#### CPM 2018

# Computing longest common square subsequences

Takafumi Inoue<sup>1</sup>, <u>Shunsuke Inenaga</u><sup>1</sup>, Heikki Hyyrö<sup>2</sup>, Hideo Bannai<sup>1</sup>, Masayuki Takeda<sup>1</sup> <sup>1</sup>Kyushu University <sup>2</sup>University of Tampere

#### Longest Common Subsequence (LCS)

**LCS Problem** 

Input: two strings A and B of length n each Output: (length of) LCS of A and B

LCS is a classical measure for string comparison.
 Standard DP solves this in O(n<sup>2</sup>) time.

E.g.) 
$$A = aacaabad$$
  
vs  
 $B = cacbcbbd$ 

#### Longest Common Subsequence (LCS)

**LCS Problem** 

Input: two strings A and B of length n each Output: (length of) LCS of A and B

LCS is a classical measure for string comparison.
 Standard DP solves this in O(n<sup>2</sup>) time.

E.g.) 
$$A = aacaabad$$
  
vs  
 $B = cacbcbbd$ 

# **Constrained/Restricted LCS**

- Variants of LCS problem where the solution must satisfy pre-determined constraints.
- Attempt to reflect user's a-priori knowledge to the solutions.
  - STR-IC-LCS, STR-EC-LCS, SEQ-IC-LCS, SEQ-EC-LCS
     LCS of A and B that includes (excludes)
     given pattern P as a substring (subsequence).
     (See [Kuboi et al, CPM 2017] and references therein)
  - Longest common *palindromic* subsequence (LCPS) [Chowdhury et al. 2014, Inenaga & Hyyrö 2018, Bae & Lee 2018]

#### Longest Common Square Subseq. (LCSS)

- This work considers new variant of LCS, called LCSS, where the solution has to be square.
- □ Square (a.k.a. tandem repeat) is string of form *xx*.
  - > aabaab
    > abababab
    > abcbbabcbb

#### Longest Common Square Subseq. (LCSS)

LCSS Problem

Input: two strings A and B of length n each Output: (length of) LCSS of A and B

E.g.)

A = monsterstrike

#### VS

B = fourstringmasters

#### Longest Common Square Subseq. (LCSS)

LCSS Problem

Input: two strings A and B of length n each Output: (length of) LCSS of A and B

E.g.)

A = mon**st**e**rstr**ike

VS

B = fourstringmasters

### **Our Results**

#### Upper bounds (algorithms) for LCSS

| algorithm            | time                              | space        |
|----------------------|-----------------------------------|--------------|
| Naïve                | $O(n^6)$                          | $O(n^4)$     |
| Simple               | $O(Mn^4)$                         | $O(n^4)$     |
| Matching rectangle 1 | $O(\sigma M^3+n)$                 | $O(M^{2}+n)$ |
| Matching rectangle 2 | $O(M^3 \log^2 n \log \log n + n)$ | $O(M^3 + n)$ |

- $\square$  *n* is the length of the input strings.
- *M* is the number of matching points, i.e.,  $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$
- $\Box$   $\sigma$  is the alphabet size.

#### **Matching Points**

#### ■ *M* is the number of matching points, i.e., $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$



#### **Matching Points**

■ *M* is the number of matching points, i.e.,  $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$ 



# Matching Points [Cont.]

But M can be much smaller than  $O(n^2)$  in many cases





### **Our Results**

#### Upper bounds (algorithms) for LCSS

| algorithm                                                                                     | time                            | space        |  |
|-----------------------------------------------------------------------------------------------|---------------------------------|--------------|--|
| Naïve                                                                                         | $O(n^6)$                        | $O(n^4)$     |  |
| Simple                                                                                        | $O(Mn^4)$                       | $O(n^4)$     |  |
| Matching rectangle 1                                                                          | $O(\sigma M^3 + n)$             | $O(M^2+n)$   |  |
| Matching rectangle 2                                                                          | $O(M^3\log^2 n \log\log n + n)$ | $O(M^3 + n)$ |  |
| In is the length of the input strings. $M \text{ is at most } O(n^2)$ and can be much smaller |                                 |              |  |

■ *M* is the number of matching points, i.e.,  $M = |\{(i, j) | A[i] = B[j], 1 \le i, j \le n\}|.$ 

 $\Box$   $\sigma$  is the alphabet size.

### **Matching Rectangles**

■ Tuple r = (i, j, k, l) is called *matching rectangle* if A[i] = A[j] = B[k] = B[l].



#### **Partial Order of Matching Rectangles**

■ For matching rectangles r = (i, j, k, l) and r' = (i', j', k', l'), r < r' iff i < i', j < j', k < k', and l < l'.

Namely, r < r' iff r lies strictly more left-lower than r'.



#### Observation

Each common square subsequence has corresponding sequence of matching rectangles.



### CSS and matching rectangle

Sequence r<sub>1</sub>, ..., r<sub>s</sub> of s matching rectangles represents CSS of length s iff

$$r_1 < r_2 \dots < r_s$$

$$i_s < j_1, k_s < l_1 \text{ where } r_1 = (i_1, j_1, k_1, l_1), r_s = (i_s, j_s, k_s, l_s)$$



### CSS and matching rectangle

Sequence r<sub>1</sub>, ..., r<sub>s</sub> of s matching rectangles represents CSS of length s iff

> 
$$r_1 < r_2 ... < r_s$$
  
>  $i_s < j_1, k_s < l_1$  where  $r_1 = (i_1, j_1, k_1, l_1), r_s = (i_s, j_s, k_s, l_s)$ 



### LCSS $\rightarrow$ Longest sequence of DOMRs

Computing LCSS reduces to finding longest sequence of diagonally overlapping matching rectangles (DOMRs).



# **Basic Algorithm**

- For each matching rectangle r, maintain DP table  $D_r$  of size  $M^2$  such that  $D_r[r']$  stores length of longest sequence of DOMRs that begins with r and ends with r'.
- For each character c, find the "closest" matching rectangle  $r_c$  w.r.t. c that can be added after r'. Update  $D_r[r_c]$  if needed.



# **Basic Algorithm**

- For each matching rectangle r, maintain DP table  $D_r$  of size  $M^2$  such that  $D_r[r']$  stores length of longest sequence of DOMRs that begins with r and ends with r'.
- For each character c, find the "closest" matching rectangle  $r_c$  w.r.t. c that can be added after r'. Update  $D_r[r_c]$  if needed.



# **Basic Algorithm**

- For each matching rectangle r, maintain DP table  $D_r$  of size  $M^2$  such that  $D_r[r']$  stores length of longest sequence of DOMRs that begins with r and ends with r'.
- For each character c, find the "closest" matching rectangle  $r_c$  w.r.t. c that can be added after r'. Update  $D_r[r_c]$  if needed.



# Basic Algorithm [Cont.]

- □ Let *R* be # of matching rectangles ( $R = O(M^2)$ ).
- We compute  $D_r[r']$  for  $R^2 = O(M^4)$  pairs of matching rectangles (r, r').
- □ We test  $\sigma$  characters to extend the current sequence of DOMRs w.r.t.  $D_r[r']$ .
- Each extension can be obtained in O(1) time after suitable preprocessing.

 $\rightarrow O(\sigma R^2 + n) = O(\sigma M^4 + n)$  time... Slow?

Can be improved to

 $O(\sigma MR + n) = O(\sigma M^3 + n)$  time

### **On Start Matching Rectangle**

Always better to use a start matching rectangle that has the "smallest" left-lower corner for each character.



### **Improved Algorithm**

- We compute  $D_m[r']$  for  $MR = O(M^3)$  pairs of matching points and matching rectangles (m, r').
- $\hfill\square$  We test  $\sigma$  characters to extend the current sequence of DOMRs.
- Each extension can be obtained in O(1) time after suitable preprocessing.
- $\rightarrow O(\sigma MR + n) = O(\sigma M^3 + n)$  time!

### Improved Algorithm [Cont.]

#### Theorem

The LCSS problem can be solved in  $O(\sigma MR + n) = O(\sigma M^3 + n)$  time with  $O(M^2 + n)$  space.

#### Corollary

The *expected* running time of this algorithm is  $O(n^6/\sigma^3)$ .

• For random text  $M \approx n^2/\sigma$  and  $R \approx M^2/\sigma \approx n^4/\sigma^3$ .

#### Hardness of LCSS

Lemma

LCSS for two strings is at least as hard as LCS for four strings.

### 4-LCS $\rightarrow$ 2-LCSS

Computing LCS for A, B, C, D of length n each reduces to computing LCSS of A', B' of length 4n+2 each.



#### **Conditional Lower Bound for LCSS**

#### Lemma [Abboud et al. 2015]

There is no algorithm which solves the LCS problem for k strings in  $O(n^{k-\varepsilon})$  time with constant  $\varepsilon > 0$ , unless the strong exponential time hypothesis (SETH) fails.

#### Corollary

There is no algorithm which solves the LCSS problem for two strings in  $O(n^{4-\varepsilon})$  time with constant  $\varepsilon > 0$ , unless SETH fails.

# **Conclusions & Open Problem**

| Upp                  | per bounds for LCSS             | $M = O(n^2)$ |
|----------------------|---------------------------------|--------------|
| algorithm            | time                            | space        |
| Naïve                | $O(n^6)$                        | $O(n^4)$     |
| Simple               | $O(Mn^4)$                       | $O(n^4)$     |
| Matching rectangle 1 | $O(\sigma M^3 + n)$             | $O(M^2+n)$   |
| Matching rectangle 2 | $O(M^3\log^2 n \log\log n + n)$ | $O(M^3+n)$   |

Conditional Lower bound for LCSS

 $O(n^{4-\varepsilon})$ -time solution (with constant  $\varepsilon > 0$ ) is unlikely to exist

How can we close this (almost) quadratic gap?

#### Strong Exponential Time Hypothesis (SETH)

- □ Let  $s_k$  be the greatest lower bound (infimum) of real numbers  $\delta$  such that k-SAT can be solved in  $O(2^{\delta n})$  time, where n = # of variables.
- The exponential time hypothesis (ETH) is a conjecture that  $s_k > 0$  for any  $k \ge 3$ .
- □ Clearly  $s_3 \le s_4 \le s_5 \dots$ The strong ETH (SETH) is a conjecture that the limit of  $s_k$  when k approaches ∞ is 1.