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Input: two strings A and B of length n each
Output: (length of) LCS of A and B

 LCS is a classical measure for string comparison.
 Standard DP solves this in O(n2) time.

LCS Problem

Longest Common Subsequence (LCS)

E.g.)  A = aacaabad
vs

B = cacbcbbd
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 Variants of LCS problem where the solution 
must satisfy pre-determined constraints.

 Attempt to reflect user’s a-priori knowledge
to the solutions.

 STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS
LCS of A and B that includes (excludes)
given pattern P as a substring (subsequence).
(See [Kuboi et al, CPM 2017] and references therein)

 Longest common palindromic subsequence (LCPS)
[Chowdhury et al. 2014, Inenaga & Hyyrö 2018, Bae & Lee 2018]

Constrained/Restricted LCS



Longest Common Square Subseq. (LCSS)

 This work considers new variant of LCS,
called LCSS, where the solution has to be square.

 Square (a.k.a. tandem repeat) is string of form xx.

 aabaab

 abababab

 abcbbabcbb



Input: two strings A and B of length n each
Output: (length of) LCSS of A and B

LCSS Problem

Longest Common Square Subseq. (LCSS)

E.g.)
A = monsterstrike

B = fourstringmasters
vs
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Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points, 

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.



Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

 M is the number of matching points, 
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
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Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

A[3] = B[5]

M = # of ●’s
M = O(n2)

 M is the number of matching points, 
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.

A

B



Matching Points [Cont.]

e

i ● ●

k

o

o

c ●

b i s c u i t

 But M can be much smaller than O(n2)
in many cases



Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points, 

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.

M is at most O(n2)
and can be much smaller



Matching Rectangles

 Tuple r = (i, j, k, l) is called matching rectangle
if A[i] = A[j] = B[k] = B[l].
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Partial Order of Matching Rectangles
 For matching rectangles r = (i, j, k, l) and r’ = (i’, j’, k’, l’), 

r < r’ iff i < i’, j < j’, k < k’, and l < l’.
Namely, r < r’ iff r lies strictly more left-lower than r’.
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Observation
 Each common square subsequence has 

corresponding sequence of matching rectangles.

… a … b … c … a … b … c …

c…

b…

a…
…

c…

b…

a…

A

B



CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles 

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)



CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles 

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)

is strictly more 
left-lower than 



LCSS → Longest sequence of DOMRs

18

 Computing LCSS reduces to finding longest 
sequence of diagonally overlapping matching 
rectangles (DOMRs).



Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’ ] stores length of longest sequence of DOMRs 
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.
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Basic Algorithm [Cont.]
 Let R be # of matching rectangles ( R = O(M 2) ).
 We compute Dr[r’ ] for R 2 = O(M 4) pairs of 

matching rectangles (r, r’) .
 We test σ characters to extend the current sequence 

of DOMRs w.r.t. Dr[r’ ]. 
 Each extension can be obtained in O(1) time 

after suitable preprocessing.

 O(σR2 + n) = O(σM 4+ n) time… Slow?

O(σΜR + n) = O(σM 3+ n) time

Can be improved to 



On Start Matching Rectangle
 Always better to use a start matching rectangle that 

has the “smallest” left-lower corner for each character.
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Can always use this fixed point for a

Try each matching point m for a



Improved Algorithm

 We compute Dm[r’ ] for MR = O(M 3) pairs of 
matching points and matching rectangles (m, r’) .

 We test σ characters to extend the current sequence 
of DOMRs. 

 Each extension can be obtained in O(1) time 
after suitable preprocessing.

 O(σMR + n) = O(σM 3+ n) time!



Improved Algorithm [Cont.]

The LCSS problem can be solved in
O(σMR+ n) = O(σM 3+ n) time with 
O(M 2+ n) space.

Theorem

The expected running time of this algorithm 
is O(n6/σ3).

Corollary

 For random text M ≈ n2/σ and R ≈ M 2/σ ≈ n4/σ3.



Hardness of LCSS

LCSS for two strings is at least as hard as
LCS for four strings.

Lemma



4-LCS  2-LCSS

|A| = |B| = |C| = |D| = n

A’ $n+1 $n+1

B’ $n+1 $n+1

A

B

C

D

Computing LCS for A, B, C, D of length n each
reduces to computing LCSS of A’, B’ of length 4n+2 each.



Conditional Lower Bound for LCSS

There is no algorithm which solves the LCSS 
problem for two strings in O(n4-ε) time with 
constant ε > 0, unless SETH fails.  

Corollary

There is no algorithm which solves the LCS 
problem for k strings in O(nk-ε) time with 
constant ε > 0, unless the strong exponential time 
hypothesis (SETH) fails.  

Lemma [Abboud et al. 2015]



Conclusions & Open Problem

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds for LCSS M = O(n2)

Conditional Lower bound for LCSS

O(n4-ε)-time solution (with constant ε > 0) is unlikely to exist

How can we close this (almost) quadratic gap?



Strong Exponential Time Hypothesis (SETH)

 Let sk be the greatest lower bound (infimum) of 
real numbers δ such that k-SAT can be solved in 
O(2δn) time, where n = # of variables.

 The exponential time hypothesis (ETH) is 
a conjecture that sk > 0 for any k ≥ 3.

 Clearly s3 ≤ s4 ≤ s5 … 
The strong ETH (SETH) is a conjecture that 
the limit of sk when k approaches ∞ is 1.
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