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From string to squares?

 In this presentation, I talk about 
decomposition of a string into squares.



Squares (as strings!)

 “Our square” is a string of form xx.

 aabaab

 abababab

 ababaababa



Primitively rooted squares

 A square xx is called a primitively rooted 
square if its root x is primitive 
(i.e., x ≠ yk for any string y and integer k).

 aabaab : primitively rooted square

 abababab : not primitively rooted square

 ababaababa : primitively rooted square



Our problem

 Determine whether a given string can be 
factorized into a sequence of squares. 
If the answer is yes, then compute one of 
such factorizations.

E.g.)
 aabaabaaaaaa →  Yes

◦ (aabaab, aaaaaa),

◦ (aabaab, aaaa, aa),

◦ (aa, baabaa, aa, aa), and so on.

 aabaabbbab →  No
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Previous work

 n is the length of the input string.
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[Dumitran et al., 2015]

A sq. factor. O(n log n)

Times for computing square factorization
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Our contribution

 n is the length of the input string.

 Our results for arbitrary/largest square factorizations 
are valid on word RAM with word size ω = Ω(log n).
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Simple observation

 Every square is of even length.

 Thus, if string w has a square factorization, 
then w also has a square factorization which 
consists only of primitively rooted squares.

E.g.)

 aaaaaa|abababab

 aa|aa|aa|abab|abab



# of primitively rooted squares

 Any string of length n contains 
O(n log n) primitively rooted squares 
[Crochemore & Rytter, 1995].

 The simple observation + the above lemma 
lead to a natural DP approach which computes 
a square factorization in O(n log n) time.



Dumitran et al.’s algorithm
 Consider the following DAG G for string w:
 There are n+1 nodes.

 There is a directed edge (e+1, b) in G.⟺
Substring w[b..e] is a primitively rooted square.

a a b a a b a a a a
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Dumitran et al.’s algorithm

 DAG G has a path from the rightmost node 
to the leftmost node. 
⟺ There is a square factorization of w.

a a b a a b a a a a



Dumitran et al.’s algorithm
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0 0 0

a b a

0 0 0

a b a

0 0 0

a a

1

a

 The rightmost node is associated with a 1.

 Initially, all the other nodes are associated 
with 0’s.



Dumitran et al.’s algorithm
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 We process each node from right to left.

 Each node v gets a 1 iff there is an in-
coming edge to v from a node that is 
associated with a 1.
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Dumitran et al.’s algorithm
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 Finally, there is a square factorization of 
the string iff the leftmost node is 
associated with a 1.
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Dumitran et al.’s algorithm
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 A path from the rightmost node to the 
leftmost node corresponds to a square 
factorization.
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Dumitran et al.’s algorithm
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 Another path from the rightmost node to 
the leftmost node corresponds to another 
square factorization.
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Dumitran et al.’s algorithm
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 Clearly, the number of edges in this DAG is 
equal to the number of primitively rooted 
squares in the string, which is O(n log n) .

 Hence, their algorithm takes O(n log n) time.
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Ideas of our O(n)-time algorithm

 We accelerate Dumitran et al.’s algorithm 
by a mixed use of

 runs (maximal repetitions in the string);

 bit parallelism (performing some DP 
computation in a batch).



Runs

 A triple (p, b, e) of integers is said to be 
a run of a string w if

 The substring w[b..e] is a repetition with the 
smallest period p (i.e., 2p ≤ e−s+1), and

 The repetition is non-extensible to left nor right 
with the same period p.

a a b a a b a a a a

(3, 1, 8)

(1, 1, 2) (1, 4, 5) (1, 7, 10)



Long and short period runs

 Let w be the machine word size. 

 A run (p, b, e) in a string is called
 a long period run (LPR) if 2p ≥ w ;

 a short period run (SPR) if 2p < w .

E.g.) For w = 4

a a b a a b a a a a

LPR (3, 1, 8)

SPR (1, 1, 2) SPR (1, 4, 5) SPR (1, 7, 10)



Long edges

 Edges that correspond to long period runs 
are called long edges.

a a b a a b a a a a

LPR (3, 1, 8)



Short edges

 Edges that correspond to short period runs 
are called short edges.

a a b a a b a a a a

SPR (1, 1, 2) SPR (1, 4, 5) SPR (1, 7, 10)



How to process long edges

 We partition the nodes into blocks of 
length w each.

1 1 0 0 0 0 1 0 0 1 1 1 ……… …

Processing
this block



How to process long edges

 Since the long edges that correspond to 
the same LPR have the same length and 
are consecutive, we can process w of them 
in a batch, by performing a bit-wise OR.

1 1 0 0 0 0 1 0 0 1 1 1 ……… …1 0 0 1 1 1

※ Our algorithm does NOT create edges explicitly.

Processing
this block

Long edges corresponding 
to the same LPR

bit-wise OR 
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Time cost for long edges

 We can process at most w long edges in 
a batch in O(1) time, hence we can process 
all long edges in O((n log n)/w) time.

 An O(n + #LPR)-time preprocessing 
allows us to perform the these operations 
without constructing long edges explicitly.

 Thus we need O(n + #LPR + (n log n)/w)
total time for long edges.



How to process short edges

 Every short edge is shorter than w .

 Hence, for each node i, it is enough to 
consider at most w in-coming short edges.

……
0 0 0 1 0 1 0

i i + ω

※ Our algorithm does NOT create edges explicitly.



How to process short edges

 To process these short edges in a batch, 
we use a bit mask Bi indicating if each node 
has a short edge to node i.

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi = 

※ Our algorithm does NOT create edges explicitly.



How to process short edges

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi = 

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 To process these short edges in a batch, 
we use a bit mask Bi indicating if each node 
has a short edge to node i.

※ Our algorithm does NOT create edges explicitly.



How to process short edges

……
0 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi = 

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 If there is a 1 in the resulting bit string,
then node i gets a 1.

※ Our algorithm does NOT create edges explicitly.



How to process short edges

……
1 0 0 1 0 1 0

i i + ω

0 1 0 0 1 1Bi = 

bitwise AND 0 0 0 0 1 0

bitwise AND
=

 If there is a 1 in the resulting bit string,
then node i gets a 1.

※ Our algorithm does NOT create edges explicitly.



Time cost for short edges

 Given bit mask Bi, we can process all in-
coming short edges of node i in O(1) time.

 An O(n + #SPR)-time preprocessing 
allows us to compute the bit mask Bi

for all nodes i.

 Overall, we need O(n + #SPR) total time 
for short edges.



Main result

Given a string of length n, we can compute 

a square factorization of the string in O(n) time.

Theorem 

 O(n + #LPR + #SPR + (n log n)/w) time.
 #LPR + #SPR < n [Bannai et al., 2015]

 (n log n)/w = O(n) because w = W(log n).

 Hence, it takes O(n) total time.



Open questions

 Is it possible to compute a square factorization 
in O(n) time without bit parallelism?

 Is it possible to compute largest/smallest 
square factorizations in O(n) time?

 It is possible to compute largest/smallest 
repetition factorization in O(n log n) time 
[PSC 2016, accepted].

 Here each factor is a repetition of form xk x’
with k ≥ 2 and x’ being a prefix of x.

 O(n)-time algorithm exists for this?


