
Computing longest common
square subsequences

Takafumi Inoue1, Shunsuke Inenaga1,
Heikki Hyyrö2, Hideo Bannai1, Masayuki Takeda1

1Kyushu University
2University of Tampere

CPM 2018

Input: two strings A and B of length n each
Output: (length of) LCS of A and B

 LCS is a classical measure for string comparison.
 Standard DP solves this in O(n2) time.

LCS Problem

Longest Common Subsequence (LCS)

E.g.) A = aacaabad
vs

B = cacbcbbd

Input: two strings A and B of length n each
Output: (length of) LCS of A and B

 LCS is a classical measure for string comparison.
 Standard DP solves this in O(n2) time.

LCS Problem

Longest Common Subsequence (LCS)

E.g.) A = aacaabad
vs

B = cacbcbbd

 Variants of LCS problem where the solution
must satisfy pre-determined constraints.

 Attempt to reflect user’s a-priori knowledge
to the solutions.

 STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS
LCS of A and B that includes (excludes)
given pattern P as a substring (subsequence).
(See [Kuboi et al, CPM 2017] and references therein)

 Longest common palindromic subsequence (LCPS)
[Chowdhury et al. 2014, Inenaga & Hyyrö 2018, Bae & Lee 2018]

Constrained/Restricted LCS

Longest Common Square Subseq. (LCSS)

 This work considers new variant of LCS,
called LCSS, where the solution has to be square.

 Square (a.k.a. tandem repeat) is string of form xx.

 aabaab

 abababab

 abcbbabcbb

Input: two strings A and B of length n each
Output: (length of) LCSS of A and B

LCSS Problem

Longest Common Square Subseq. (LCSS)

E.g.)
A = monsterstrike

B = fourstringmasters
vs

Input: two strings A and B of length n each
Output: (length of) LCSS of A and B

LCSS Problem

Longest Common Square Subseq. (LCSS)

E.g.)
A = monsterstrike

B = fourstringmasters
vs

Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points,

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.

Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

 M is the number of matching points,
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.

A

B

Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

A[3] = B[5]

M = # of ●’s
M = O(n2)

 M is the number of matching points,
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.

A

B

Matching Points [Cont.]

e

i ● ●

k

o

o

c ●

b i s c u i t

 But M can be much smaller than O(n2)
in many cases

Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points,

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.

M is at most O(n2)
and can be much smaller

Matching Rectangles

 Tuple r = (i, j, k, l) is called matching rectangle
if A[i] = A[j] = B[k] = B[l].

0

i

j

k l

n+1

n+1

A

B

c c

c c

i j

k l

r

Partial Order of Matching Rectangles
 For matching rectangles r = (i, j, k, l) and r’ = (i’, j’, k’, l’),

r < r’ iff i < i’, j < j’, k < k’, and l < l’.
Namely, r < r’ iff r lies strictly more left-lower than r’.

i

j

k l

r

i’

j’

k’ l’
i

j

k l

ri’

j’

k’ l’

r’

r’

Observation
 Each common square subsequence has

corresponding sequence of matching rectangles.

… a … b … c … a … b … c …

c…

b…

a…
…

c…

b…

a…

A

B

CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)

CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)

is strictly more
left-lower than

LCSS → Longest sequence of DOMRs

18

 Computing LCSS reduces to finding longest
sequence of diagonally overlapping matching
rectangles (DOMRs).

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’

a a

a

a

ra

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’
rb

b b

b

b

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’

c c

c

c

rc

Basic Algorithm [Cont.]
 Let R be # of matching rectangles (R = O(M 2)).
 We compute Dr[r’] for R 2 = O(M 4) pairs of

matching rectangles (r, r’) .
 We test σ characters to extend the current sequence

of DOMRs w.r.t. Dr[r’].
 Each extension can be obtained in O(1) time

after suitable preprocessing.

 O(σR2 + n) = O(σM 4+ n) time… Slow?

O(σΜR + n) = O(σM 3+ n) time

Can be improved to

On Start Matching Rectangle
 Always better to use a start matching rectangle that

has the “smallest” left-lower corner for each character.

a a

a

a
a

a a a

a

a
a

a

Can always use this fixed point for a

Try each matching point m for a

Improved Algorithm

 We compute Dm[r’] for MR = O(M 3) pairs of
matching points and matching rectangles (m, r’) .

 We test σ characters to extend the current sequence
of DOMRs.

 Each extension can be obtained in O(1) time
after suitable preprocessing.

 O(σMR + n) = O(σM 3+ n) time!

Improved Algorithm [Cont.]

The LCSS problem can be solved in
O(σMR+ n) = O(σM 3+ n) time with
O(M 2+ n) space.

Theorem

The expected running time of this algorithm
is O(n6/σ3).

Corollary

 For random text M ≈ n2/σ and R ≈ M 2/σ ≈ n4/σ3.

Hardness of LCSS

LCSS for two strings is at least as hard as
LCS for four strings.

Lemma

4-LCS 2-LCSS

|A| = |B| = |C| = |D| = n

A’ $n+1 $n+1

B’ $n+1 $n+1

A

B

C

D

Computing LCS for A, B, C, D of length n each
reduces to computing LCSS of A’, B’ of length 4n+2 each.

Conditional Lower Bound for LCSS

There is no algorithm which solves the LCSS
problem for two strings in O(n4-ε) time with
constant ε > 0, unless SETH fails.

Corollary

There is no algorithm which solves the LCS
problem for k strings in O(nk-ε) time with
constant ε > 0, unless the strong exponential time
hypothesis (SETH) fails.

Lemma [Abboud et al. 2015]

Conclusions & Open Problem

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds for LCSS M = O(n2)

Conditional Lower bound for LCSS

O(n4-ε)-time solution (with constant ε > 0) is unlikely to exist

How can we close this (almost) quadratic gap?

Strong Exponential Time Hypothesis (SETH)

 Let sk be the greatest lower bound (infimum) of
real numbers δ such that k-SAT can be solved in
O(2δn) time, where n = # of variables.

 The exponential time hypothesis (ETH) is
a conjecture that sk > 0 for any k ≥ 3.

 Clearly s3 ≤ s4 ≤ s5 …
The strong ETH (SETH) is a conjecture that
the limit of sk when k approaches ∞ is 1.

	Computing longest common square subsequences
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Constrained/Restricted LCS
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Our Results
	Matching Points
	Matching Points
	Matching Points [Cont.]
	Our Results
	Matching Rectangles
	Partial Order of Matching Rectangles
	Observation
	CSS and matching rectangle
	CSS and matching rectangle
	LCSS → Longest sequence of DOMRs
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm [Cont.]
	On Start Matching Rectangle
	Improved Algorithm
	Improved Algorithm [Cont.]
	Hardness of LCSS
	4-LCS 2-LCSS
	Conditional Lower Bound for LCSS
	Conclusions & Open Problem
	Strong Exponential Time Hypothesis (SETH)

