

Factorizing a string into squares in linear time

Yoshiaki Matsuoka, <u>Shunsuke Inenaga</u>, Hideo Bannai, Masayuki Takeda (Kyushu U.) Florin Manea (Kiel U.)

From string to squares?

In this presentation, I talk about decomposition of a *string* into *squares*.

Squares (as strings!)

• "Our square" is a string of form xx.

Primitively rooted squares

- A square xx is called a *primitively rooted* square if its root x is primitive (i.e., $x \neq y^k$ for any string y and integer k).
 - aabaab : primitively rooted square
 abababab : not primitively rooted square

• ababaababa : primitively rooted square

Our problem

Determine whether a given string can be factorized into a sequence of squares. If the answer is yes, then compute one of such factorizations.

E.g.)

- ullet aabaabaaaaaa o Yes
 - (aabaab, aaaaaa),
 - (aabaab, aaaa, aa),
 - (aa, baabaa, aa, aa), and so on.
- ♦ aabaabbbab → No

Previous work

Times for computing square factorization

	[Dumitran et al., 2015]
A sq. factor.	$O(n \log n)$

\square *n* is the length of the input string.

Previous work

Times for computing square factorization

	[Dumitran et al., 2015]
A sq. factor.	$O(n \log n)$
Largest sq. factor.	$O(n \log n)$

 \square *n* is the length of the input string.

Our contribution

Times for computing square factorization

	[Dumitran et al., 2015]	Our solutions
A sq. factor.	$O(n \log n)$	O(n)
Largest sq. factor.	$O(n \log n)$	$O(n + (n \log^2 n) / \omega)$
Smallest sq. factor.	_	$O(n \log n)$

- \square *n* is the length of the input string.
- Our results for arbitrary/largest square factorizations are valid on word RAM with word size $\omega = \Omega(\log n)$.

Our contribution

Times for computing square factorization

	[Dumitran et al., 2015]	Our solutions
A sq. factor.	$O(n \log n)$	O(n)
Largest sq. factor.	$O(n \log n)$	$O(n + (n \log^2 n) / \omega)$
Smallest sq. factor.		$O(n \log n)$

- \square *n* is the length of the input string.
- Our results for arbitrary/largest square factorizations are valid on word RAM with word size $\omega = \Omega(\log n)$.

Simple observation

Every square is of even length.

Thus, if string w has a square factorization, then w also has a square factorization which consists only of primitively rooted squares.

E.g.)

- aaaaaa abababab
- 🔶 aa 🛛 aa 🖉 abab 🖉 abab

of primitively rooted squares

Any string of length *n* contains
 O(n log n) primitively rooted squares
 [Crochemore & Rytter, 1995].

The simple observation + the above lemma lead to a natural DP approach which computes a square factorization in O(n log n) time.

□ Consider the following DAG *G* for string *w*:

- There are n+1 nodes.
- There is a directed edge (e+1, b) in $G. \Leftrightarrow$ Substring w[b..e] is a primitively rooted square.

□ Consider the following DAG *G* for string *w*:

- There are n+1 nodes.
- There is a directed edge (e+1, b) in $G. \Leftrightarrow$ Substring w[b..e] is a primitively rooted square.

 DAG G has a path from the rightmost node to the leftmost node.
 ⇔ There is a square factorization of w.

□ The rightmost node is associated with a 1.

Initially, all the other nodes are associated with 0's.

We process each node from right to left.

Finally, there is a square factorization of the string iff the leftmost node is associated with a 1.

A path from the rightmost node to the leftmost node corresponds to a square factorization.

Another path from the rightmost node to the leftmost node corresponds to another square factorization.

- Clearly, the number of edges in this DAG is equal to the number of primitively rooted squares in the string, which is O(n log n).
- □ Hence, their algorithm takes $O(n \log n)$ time.

Ideas of our O(n)-time algorithm

- We accelerate Dumitran et al.'s algorithm by a mixed use of
 - runs (maximal repetitions in the string);
 - bit parallelism (performing some DP computation in a batch).

Runs

- A triple (p, b, e) of integers is said to be a run of a string w if
 - ◆ The substring w[b..e] is a repetition with the smallest period p (i.e., $2p \le e-s+1$), and
 - The repetition is non-extensible to left nor right with the same period p.

Long and short period runs

 \square Let ω be the machine word size.

- \square A run (p, b, e) in a string is called
 - a long period run (LPR) if $2p \ge \omega$; • a short period run (SPR) if $2p < \omega$.

Long edges

Edges that correspond to long period runs are called *long edges*.

LPR (3, 1, 8)

Short edges

Edges that correspond to short period runs are called *short edges*.

How to process long edges

■ We partition the nodes into blocks of length *w* each.

How to process long edges

Since the long edges that correspond to the same LPR have the same length and are consecutive, we can process *w* of them in a batch, by performing a bit-wise OR.

How to process long edges

Since the long edges that correspond to the same LPR have the same length and are consecutive, we can process *w* of them in a batch, by performing a bit-wise OR.

Time cost for long edges

- □ We can process at most ω long edges in a batch in O(1) time, hence we can process all long edges in $O((n \log n)/\omega)$ time.
- An O(n + #LPR)-time preprocessing allows us to perform the these operations without constructing long edges explicitly.
- □ Thus we need $O(n + \#LPR + (n \log n)/\omega)$ total time for long edges.

- \square Every short edge is shorter than ω .
- □ Hence, for each node i, it is enough to consider at most ω in-coming short edges.

To process these short edges in a batch, we use a bit mask B_i indicating if each node has a short edge to node i.

To process these short edges in a batch, we use a bit mask B_i indicating if each node has a short edge to node i.

If there is a 1 in the resulting bit string, then node *i* gets a 1.

If there is a 1 in the resulting bit string, then node *i* gets a 1.

Time cost for short edges

- Given bit mask B_i , we can process all incoming short edges of node *i* in O(1) time.
- □ An O(n + #SPR)-time preprocessing allows us to compute the bit mask B_i for all nodes *i*.
- Overall, we need O(n + #SPR) total time for short edges.

Main result

Theorem

Given a string of length n, we can compute a square factorization of the string in O(n) time.

O(n + #LPR + #SPR + (n log n)/ω) time.
#LPR + #SPR < n [Bannai et al., 2015]
(n log n)/ω = O(n) because ω = Ω(log n).
Hence, it takes O(n) total time.

Open questions

- □ Is it possible to compute a square factorization in O(n) time without bit parallelism?
- □ Is it possible to compute largest/smallest square factorizations in O(n) time?
- It is possible to compute largest/smallest repetition factorization in O(n log n) time [PSC 2016, accepted].
 - Here each factor is a *repetition* of form $x^k x'$ with $k \ge 2$ and x' being a prefix of x.
 - \bullet O(n)-time algorithm exists for this?