CPM 2018

Computing longest common square subsequences

Takafumi Inoue¹, Shunsuke Inenaga¹, Heikki Hyyrö², Hideo Bannai¹, Masayuki Takeda¹ ¹Kyushu University 2University of Tampere

Longest Common Subsequence (LCS)

LCS Problem

Input: two strings *A* and *B* of length *n* each Output: (length of) LCS of *A* and *B*

- LCS is a classical measure for string comparison.
- Standard DP solves this in $O(n^2)$ time.

E.g.)
$$
A =
$$
 aacaabad
vs
 $B =$ cacbcbbd

Longest Common Subsequence (LCS)

LCS Problem

Input: two strings *A* and *B* of length *n* each Output: (length of) LCS of *A* and *B*

- LCS is a classical measure for string comparison.
- Standard DP solves this in $O(n^2)$ time.

E.g.)
$$
A = \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}
$$

vs
 $B = \text{c} \cdot \mathbf{a} \cdot \mathbf{c} \cdot \mathbf{b} \cdot \mathbf{c}$

Constrained/Restricted LCS

- \Box Variants of LCS problem where the solution must satisfy pre-determined constraints.
- Attempt to reflect user's a-priori knowledge to the solutions.
	- ▶ STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS LCS of *A* and *B* that includes (excludes) given pattern *P* as a substring (subsequence). (See [Kuboi et al, CPM 2017] and references therein)
	- Longest common *palindromic* subsequence (LCPS) [Chowdhury et al. 2014, Inenaga & Hyyrö 2018, Bae & Lee 2018]

Longest Common Square Subseq. (LCSS)

- \Box This work considers new variant of LCS, called LCSS, where the solution has to be *square*.
- Square (a.k.a. tandem repeat) is string of form *xx*.
	- aabaab abababab \triangleright abcbbabcbb

Longest Common Square Subseq. (LCSS)

LCSS Problem

Input: two strings *A* and *B* of length *n* each Output: (length of) LCSS of *A* and *B*

E.g.)

A = monsterstrike

vs

B = fourstringmasters

Longest Common Square Subseq. (LCSS)

LCSS Problem

Input: two strings *A* and *B* of length *n* each Output: (length of) LCSS of *A* and *B*

E.g.)

A = mon**st**e**rstr**ike

vs

B = four**str**ingma**st**e**r**s

Our Results

Upper bounds (algorithms) for LCSS

- \Box *n* is the length of the input strings.
- \Box *M* is the number of matching points, i.e., $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$
- \Box σ is the alphabet size.

Matching Points

\Box *M* is the number of matching points, i.e., $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$

Matching Points

\Box *M* is the number of matching points, i.e., $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$

Matching Points [Cont.]

 \Box But *M* can be much smaller than $O(n^2)$ in many cases

Our Results

Upper bounds (algorithms) for LCSS

- \Box *M* is the number of matching points, i.e., $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$
- \Box σ is the alphabet size.

Matching Rectangles

 \blacksquare Tuple $r = (i, j, k, l)$ is called *matching rectangle* $i \in A[i] = A[j] = B[k] = B[l].$

Partial Order of Matching Rectangles

 \Box For matching rectangles $r = (i, j, k, l)$ and $r' = (i', j', k', l'),$ $r < r'$ iff $i < i'$, $j < j'$, $k < k'$, and $l < l'$.

Namely, $r \le r'$ iff *r* lies strictly more left-lower than r' .

Observation

 \Box Each common square subsequence has corresponding sequence of matching rectangles.

CSS and matching rectangle

 \Box Sequence r_1, \ldots, r_s of *s* matching rectangles represents CSS of length *s* iff

$$
\sum_{s} \frac{r_1 < r_2 \dots < r_s}{i_s < j_1, k_s < l_1} \text{ where } r_1 = (i_1, j_1, k_1, l_1), r_s = (i_s, j_s, k_s, l_s)
$$

CSS and matching rectangle

 \Box Sequence r_1, \ldots, r_s of *s* matching rectangles represents CSS of length *s* iff

$$
\sum_{s} \frac{r_1 < r_2 \dots < r_s}{i_s < j_1, k_s < l_1} \text{ where } r_1 = (i_1, j_1, k_1, l_1), r_s = (i_s, j_s, k_s, l_s)
$$

LCSS → Longest sequence of DOMRs

□ Computing LCSS reduces to finding longest sequence of diagonally overlapping matching rectangles (DOMRs).

Basic Algorithm

- \Box For each matching rectangle *r*, maintain DP table D_r of size $M²$ such that D*r*[*r'*] stores length of longest sequence of DOMRs that begins with *r* and ends with *r'*.
- For each character c , find the "closest" matching rectangle r_c w.r.t. *c* that can be added after *r'*. Update $D_r[r_c]$ if needed.

Basic Algorithm

- \Box For each matching rectangle *r*, maintain DP table D_r of size $M²$ such that D*r*[*r'*] stores length of longest sequence of DOMRs that begins with *r* and ends with *r'*.
- For each character c , find the "closest" matching rectangle r_c w.r.t. *c* that can be added after *r'*. Update $D_r[r_c]$ if needed.

Basic Algorithm

- \Box For each matching rectangle *r*, maintain DP table D_r of size $M²$ such that D*r*[*r'*] stores length of longest sequence of DOMRs that begins with *r* and ends with *r'*.
- For each character *c*, find the "closest" matching rectangle r_c w.r.t. *c* that can be added after *r'*. Update $D_r[r_c]$ if needed.

Basic Algorithm [Cont.]

- \Box Let *R* be # of matching rectangles ($R = O(M^2)$).
- \Box We compute $D_r[r^{\prime}]$ for $R^2 = O(M^4)$ pairs of matching rectangles (*r*, *r'*) .
- \Box We test σ characters to extend the current sequence of DOMRs w.r.t. D*r*[*r'*].
- \blacksquare Each extension can be obtained in $O(1)$ time after suitable preprocessing.

 \rightarrow $O(\sigma R^2 + n) = O(\sigma M^4 + n)$ time... Slow?

 $\left\{ \bigvee$ Can be improved to

 $O(\sigma MR + n) = O(\sigma M^3 + n)$ time

On Start Matching Rectangle

 \Box Always better to use a start matching rectangle that has the "smallest" left-lower corner for each character.

Improved Algorithm

- \Box We compute $D_m[r^{\prime}]$ for $MR = O(M^3)$ pairs of matching points and matching rectangles (*m*, *r'*) .
- \Box We test σ characters to extend the current sequence of DOMRs.
- \blacksquare Each extension can be obtained in $O(1)$ time after suitable preprocessing.
- \rightarrow *O*(σ*MR* + *n*) = *O*(σ*M*³+ *n*) time!

Improved Algorithm [Cont.]

Theorem

The LCSS problem can be solved in $O(\sigma MR + n) = O(\sigma M^3 + n)$ time with $O(M^2+n)$ space.

Corollary

The *expected* running time of this algorithm is $O(n^6/\sigma^3)$.

For random text $M \approx n^2/\sigma$ and $R \approx M^2/\sigma \approx n^4/\sigma^3$.

Hardness of LCSS

Lemma

LCSS for two strings is at least as hard as LCS for four strings.

$4-LCS \rightarrow 2-LCSS$

Computing LCS for *A*, *B*, *C*, *D* of length *n* each reduces to computing LCSS of *A'*, *B'* of length 4*n*+2 each.

Conditional Lower Bound for LCSS

Lemma [Abboud et al. 2015]

There is no algorithm which solves the LCS problem for *k* strings in *O*(*nk*-^ε) time with constant $\varepsilon > 0$, unless the strong exponential time hypothesis (SETH) fails.

Corollary

There is no algorithm which solves the LCSS problem for two strings in $O(n^{4-\epsilon})$ time with constant $\varepsilon > 0$, unless SETH fails.

Conclusions & Open Problem

Conditional Lower bound for LCSS

 $O(n^{4-\epsilon})$ -time solution (with constant $\epsilon > 0$) is unlikely to exist

How can we close this (almost) quadratic gap?

Strong Exponential Time Hypothesis (SETH)

- \blacksquare Let s_k be the greatest lower bound (infimum) of real numbers δ such that *k*-SAT can be solved in $O(2^{\delta n})$ time, where $n = \text{\# of variables.}$
- The *exponential time hypothesis* (*ETH*) is a conjecture that $s_k > 0$ for any $k \geq 3$.
- □ Clearly $s_3 \leq s_4 \leq s_5$... The *strong ETH* (*SETH*) is a conjecture that the limit of s_k when *k* approaches ∞ is 1.