
Discovering Most Classificatory Patterns for 
Very Expressive Pattern Classes

Masayuki Takeda1,2, Shunsuke Inenaga3,
Hideo Bannai4, Ayumi Shinohara1,2,

and Setsuo Arikawa1

1Department of Informatics, Kyushu University
2Japan Science Technology Corporation Agency

3Department of Computer Science, University of Helsinki
4Human Genome Center, University of Tokyo



Background and Motivation

Distinguish two given string datasets
- to obtain a good rule and/or useful knowledge

Grade up BONSAI system
- so that it can deal with more expressive pattern 
classes
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Find a pattern string that occurs in all strings of A
and in no strings of B.
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xp : The num. of strings in S that p matches.
yp : The num. of strings in T that p matches.

Optimization Problem

 Input:    Two sets S, Tof strings
 Output: A pattern p that maximizes the 

score function f(xp, yp, |S|, |T|).

Score function f expresses the goodness of p
in terms of separating the two sets S and T.
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computing the “goodness”
for all possible patterns

the pattern of best score

as fast as 
possible!!

Process of Computation



Previous Work

• BONSAI 
(discovering best Substring pattern),  Shimozono et al., 1994

• Discovering best Subsequence pattern,  Hirao et al., 2000

• Discovering best Episode pattern,  Hirao et al., 2001

• Discovering best VLDC pattern,  Inenaga et al., 2002

• Discovering best Window Accumulated VLDC pattern,
Inenaga et al., 2002



This Work

We present efficient algorithms to discover:

• the best Fixed/Variable Length Don’t Care Pattern
• the best Approximate FVLDC Pattern

The aim is to apply more expressive pattern classes to BONSAI

• the best Window Accumulated FVLDC Pattern
• the best Window Accumulated Approx. FVLDC Pattern

The aim is to add a more classificatory power to the pattern classes



The goodness of pattern p

good(p, S, T) = f(xp, yp, |S|, |T|)

S, T : two given sets of strings
xp : num. of strings in S that p matches
yp : num. of strings in T that p matches

Score Function

If score function f is conic, then we can apply an efficient 
pruning technique for speeding up the computation.
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(x, 0)(0, 0)

(x’, y’)

= max{f(0, 0), f(x, 0), f(0, y), f(x, y)}

f(x’, y’) ≤ upperBound(x, y)

upperBound(x, y) : the max value on the square

Conic Function Property
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FVLDC Pattern

A Fixed/Variable Length Don’t Care Pattern
is an element of Π = (Σ∪{○, ★})∗, where ○ matches
any character and ★ matches any string.

e.g. FVLDC pattern ab○a○★b matches abbaabbb.

b a bbab a



FVLDC Pattern Matching

We use an NFA that recognizes the language of a 
given FVLDC pattern p. The num. of states is m+1, 
where m is the num. of constants and ○’s in p.

p = ★ab○★b

a b b

Σ

Σ

Σ

Using the bit-parallel technique, we can do
matching for p in O(m|Σ|) preprocessing time 
and O(n) running time .



Approximate FVLDC Pattern

An Approximate FVLDC Pattern is an element of 
Π×Ν, where Ν is the set of non-negative integers.

Approx. FVLDC pattern <p, k> is said to match 
a string w within distance k if the Hamming Distance
between p and w is within k.

e.g. Approx. FVLDC pattern <ab○a○★b, 1>
matches abbaabba.

b a bbaab a



Approx. FVLDC Pattern Matching

We use an NFA that recognizes the language
of a given approx. FVLDC pattern <p, k>.

The NFA has (m+1)(k+1) states, but (m-k+1)(k+1)
bits are actually enough.

If (m-k+1)(k+1) is not larger than the computer
word length, our bit-parallel algorithm runs 
in O(|n|) time after O(m|Σ|)-time preprocessing for p.



Approx. FVLDC Pattern Matching

p = <★ab○★b, 2>
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The NFA has (m+1)(k+1) states.
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Approx. FVLDC Pattern Matching
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Only (m-k+1)(k+1) states are necessary.

p = <★ab○★b, 2> m=4
k=2



More Classificatory Pattern Class

p = ★d○★sc○★very★

w = fhdihertlhglehglioogfrg
xawpolmkhhjqirvnbotuhxxxxr
ylnvhbtriscovbgneinmvgerig
eooitrnrnvevroigreintnnvoi
woireohirlneroiveryniritro
eitruijnnbrymxbairive

any pattern similar 
to “discovery”?



Window Accumulation

p = ★d○★sc○★very★

h

Bound the length of occurrence of p
by a window size h.

This way we can get rid of redundant 
matches, and obtain better classification!



Window Accumulated Pattern Matching

We use two NFAs each recognizes the language
of either a given FVLDC pattern p or its reversal.

prev = b★○ab★

b a b
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Using the bit-parallel technique, we can do
pattern matching for <p, h> in O(m|Σ|) preprocessing 
time and in O(n2) running time .

Same for Win-Acc. approx. FVLDC patterns.



Experimental Environment

Machine: Alpha Station XP1000
CPU: Alpha21264 processor of 667MHz
OS: Tru64 Unix OS V4.0F

Datasets: 
(1) completely random data
(2) VLDC pattern embedded data
(3) FVLDC pattern embedded data
(4) 2-approx. VLDC pattern embedded data
(5) window-accumulated 2-approx. 

VLDC pattern embedded data



Experimental Result 1



Experimental Result 2



Experimental Result 3



Experimental Result 4

(8377)43044008449238809396approx. VLDC (kmax= 4)

(5679)31462868332427396973approx. VLDC (kmax= 3)

(3558)20351790218516604569approx. VLDC (kmax= 2)
(1820)102685310887252203approx. VLDC (kmax= 1)

(1579)6235146453311068FVLDC

(554)224182236109423VLDC

pattern class
dataset

(1) (5)(2) (3) (4) (5)

Execution times (in seconds) for different pattern classes:
The maximum pattern length was set to 7.
Execution time for each window-accumulated version with dataset (5) 
is shown in parentheses.
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