CPM 2018

Computing longest common
square subsequences

Takafumi Inouel, Shunsuke Inenagal,
Heikki Hyyro?, Hideo Bannai!, Masayuki Takedal

IKyushu University
?University of Tampere

Longest Common Subsequence (LCS)

LCS Problem
~ 2

Input: two strings 4 and B of length n each
Output: (length of) LCS of 4 and B

\\ Y.

O LCSis a classical measure for string comparison.
O Standard DP solves this in O(n?) time.

E.g.) A=aacaabad

VS
B = cacbcbbd

Longest Common Subsequence (LCS)

LCS Problem
~ 2

Input: two strings 4 and B of length n each
Output: (length of) LCS of 4 and B

\\ Y.

O LCSis a classical measure for string comparison.
O Standard DP solves this in O(n?) time.

E.g.) A =aacaabad
VS
B = cacbcbbd

Constrained/Restricted LCS

O Variants of LCS problem where the solution
must satisfy pre-determined constraints.

O Attempt to reflect user’s a-priori knowledge
to the solutions.

> STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS
LCS of A and B that includes (excludes)

given pattern P as a substring (subsequence).
(See [Kuboi et al, CPM 2017] and references therein)

> Longest common palindromic subsequence (LCPS)
[Chowdhury et al. 2014, Inenaga & Hyyro 2018, Bae & Lee 2018]

Longest Common Square Subseq. (LCSS)

O This work considers new variant of LCS,
called LCSS, where the solution has to be square.

O Square (a.k.a. tandem repeat) is string of form xx.

> aabaab
\N_/

> abababab
.

> abcbbabcbb
~ A

Longest Common Square Subseq. (LCSS)

LCSS Problem
— D

Input: two strings 4 and B of length n each
Output: (length of) LCSS of 4 and B

\\ Y.

E.g.)
A =monsterstrike

VS

B =fourstringmasters

Longest Common Square Subseq. (LCSS)

LCSS Problem
— D

Input: two strings 4 and B of length n each
Output: (length of) LCSS of 4 and B

\\ Y.

E.g.)
A =monsterstrike

VS

B =fourstringmasters

Our Results

Upper bounds (algorithms) for LCSS

algorithm time space

Naive O(n%) O(n*)

Simple O(Mn*) O(n*)
Matching rectangle 1 O(cM3>+n) O(M?+n)
Matching rectangle 2 | O(M3log?n loglog n +n) | O(M?3+n)

O nisthe length of the input strings.

O M isthe number of matching points,
e, M= {0,)) | Ali] = Blj], 1 <i,j <n}|.
O oisthe alphabet size.

Matching Points

O M isthe number of matching points,
e, M= 1@,)) | Ali] = B[j], 1 <i,j < nj}].

a | @® @ o

D‘
®
o
o

Q

o | o
o O
® O
o O

Q

o
o
®

Matching Points

O M isthe number of matching points,
e, M= 1@,)) | Ali] = B[j], 1 <i,j < nj}].

o |
®
@
®

o o e AB31=BIS]

r N
M=#of @’s

2> M= 0(n?)
.

o |o | o
o O
® O
® O

Q

o
o
®

\.

Matching Points [Cont.]

O But M can be much smaller than O(n?)
IN many cases

e
i [_ |
k
g
| O
c ®

Our Results

Upper bounds (algorithms) for LCSS

algorithm time space

Naive O(n®) O(n*)

Simple O(Mn*) O(n*)
Matching rectangle 1 O(cM?+n) O(M?+n)
Matching rectangle 2 | O(M?3log?n loglog n +n) | O(M?3+n)

O nis the length of the input strings. | M is at most O(n%) J

. . . and can be much smaller
O M isthe number of matching points,

e, M=[{(,)) | A[i]= B[], 1 <i,j <n}|.
O oisthe alphabet size.

Matching Rectangles

O Tupler=(i,]/, k, [) is called matching rectangle
if A[i] = A[j] = B[k] = B[!].

A
n+1
i Jj : r
J e o—o
A c C
k [
B c C
[} 0—0

Partial Order of Matching Rectangles

O For matchingrectanglesr=(i,j, k,[)and =G, ;’, kK,),
r<rifti<i’,j<j,k<k,andIl</l.
Namely, » <7’ iff r lies strictly more left-lower than 7.

A A 4
]’ m u

.9]/"
J 0 0 .

& l - = m
J, T j
! = 0
1 l.

> >

k k1 I k [Kk I

Observation

O Each common square subsequence has
corresponding sequence of matching rectangles.

T T T w P, FIPR QPPE
O
O

CSS and matching rectangle

O Sequencery, ..., r, of s matching rectangles
represents CSS of length s iff
>[r1 <7y ...<T,]
>0 <, k,<I,where r, = (i, j,, ki, 1), 7. = (i, j.» k., 1)

A

CSS and matching rectangle

O Sequencery, ..., r, of s matching rectangles
represents CSS of length s iff
>[r1 <7y ...<T,]
>0 <, k,<I,where r, = (i, j,, ki, 1), . = (i, j» k,, 1)

A
@ is strictly more

left-lower than @

LCSS - Longest sequence of DOMRs

O Computing LCSS reduces to finding longest
sequence of diagonally overlapping matching
rectangles (DOMRs).

A

Basic Algorithm

O For each matching rectangle », maintain DP table D of size M?
such that D, [r’] stores length of longest sequence of DOMRs
that begins with » and ends with r’.

O For each character ¢, find the “closest” matching rectangle r.
w.r.t. ¢ that can be added after r’. Update D,|r.] if needed.

a , (o O

Basic Algorithm

O For each matching rectangle », maintain DP table D of size M?
such that D, [r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

O For each character ¢, find the “closest” matching rectangle r.
w.r.t. ¢ that can be added after r’. Update D,|r.] if needed.

A Iy
b - 0 u
b O 0
A
>

Basic Algorithm

O For each matching rectangle », maintain DP table D of size M?
such that D, [r’] stores length of longest sequence of DOMRs
that begins with » and ends with r’.

O For each character ¢, find the “closest” matching rectangle r.
w.r.t. ¢ that can be added after r’. Update D,|r.] if needed.

4 ¢
r | ﬁ
: A

Basic Algorithm [Cont.]

O Let R be # of matching rectangles (R = O(M?)).

O We compute D [r’] for R? = O(M*#) pairs of
matching rectangles (r, r’) .

O We test 6 characters to extend the current sequence
of DOMRs w.r.t. D Jr" .

O Each extension can be obtained in O(1) time
after suitable preprocessing.

- O(cR? + n) = O(cM*+ n) time... Slow?

@ Can be improved to
O(c MR + n) = O(cM?>*+ n) time

On Start Matching Rectangle

O Always better to use a start matching rectangle that
has the “smallest” |left-lower corner for each character.

Try each matching point m for a

A A
a (o 0O a (o O
a (o O a
a (o] a (o O
> 74 >
[4) 4/ a /Cl a [4)

Can always use this fixed point for a

Improved Algorithm

O We compute D, [r’] for MR = O(M?) pairs of
matching points and matching rectangles (m, r’) .

O We test o characters to extend the current sequence
of DOMRs.

O Each extension can be obtained in O(1) time
after suitable preprocessing.

- O(6cMR + n) = O(cM?>+ n) time!

Improved Algorithm [Cont.]

~ Theorem .

The LCSS problem can be solved in
O(cMR+ n) = O(cM?3+ n) time with

O(M?+ n) space.

\ y
| Corollary .
The expected running time of this algorithm

is O(n%/c?).
\. .

O For random text M = n?/c and R ~ M?/c = n%/o3.

Hardness of LCSS

Lemma

\L

LCSS for two strings is at least as hard as
LCS for four strings.

4-LCS - 2-LCSS

Computing LCS for 4, B, C, D of length n each
reduces to computing LCSS of 4, B’ of length 4n+2 each.

A
B

A’

B’

C
D
J L 4= 1B =|C| = |D| = n
$n+1 $n+1
$n+1 $n+1

Conditional Lower Bound for LCSS

Lemma [Abboud et al. 2015]

/‘

There is no algorithm which solves the LCS
problem for & strings in O(n*¢) time with

constant € > 0, unless the strong exponential time

hypothesis (SETH) fails.

A

Corollary

L

There is no algorithm which solves the LCSS
problem for two strings in O(n*#) time with
constant € > 0, unless SETH fails.

Conclusions & Open Problem
Upper bounds for LCSS [M= 0(n’)]

WAl
algorithm time space
Naive O(n%) O(n*)
Simple O(Mn*) O(n*)
Matching rectangle 1 O(cM?>+n) O(M?+n)
Matching rectangle 2 | O(M?3log?n loglogn+n) | O(M?>+n)

Conditional Lower bound for LCSS

O(n*#)-time solution (with constant € > 0) is unlikely to exist

How can we close this (almost) quadratic gap?

Strong Exponential Time Hypothesis (SETH)

O Lets, be the greatest lower bound (infimum) of
real numbers o such that &-SAT can be solved in
O(2°") time, where n = # of variables.

O The exponential time hypothesis (ETH) is
a conjecture thats, > 0 for any k = 3.

O Clearlys; < s, <5 ...
The strong ETH (SETH) is a conjecture that
the limit of s, when k approaches oo is 1.

	Computing longest common square subsequences
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Constrained/Restricted LCS
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Our Results
	Matching Points
	Matching Points
	Matching Points [Cont.]
	Our Results
	Matching Rectangles
	Partial Order of Matching Rectangles
	Observation
	CSS and matching rectangle
	CSS and matching rectangle
	LCSS → Longest sequence of DOMRs
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm [Cont.]
	On Start Matching Rectangle
	Improved Algorithm
	Improved Algorithm [Cont.]
	Hardness of LCSS
	4-LCS  2-LCSS
	Conditional Lower Bound for LCSS
	Conclusions & Open Problem
	Strong Exponential Time Hypothesis (SETH)

