
Factorizing a string
into squares in linear time

Yoshiaki Matsuoka, Shunsuke Inenaga,
Hideo Bannai, Masayuki Takeda (Kyushu U.)

Florin Manea (Kiel U.)

CPM 2016

From string to squares?

 In this presentation, I talk about
decomposition of a string into squares.

Squares (as strings!)

 “Our square” is a string of form xx.

 aabaab

 abababab

 ababaababa

Primitively rooted squares

 A square xx is called a primitively rooted
square if its root x is primitive
(i.e., x ≠ yk for any string y and integer k).

 aabaab : primitively rooted square

 abababab : not primitively rooted square

 ababaababa : primitively rooted square

Our problem

 Determine whether a given string can be
factorized into a sequence of squares.
If the answer is yes, then compute one of
such factorizations.

E.g.)
 aabaabaaaaaa → Yes

◦ (aabaab, aaaaaa),

◦ (aabaab, aaaa, aa),

◦ (aa, baabaa, aa, aa), and so on.

 aabaabbbab → No

5

Previous work

 n is the length of the input string.

6

[Dumitran et al., 2015]

A sq. factor. O(n log n)

Times for computing square factorization

Previous work

 n is the length of the input string.

7

[Dumitran et al., 2015]

A sq. factor. O(n log n)

Largest sq.
factor.

O(n log n)

Times for computing square factorization

Our contribution

 n is the length of the input string.

 Our results for arbitrary/largest square factorizations
are valid on word RAM with word size ω = Ω(log n).

8

[Dumitran et al., 2015] Our solutions

A sq. factor. O(n log n) O(n)

Largest sq.
factor.

O(n log n) O(n + (n log2 n) / ω)

Smallest sq.
factor.

－ O(n log n)

Times for computing square factorization

Our contribution

 n is the length of the input string.

 Our results for arbitrary/largest square factorizations
are valid on word RAM with word size ω = Ω(log n).

9

[Dumitran et al., 2015] Our solutions

A sq. factor. O(n log n) O(n)

Largest sq.
factor.

O(n log n) O(n + (n log2 n) / ω)

Smallest sq.
factor.

－ O(n log n)

Times for computing square factorization

Simple observation

 Every square is of even length.

 Thus, if string w has a square factorization,
then w also has a square factorization which
consists only of primitively rooted squares.

E.g.)

 aaaaaa|abababab

 aa|aa|aa|abab|abab

of primitively rooted squares

 Any string of length n contains
O(n log n) primitively rooted squares
[Crochemore & Rytter, 1995].

 The simple observation + the above lemma
lead to a natural DP approach which computes
a square factorization in O(n log n) time.

Dumitran et al.’s algorithm
 Consider the following DAG G for string w:
 There are n+1 nodes.

 There is a directed edge (e+1, b) in G.⟺
Substring w[b..e] is a primitively rooted square.

a a b a a b a a a a

Dumitran et al.’s algorithm
 Consider the following DAG G for string w:
 There are n+1 nodes.

 There is a directed edge (e+1, b) in G.⟺
Substring w[b..e] is a primitively rooted square.

a a b a a b a a a a

Dumitran et al.’s algorithm

 DAG G has a path from the rightmost node
to the leftmost node.
⟺ There is a square factorization of w.

a a b a a b a a a a

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 0 0

a a

1

a

 The rightmost node is associated with a 1.

 Initially, all the other nodes are associated
with 0’s.

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 0 0

a a

1

a

 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is
associated with a 1.

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 0 0

a a

1

a

 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is
associated with a 1.

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 0 0

a a

1

a

 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is
associated with a 1.

1

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 1 0

a a

1

a

 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is
associated with a 1.

0

Dumitran et al.’s algorithm

0

a

0 0 0

a b a

0 0 0

a b a

0 1 0

a a

1

a

 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is
associated with a 1.

01

Dumitran et al.’s algorithm

1

a

0 1 0

a b a

0 0 1

a b a

0 1 0

a a

1

a

 Finally, there is a square factorization of
the string iff the leftmost node is
associated with a 1.

0

Dumitran et al.’s algorithm

1

a

0 1 0

a b a

0 0 1

a b a

0 1 0

a a

1

a

 A path from the rightmost node to the
leftmost node corresponds to a square
factorization.

0

Dumitran et al.’s algorithm

1

a

0 1 0

a b a

0 0 1

a b a

0 1 0

a a

1

a

 Another path from the rightmost node to
the leftmost node corresponds to another
square factorization.

0

Dumitran et al.’s algorithm

1

a

0 1 0

a b a

0 0 1

a b a

0 1 0

a a

1

a

 Clearly, the number of edges in this DAG is
equal to the number of primitively rooted
squares in the string, which is O(n log n) .

 Hence, their algorithm takes O(n log n) time.

0

Ideas of our O(n)-time algorithm

 We accelerate Dumitran et al.’s algorithm
by a mixed use of

 runs (maximal repetitions in the string);

 bit parallelism (performing some DP
computation in a batch).

Runs

 A triple (p, b, e) of integers is said to be
a run of a string w if

 The substring w[b..e] is a repetition with the
smallest period p (i.e., 2p ≤ e−s+1), and

 The repetition is non-extensible to left nor right
with the same period p.

a a b a a b a a a a

(3, 1, 8)

(1, 1, 2) (1, 4, 5) (1, 7, 10)

Long and short period runs

 Let w be the machine word size.

 A run (p, b, e) in a string is called
 a long period run (LPR) if 2p ≥ w ;

 a short period run (SPR) if 2p < w .

E.g.) For w = 4

a a b a a b a a a a

LPR (3, 1, 8)

SPR (1, 1, 2) SPR (1, 4, 5) SPR (1, 7, 10)

Long edges

 Edges that correspond to long period runs
are called long edges.

a a b a a b a a a a

LPR (3, 1, 8)

Short edges

 Edges that correspond to short period runs
are called short edges.

a a b a a b a a a a

SPR (1, 1, 2) SPR (1, 4, 5) SPR (1, 7, 10)

How to process long edges

 We partition the nodes into blocks of
length w each.

1 1 0 0 0 0 1 0 0 1 1 1 ……… …

Processing
this block

How to process long edges

 Since the long edges that correspond to
the same LPR have the same length and
are consecutive, we can process w of them
in a batch, by performing a bit-wise OR.

1 1 0 0 0 0 1 0 0 1 1 1 ……… …1 0 0 1 1 1

※ Our algorithm does NOT create edges explicitly.

Processing
this block

Long edges corresponding
to the same LPR

bit-wise OR

How to process long edges

 Since the long edges that correspond to
the same LPR have the same length and
are consecutive, we can process w of them
in a batch, by performing a bit-wise OR.

1 1 0 1 1 1 1 0 0 1 1 1 ……… …

※ Our algorithm does NOT create edges explicitly.

Processing
this block

Long edges corresponding
to the same LPR

bit-wise OR

Time cost for long edges

 We can process at most w long edges in
a batch in O(1) time, hence we can process
all long edges in O((n log n)/w) time.

 An O(n + #LPR)-time preprocessing
allows us to perform the these operations
without constructing long edges explicitly.

 Thus we need O(n + #LPR + (n log n)/w)
total time for long edges.

How to process short edges

 Every short edge is shorter than w .

 Hence, for each node i, it is enough to
consider at most w in-coming short edges.

……
0 0 0 1 0 1 0

i i + ω

※ Our algorithm does NOT create edges explicitly.

How to process short edges

 To process these short edges in a batch,
we use a bit mask Bi indicating if each node
has a short edge to node i.

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi =

※ Our algorithm does NOT create edges explicitly.

How to process short edges

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi =

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 To process these short edges in a batch,
we use a bit mask Bi indicating if each node
has a short edge to node i.

※ Our algorithm does NOT create edges explicitly.

How to process short edges

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi =

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 If there is a 1 in the resulting bit string,
then node i gets a 1.

※ Our algorithm does NOT create edges explicitly.

How to process short edges

……
1 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi =

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 If there is a 1 in the resulting bit string,
then node i gets a 1.

※ Our algorithm does NOT create edges explicitly.

Time cost for short edges

 Given bit mask Bi, we can process all in-
coming short edges of node i in O(1) time.

 An O(n + #SPR)-time preprocessing
allows us to compute the bit mask Bi

for all nodes i.

 Overall, we need O(n + #SPR) total time
for short edges.

Main result

Given a string of length n, we can compute

a square factorization of the string in O(n) time.

Theorem

 O(n + #LPR + #SPR + (n log n)/w) time.
 #LPR + #SPR < n [Bannai et al., 2015]

 (n log n)/w = O(n) because w = W(log n).

 Hence, it takes O(n) total time.

Open questions

 Is it possible to compute a square factorization
in O(n) time without bit parallelism?

 Is it possible to compute largest/smallest
square factorizations in O(n) time?

 It is possible to compute largest/smallest
repetition factorization in O(n log n) time
[PSC 2016, accepted].

 Here each factor is a repetition of form xk x’
with k ≥ 2 and x’ being a prefix of x.

 O(n)-time algorithm exists for this?

