemmas 2 & 3.

LCP of Long Chunks [Cont.]

d d

long chunks

LZ78 trie
Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d

long chunks

d

LZ78 trie

2 k log2 m
(selected chunks)

Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d d’ d’

long chunks

d

d = log2 m + (t mod log2 m)

Dynamic O(1)-time Chunk LCP

Theorem 3

For a growing trie with at most m nodes,

we can maintain a structure of size O(m log m)

which supports updates in O(log m) time and

LCP query for two any chunks (i.e., any paths)

in O(1) time.

Concluding Remarks

 We proposed an O(n + m log m) time & space
algorithm which converts any SLP to LZ78.

 An O(n + m) space & O((n + m) log m) time
variant exists.

 The dynamic LCP data structure can be used
for any growing trie.

Appendices

Longest Common Suffix of Chunks

Lemma 2

We can maintain a structure of size O(m)

which supports updates in O(log m) time and

LCS query of any two chunks in O(1) time.

LZ78 trie reversed

compact trie

chunks

Dynamic LCA

[Cole & Hariharan, 1999]

Longest Common Suffix of Chunks [Cont.]

 A new reversed LZ factor can be inserted in

O(log m) time (independently of the alphabet size).

 BST for the reversed LZ factors;

 Dynamic LCA [Cole & Hariharan, 1999]

 Dynamic level ancestor [Alstrup & Holm, 2000];

Lemma 2

We can maintain a structure of size O(m)

which supports updates in O(log m) time and

LCS query of any two chunks in O(1) time.

Selected Chunks

LZ78 trie

l

2k log2 m
2 j log2 m

selected chunks

Let l be length of LZ factor.

If l = j log m + k (mod log2 m),

select two chunks of length

2 j log2 m and 2k log2 m.

LZ78 trie

2 k log2 m
(selected chunks)

Assume the prefixes are equal.

There exists d’ ≤ d s.t. selected
chunks of same length starts at

(d’+1)th node, so we compute
LCP of largest selected chunks.

LCP of Long Chunks [Cont.]

d d’ d’

long chunks

d

d = log2 m + (t mod log2 m)

