

Factorizing a string into squares in linear time

Yoshiaki Matsuoka, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu U.) Florin Manea (Kiel U.)

From string to squares?

In this presentation, I talk about decomposition of a *string* into *squares*.

Squares (as strings!)

■ "Our square" is a string of form xx.

Primitively rooted squares

- A square *xx* is called a *primitively rooted square* if its root *x* is primitive (i.e., $x \neq y^k$ for any string y and integer *k*).
	- ◆ aabaab : primitively rooted square abababab : not primitively rooted square

• ababaababa : primitively rooted square

Our problem

 \Box Determine whether a given string can be factorized into a sequence of squares. If the answer is yes, then compute one of such factorizations.

E.g.)

- \bullet aabaabaaaaaa \rightarrow Yes
	- ◦(aabaab, aaaaaa),
	- ◦(aabaab, aaaa, aa),
	- ◦(aa, baabaa, aa, aa), and so on.
- \rightarrow aabaabbbab \rightarrow No

Previous work

Times for computing square factorization

\blacksquare *n* is the length of the input string.

Previous work

Times for computing square factorization

 \blacksquare *n* is the length of the input string.

Our contribution

Times for computing square factorization

- **n** *n* is the length of the input string.
- □ Our results for arbitrary/largest square factorizations are valid on word RAM with word size $\omega = \Omega(\log n)$.

Our contribution

Times for computing square factorization

- **n** *n* is the length of the input string.
- □ Our results for arbitrary/largest square factorizations are valid on word RAM with word size $\omega = \Omega(\log n)$.

Simple observation

 \Box Every square is of even length.

□ Thus, if string w has a square factorization, then *w* also has a square factorization which consists *only of primitively rooted squares*.

E.g.)

aaaaaa|abababab

aa|aa|aa|abab|abab

of primitively rooted squares

 Any string of length *n* contains *O*(*n* log *n*) primitively rooted squares [Crochemore & Rytter, 1995].

 \Box The simple observation + the above lemma lead to a natural DP approach which computes a square factorization in *O*(*n* log *n*) time.

Consider the following DAG *G* for string *w*:

- \blacktriangleright There are $n+1$ nodes.
- \blacklozenge There is a directed edge $(e+1, b)$ in $G \Leftrightarrow$ Substring *w*[*b*..*e*] is a primitively rooted square.

- Consider the following DAG *G* for string *w*:
	- \blacktriangleright There are $n+1$ nodes.
	- \blacklozenge There is a directed edge $(e+1, b)$ in $G \Leftrightarrow$ Substring *w*[*b*..*e*] is a primitively rooted square.

■ DAG G has a path from the rightmost node to the leftmost node. \iff There is a square factorization of w.

 \Box The rightmost node is associated with a 1.

 \Box Initially, all the other nodes are associated with O's.

 \Box We process each node from right to left.

 \Box We process each node from right to left.

 \Box We process each node from right to left.

 \Box We process each node from right to left.

 \Box We process each node from right to left.

 \Box Finally, there is a square factorization of the string iff the leftmost node is associated with a 1.

 \Box A path from the rightmost node to the leftmost node corresponds to a square factorization.

 \Box Another path from the rightmost node to the leftmost node corresponds to another square factorization.

- \Box Clearly, the number of edges in this DAG is equal to the number of primitively rooted squares in the string, which is $O(n \log n)$.
- \Box Hence, their algorithm takes $O(n \log n)$ time.

Ideas of our *O*(*n*)**-time algorithm**

- We accelerate Dumitran et al.'s algorithm by a mixed use of
	- ◆ *runs* (maximal repetitions in the string);
	- ◆ *bit parallelism* (performing some DP computation in a batch).

Runs

- A triple (*p*, *b*, *e*) of integers is said to be a *run* of a string *w* if
	- ◆ The substring $w[b..e]$ is a repetition with the smallest period *p* (i.e., 2*p* ≤ *e*−*s*+1), and
	- ◆ The repetition is non-extensible to left nor right with the same period *p*.

Long and short period runs

 \Box Let ω be the machine word size.

- A run (*p*, *b*, *e*) in a string is called
	- \bullet a *long period run (LPR)* if $2p \ge \omega$;
	- a *short period run* (*SPR*) if $2p < \omega$.

Long edges

 \Box Edges that correspond to long period runs are called *long edges.*

LPR (3, 1, 8)

Short edges

 \Box Edges that correspond to short period runs are called *short edges.*

How to process long edges

 \Box We partition the nodes into blocks of length ω each.

How to process long edges

 \Box Since the long edges that correspond to the same LPR have the same length and are consecutive, we can process ω of them in a batch, by performing a bit-wise OR.

How to process long edges

 \Box Since the long edges that correspond to the same LPR have the same length and are consecutive, we can process ω of them in a batch, by performing a bit-wise OR.

Time cost for long edges

- \Box We can process at most ω long edges in a batch in $O(1)$ time, hence we can process all long edges in $O((n \log n)/\omega)$ time.
- \Box An $O(n + \#LPR)$ -time preprocessing allows us to perform the these operations without constructing long edges explicitly.
- \Box Thus we need $O(n + \#LPR + (n \log n)/\omega)$ total time for long edges.

- **Exery short edge is shorter than** ω **.**
- Hence, for each node *i*, it is enough to consider at most ω in-coming short edges.

 \Box To process these short edges in a batch, we use a bit mask B_i indicating if each node has a short edge to node *i*.

 \Box To process these short edges in a batch, we use a bit mask B_i indicating if each node has a short edge to node *i*.

 \Box If there is a 1 in the resulting bit string, then node *i* gets a 1.

If there is a 1 in the resulting bit string, then node *i* gets a 1.

Time cost for short edges

- Given bit mask B_i , we can process all incoming short edges of node *i* in *O*(1) time.
- \Box An $O(n + \#SPR)$ -time preprocessing allows us to compute the bit mask *Bⁱ* for all nodes *i*.
- \Box Overall, we need $O(n + \#SPR)$ total time for short edges.

Main result

Theorem

Given a string of length *n*, we can compute a square factorization of the string in $O(n)$ time.

 $O(n + \text{\#LPR} + \text{\#SPR} + (n \log n)/\omega)$ time. ◆ #LPR + #SPR < *n* [Bannai et al., 2015] • $(n \log n)/\omega = O(n)$ because $\omega = \Omega(\log n)$. \Box Hence, it takes $O(n)$ total time.

Open questions

- \Box Is it possible to compute a square factorization in *O*(*n*) time *without bit parallelism*?
- \Box Is it possible to compute largest/smallest square factorizations in *O*(*n*) time?
- \Box It is possible to compute largest/smallest *repetition factorization* in $O(n \log n)$ time [PSC 2016, accepted].
	- \blacklozenge Here each factor is a *repetition* of form $x^k x^2$ with $k \geq 2$ and x' being a prefix of x.
	- \rightarrow $O(n)$ -time algorithm exists for this?