
Computing longest common
square subsequences

Takafumi Inoue1, Shunsuke Inenaga1,
Heikki Hyyrö2, Hideo Bannai1, Masayuki Takeda1

1Kyushu University
2University of Tampere

CPM 2018

Input: two strings A and B of length n each
Output: (length of) LCS of A and B

 LCS is a classical measure for string comparison.
 Standard DP solves this in O(n2) time.

LCS Problem

Longest Common Subsequence (LCS)

E.g.) A = aacaabad
vs

B = cacbcbbd

Input: two strings A and B of length n each
Output: (length of) LCS of A and B

 LCS is a classical measure for string comparison.
 Standard DP solves this in O(n2) time.

LCS Problem

Longest Common Subsequence (LCS)

E.g.) A = aacaabad
vs

B = cacbcbbd

 Variants of LCS problem where the solution
must satisfy pre-determined constraints.

 Attempt to reflect user’s a-priori knowledge
to the solutions.

 STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS
LCS of A and B that includes (excludes)
given pattern P as a substring (subsequence).
(See [Kuboi et al, CPM 2017] and references therein)

 Longest common palindromic subsequence (LCPS)
[Chowdhury et al. 2014, Inenaga & Hyyrö 2018, Bae & Lee 2018]

Constrained/Restricted LCS

Longest Common Square Subseq. (LCSS)

 This work considers new variant of LCS,
called LCSS, where the solution has to be square.

 Square (a.k.a. tandem repeat) is string of form xx.

 aabaab

 abababab

 abcbbabcbb

Input: two strings A and B of length n each
Output: (length of) LCSS of A and B

LCSS Problem

Longest Common Square Subseq. (LCSS)

E.g.)
A = monsterstrike

B = fourstringmasters
vs

Input: two strings A and B of length n each
Output: (length of) LCSS of A and B

LCSS Problem

Longest Common Square Subseq. (LCSS)

E.g.)
A = monsterstrike

B = fourstringmasters
vs

Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points,

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.

Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

 M is the number of matching points,
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.

A

B

Matching Points

a ● ● ●

b ● ● ●

a ● ● ●

b ● ● ●

b ● ● ●

a ● ● ●

a b b a b a

A[3] = B[5]

M = # of ●’s
M = O(n2)

 M is the number of matching points,
i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.

A

B

Matching Points [Cont.]

e

i ● ●

k

o

o

c ●

b i s c u i t

 But M can be much smaller than O(n2)
in many cases

Our Results

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds (algorithms) for LCSS

 n is the length of the input strings.
 M is the number of matching points,

i.e., M = |{(i, j) | A[i] = B[j], 1 ≤ i, j ≤ n}|.
 σ is the alphabet size.

M is at most O(n2)
and can be much smaller

Matching Rectangles

 Tuple r = (i, j, k, l) is called matching rectangle
if A[i] = A[j] = B[k] = B[l].

0

i

j

k l

n+1

n+1

A

B

c c

c c

i j

k l

r

Partial Order of Matching Rectangles
 For matching rectangles r = (i, j, k, l) and r’ = (i’, j’, k’, l’),

r < r’ iff i < i’, j < j’, k < k’, and l < l’.
Namely, r < r’ iff r lies strictly more left-lower than r’.

i

j

k l

r

i’

j’

k’ l’
i

j

k l

ri’

j’

k’ l’

r’

r’

Observation
 Each common square subsequence has

corresponding sequence of matching rectangles.

… a … b … c … a … b … c …

c…

b…

a…
…

c…

b…

a…

A

B

CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)

CSS and matching rectangle
 Sequence r1, …, rs of s matching rectangles

represents CSS of length s iff
 r1 < r2 ... < rs

 is < j1, ks < l1 where r1 = (i1, j1, k1, l1), rs = (is, js, ks, ls)

is strictly more
left-lower than

LCSS → Longest sequence of DOMRs

18

 Computing LCSS reduces to finding longest
sequence of diagonally overlapping matching
rectangles (DOMRs).

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’

a a

a

a

ra

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’
rb

b b

b

b

Basic Algorithm
 For each matching rectangle r, maintain DP table Dr of size M 2

such that Dr[r’] stores length of longest sequence of DOMRs
that begins with r and ends with r’.

 For each character c, find the “closest” matching rectangle rc
w.r.t. c that can be added after r’. Update Dr[rc] if needed.

r

r’

c c

c

c

rc

Basic Algorithm [Cont.]
 Let R be # of matching rectangles (R = O(M 2)).
 We compute Dr[r’] for R 2 = O(M 4) pairs of

matching rectangles (r, r’) .
 We test σ characters to extend the current sequence

of DOMRs w.r.t. Dr[r’].
 Each extension can be obtained in O(1) time

after suitable preprocessing.

 O(σR2 + n) = O(σM 4+ n) time… Slow?

O(σΜR + n) = O(σM 3+ n) time

Can be improved to

On Start Matching Rectangle
 Always better to use a start matching rectangle that

has the “smallest” left-lower corner for each character.

a a

a

a
a

a a a

a

a
a

a

Can always use this fixed point for a

Try each matching point m for a

Improved Algorithm

 We compute Dm[r’] for MR = O(M 3) pairs of
matching points and matching rectangles (m, r’) .

 We test σ characters to extend the current sequence
of DOMRs.

 Each extension can be obtained in O(1) time
after suitable preprocessing.

 O(σMR + n) = O(σM 3+ n) time!

Improved Algorithm [Cont.]

The LCSS problem can be solved in
O(σMR+ n) = O(σM 3+ n) time with
O(M 2+ n) space.

Theorem

The expected running time of this algorithm
is O(n6/σ3).

Corollary

 For random text M ≈ n2/σ and R ≈ M 2/σ ≈ n4/σ3.

Hardness of LCSS

LCSS for two strings is at least as hard as
LCS for four strings.

Lemma

4-LCS  2-LCSS

|A| = |B| = |C| = |D| = n

A’ $n+1 $n+1

B’ $n+1 $n+1

A

B

C

D

Computing LCS for A, B, C, D of length n each
reduces to computing LCSS of A’, B’ of length 4n+2 each.

Conditional Lower Bound for LCSS

There is no algorithm which solves the LCSS
problem for two strings in O(n4-ε) time with
constant ε > 0, unless SETH fails.

Corollary

There is no algorithm which solves the LCS
problem for k strings in O(nk-ε) time with
constant ε > 0, unless the strong exponential time
hypothesis (SETH) fails.

Lemma [Abboud et al. 2015]

Conclusions & Open Problem

algorithm time space
Naïve O(n6) O(n4)
Simple O(Mn4) O(n4)

Matching rectangle 1 O(σM 3+n) O(M 2+n)
Matching rectangle 2 O(M 3log2n loglog n + n) O(M 3+n)

Upper bounds for LCSS M = O(n2)

Conditional Lower bound for LCSS

O(n4-ε)-time solution (with constant ε > 0) is unlikely to exist

How can we close this (almost) quadratic gap?

Strong Exponential Time Hypothesis (SETH)

 Let sk be the greatest lower bound (infimum) of
real numbers δ such that k-SAT can be solved in
O(2δn) time, where n = # of variables.

 The exponential time hypothesis (ETH) is
a conjecture that sk > 0 for any k ≥ 3.

 Clearly s3 ≤ s4 ≤ s5 …
The strong ETH (SETH) is a conjecture that
the limit of sk when k approaches ∞ is 1.

	Computing longest common square subsequences
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Constrained/Restricted LCS
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Longest Common Square Subseq. (LCSS)
	Our Results
	Matching Points
	Matching Points
	Matching Points [Cont.]
	Our Results
	Matching Rectangles
	Partial Order of Matching Rectangles
	Observation
	CSS and matching rectangle
	CSS and matching rectangle
	LCSS → Longest sequence of DOMRs
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm [Cont.]
	On Start Matching Rectangle
	Improved Algorithm
	Improved Algorithm [Cont.]
	Hardness of LCSS
	4-LCS  2-LCSS
	Conditional Lower Bound for LCSS
	Conclusions & Open Problem
	Strong Exponential Time Hypothesis (SETH)

