Factorizing a string
into squares in linear time

Yoshiaki Matsuoka, Shunsuke Inenaga,
Hideo Bannai, Masayuki Takeda (Kyushu U.)

Florin Manea (Kiel U.)

From string to squares?

0 In this presentation, | talk about
decomposition of a string into squares.

)

A 4

Squares (as strings!)
“Our square” is a string of form XX.

aabaab
A/

abababab
A

ababaababa
"

Primitively rooted squares

A square XX is called a primitively rooted
square if its root X is primitive

(i.e., X # yKfor any string y and integer k).

aabaab : primitively rooted square
A/

Y Y YN\

abababab : not primitively rooted square
AN

ababaababa : primitively rooted square
) .

Our problem

Determine whether a given string can be
factorized into a sequence of squares.

If the answer is yes, then compute one of
such factorizations.

E.g.)
aabaabaaaaaa — Yes
> (aabaab, aaaaaa),
> (aabaab, aaaa, aa),

°(aa, baabaa, aa, aa), and so on.

aabaabbbab = No

Previous work

Times for computing square factorization

[Dumitran et al., 2015]

A sq. factor. O(n log n)

nis the length of the input string.

Previous work

Times for computing square factorization
[Dumitran et al., 2015]

A sq. factor. O(n log n)
Largest sq.
factor. O(nlog n)

nis the length of the input string.

Our contribution

Times for computing square factorization

[Dumitran et al., 2015] Our solutions
A sq. factor. O(n log n) O(n)
Largest sq. ;
£ ctor O(n log n) O(n + (nlog® n) / w)
Smallest sq. _
factor. Anlieg m,

nis the length of the input string.

Our results for arbitrary/largest square factorizations
are valid on word RAM with word size w = Q(log n).

Our contribution

Times for computing square factorization

[Dumitran et al., 2015] Our solutions
A sq. factor. O(n log n) O(n)
Largest sq. ;
£ ctor O(n log n) O(n + (nlog® n) / w)
Smallest sq. _
factor. Anlieg m,

nis the length of the input string.

Our results for arbitrary/largest square factorizations
are valid on word RAM with word size w = Q(log n).

Simple observation

Every square is of even length.

Thus, if string W has a square factorization,
then W also has a square factorization which
consists only of primitively rooted squares.

E.g.)
aaaaaal|abababab

aa|aalaal|abab|abab

of primitively rooted squares

Any string of length n contains
O(n log n) primitively rooted squares
[Crochemore & Rytter, 1995].

The simple observation + the above lemma
lead to a natural DP approach which computes
a square factorization in O(n log n) time.

Dumitran et al.’s algorithm

Consider the following DAG G for string w:
There are n+1 nodes.

There is a directed edge (e+1,b) in G. &
Substring w[b..e] is a primitively rooted square.

d d d d

L O
\\\ /

Dumitran et al.’s algorithm

Consider the following DAG G for string w:
There are n+1 nodes.

There is a directed edge (e+1,b) in G. &
Substring w[b..e] is a primitively rooted square.

(R O e
N

]
/

Dumitran et al.’s algorithm

DAG G has a path from the rightmost node
to the leftmost node.
< There is a square factorization of w.

d

R L0 RS

/

Dumitran et al.’s algorithm

AOOOODOOO®® @
AR 2P R AR
NG Y, /

N

The rightmost node is associated with a 1.

Initially, all the other nodes are associated
with O’s.

Dumitran et al.’s algorithm

DOOODOOO®OO®® @
S) G Wl A § G S

<\ /]
_

We process each node from right to left.

Each node v gets a 1 iff there is an in-
coming edge to vV from a node that is
associated with a 1.

Dumitran et al.’s algorithm

DOOODOOO®OO®® @
S) G Wl A § G S

<\ /]
_

We process each node from right to left.

Each node v gets a 1 iff there is an in-
coming edge to vV from a node that is
associated with a 1.

Dumitran et al.’s algorithm

PODDOOODO®® O
L [UA
pu—- Y, /

We process each node from right to left.

Each node v gets a 1 iff there is an in-
coming edge to vV from a node that is
associated with a 1.

Dumitran et al.’s algorithm

@a@{)a@\) @a@a a@a@a@a@

\ y \ SD @ \ y
S A

N

We process each node from right to left.

Each node v gets a 1 iff there is an in-
coming edge to vV from a node that is
associated with a 1.

Dumitran et al.’s algorithm

@,%\a@aJ@\)b@%a@agbbj@a@D\a %a@aJ@
\\ \\ % |

We process each node from right to left.

Each node v gets a 1 iff there is an in-
coming edge to vV from a node that is
associated with a 1.

Dumitran et al.’s algorithm

DODOOODO D@ @
S U
<\ 7 /

N
Finally, there is a square factorization of

the string iff the leftmost node is
associated with a 1.

Dumitran et al.’s algorithm

D OODOOODOD® O
—J

(WA

A path from the rightmost node to the
leftmost node corresponds to a square
factorization.

Dumitran et al.’s algorithm

@a@a@b@a@a@b@a@a@a

@
\

Another path from the rightmost node to
the leftmost node corresponds to another
square factorization.

Dumitran et al.’s algorithm

DODOODDEOD® @
2P R AR
pu—- Y, /

Clearly, the number of edges in this DAG is
equal to the number of primitively rooted
squares in the string, which is O(n log n) .

Hence, their algorithm takes O(n log n) time.

Ideas of our O(n)-time algorithm

We accelerate Dumitran et al.’s algorithm
by a mixed use of

runs (maximal repetitions in the string);

bit parallelism (performing some DP
computation in a batch).

Runs

A triple (p, b, e) of integers is said to be
a run of a string w if

The substring w[b..e] is a repetition with the
smallest period p (i.e., 2p < e—s+1), and

The repetition is non-extensible to left nor right
with the same period p.

(3,1, 8)
/a a b\C a M a a

N/ A AN AN

(1,1, 2) (1,4,5) (1,7,10)

Long and short period runs

Let @ be the machine word size.

Arun (p, b, e) in a string is called
a long period run (LPR) if 2p = w ;
a short period run (SPR) if 2p< w .

E.g.) Forow=4 LPR (3, 1, 8)
/a d M d M d d d

N _N_/ \NA_N_N_
SPR(1,1,2) SPR(L,4,5) SPR (1, 7, 10)

Long edges

Edges that correspond to long period runs
are called long edges.

LPR (3, 1, 8)

Short edges

Edges that correspond to short period runs
are called short edges.

SPR(1,1,2) SPR(1,4,5) SPR (1, 7, 10)

T e T) Y Y Y

LR QOP AP
\ N
N\

o

How to process long edges

We partition the nodes into blocks of
length @ each.

Processing
this block

""" OCOOOODOVDODO||OODOOO|| OO -

How to process long edges

Since the long edges that correspond to
the same LPR have the same length and

are consecutive, we can process @ of them
in a batch, by performing a bit-wise OR.

Long edges corresponding
Processing [N tothe same LPR

this block [[— I
N (iiTeminm
------ 00 @00 Oohooa @0 -

bit-wise OR

2& Our algorithm does NOT create edges explicitly.

How to process long edges

Since the long edges that correspond to
the same LPR have the same length and

are consecutive, we can process @ of them
in a batch, by performing a bit-wise OR.

Long edges corresponding
Processing [N tothe same LPR

this block [[—

------ @>@5d§@5 @(@(QQ®@@L \LL@---

bit-wise OR

2& Our algorithm does NOT create edges explicitly.

Time cost for long edges

We can process at most w long edges in
a batch in O(1) time, hence we can process
all long edges in O((n log n)/w) time.

An O(n + #LPR)-time preprocessing
allows us to perform the these operations
without constructing long edges explicitly.

Thus we need O(n + #LPR + (n log n)/w)
total time for long edges.

How to process short edges

Every short edge is shorter than .

Hence, for each node |, it is enough to
consider at most w in-coming short edges.

| + w

'“QQ&L@}D@@J@/@@

2& Our algorithm does NOT create edges explicitly.

How to process short edges
To process these short edges in a batch,

we use a bit mask B; indicating it each node
has a short edge to node I.

'“QQ&L@}D@@J@/@@

B=0 1 0 0 1 1

2& Our algorithm does NOT create edges explicitly.

How to process short edges

To process these short edges in a batch,

we use a bit mask B; indicating it each node
has a short edge to node I.

| + w

@ 0 (1) (o) (1) (0)f() -

J

B=0 1 0 0 1 1

bitwise AND 0 0 0 0O 1 0

2& Our algorithm does NOT create edges explicitly.

How to process short edges

If there is a 1 in the resulting bit string,
then node I gets a 1.

@ 0 (1) (o) (1) (o) Q

J

B=0 1 0 0 1 1

bitwise AND 0 0 0 O 0

2& Our algorithm does NOT create edges explicitly.

How to process short edges

If there is a 1 in the resulting bit string,
then node I gets a 1.

bitwise AND 0 0 0 O 0

#¢ Our algorithm does NOT create edges explicitly.

Time cost for short edges

Given bit mask B;, we can process all in-
coming short edges of node 1in O(1) time.

An O(n + #SPR)-time preprocessing
allows us to compute the bit mask B;
for all nodes 1.

Overall, we need O(n + #SPR) total time
for short edges.

Main result

Theorem |

Given a string of length n, we can compute
a square factorization of the string in O(n) time.

O(n + #LPR + #SPR + (n log n)/w) time.
#LPR + #SPR < n [Bannai et al., 2015]
(n log n)/w = O(n) because o = Q(log n).

Hence, it takes O(n) total time.

Open questions

s it possible to compute a square factorization
in O(n) time without bit parallelism?

s it possible to compute largest/smallest
square factorizations in O(n) time?

It is possible to compute largest/smallest
repetition factorization in O(n log n) time
[PSC 2016, accepted].

Here each factor is a repetition of form xkx’
with k = 2 and X’ being a prefix of x.

O(n)-time algorithm exists for this?

