Discovering Most Classificatory Patterns for Very Expressive Pattern Classes

Masayuki Takeda^{1,2}, Shunsuke Inenaga³, Hideo Bannai⁴, Ayumi Shinohara^{1,2}, and Setsuo Arikawa¹

¹Department of Informatics, Kyushu University ²Japan Science Technology Corporation Agency ³Department of Computer Science, University of Helsinki ⁴Human Genome Center, University of Tokyo

Background and Motivation

Distinguish two given string datasets

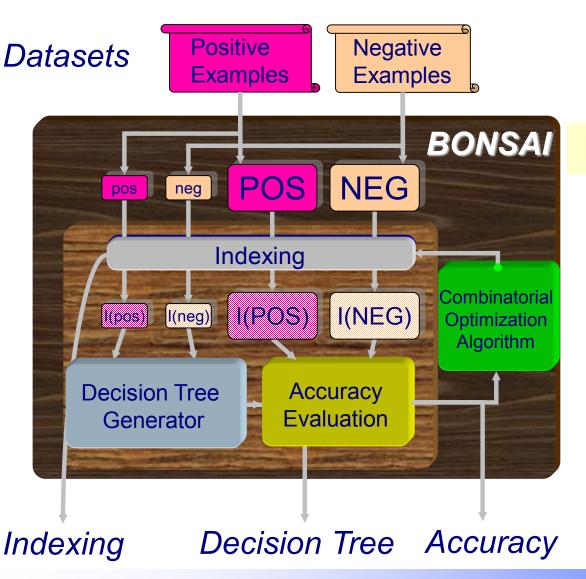
- to obtain a good rule and/or useful knowledge

Grade up BONSAI system

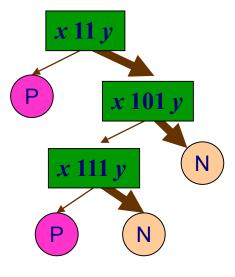
 so that it can deal with more expressive pattern classes

Machine Discovery System BONSAI

[Shimozono et. al 1994]



ABCDEFGHIJKLMNOPQRSTUVWXY 0011001010000111000011010



Pattern Discovery from Datasets

Find a pattern string that occurs in all strings of A and in no strings of B.

AKEBONO MUSASHIMARU

CONTRIBUTIONS OF AI

BEYOND MESSY LEARNING

BASED ON LOCAL SEARCH ALGORITHMS

BOOLEAN CLASSIFICATION

SYMBOLIC TRANSFORMATION

BACON SANDWICH

PUBLICATION OF DISSERTATION

B

WAKANOHANA TAKANOHANA

CONTRIBUTIONS OF UN

TRADITIONAL APPROACHES

GENETIC ALGORITHMS

PROBABILISTIC RULE

NUMERIC TRANSFORMATION

PLAIN OMELETTE

TOY EXAMPLES

Answer: BONSAI

Optimization Problem

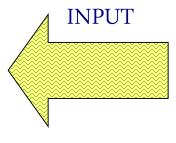
- Input: Two sets S, T of strings
- Output: A pattern p that maximizes the score function $f(x_p, y_p, |S|, |T|)$.

 x_p : The num. of strings in S that p matches.

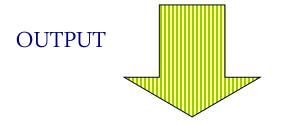
 y_p : The num. of strings in T that p matches.

Score function f expresses the **goodness** of p in terms of separating the two sets S and T.

Process of Computation



computing the "goodness" for all possible patterns



as fast as possible!!

the pattern of best score

Previous Work

- BONSAI (discovering best Substring pattern), Shimozono et al., 1994
- Discovering best Subsequence pattern, Hirao et al., 2000
- Discovering best Episode pattern, Hirao et al., 2001
- Discovering best VLDC pattern, Inenaga et al., 2002
- Discovering best Window Accumulated VLDC pattern, Inenaga et al., 2002

This Work

We present efficient algorithms to discover:

- the best Fixed/Variable Length Don't Care Pattern
- the best Approximate FVLDC Pattern

The aim is to apply more expressive pattern classes to BONSAI

- the best Window Accumulated FVLDC Pattern
- the best Window Accumulated Approx. FVLDC Pattern

The aim is to add a more classificatory power to the pattern classes

Score Function

The goodness of pattern p

$$good(p, S, T) = f(x_p, y_p, |S|, |T|)$$

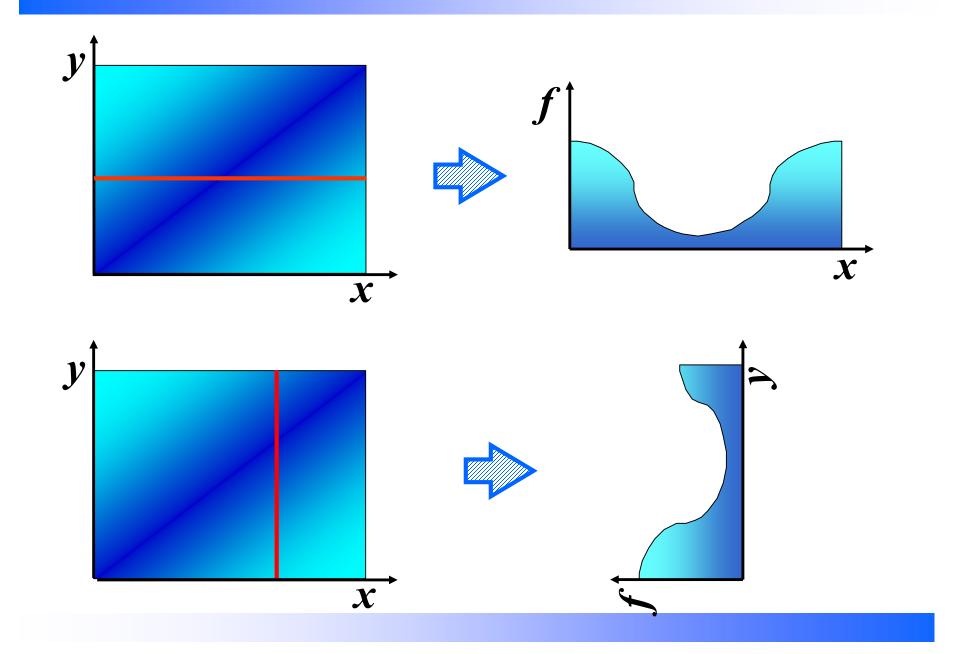
S, T: two given sets of strings

 x_p : num. of strings in S that p matches

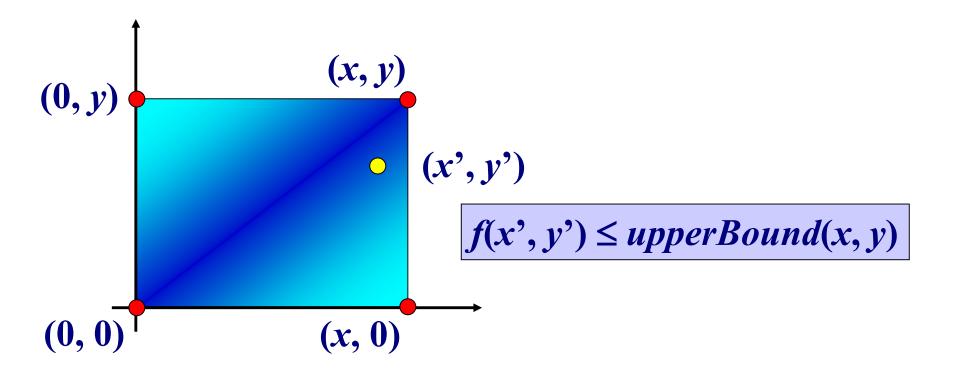
 y_p : num. of strings in T that p matches

If score function f is **conic**, then we can apply an efficient pruning technique for speeding up the computation.

Score Function to be Conic

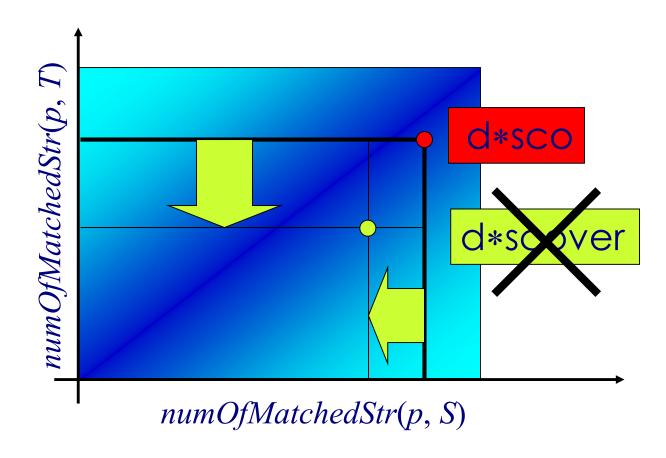


Conic Function Property



upperBound(x, y): the max value on the square $= max\{f(0, 0), f(x, 0), f(0, y), f(x, y)\}$

Pruning Technique



FVLDC Pattern

A Fixed/Variable Length Don't Care Pattern

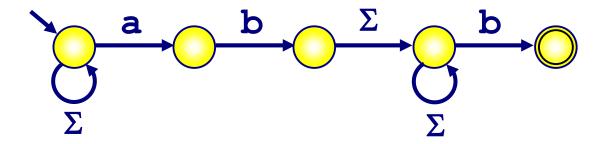
is an element of $\Pi = (\Sigma \cup \{0, \star\})^*$, where \circ matches any character and \star matches any string.

e.g. FVLDC pattern aboao*b matches abbaabbb.

FVLDC Pattern Matching

We use an NFA that recognizes the language of a given FVLDC pattern p. The num. of states is m+1, where m is the num. of constants and \bigcirc 's in p.

$$p = \star abO \star b$$



Using the **bit-parallel technique**, we can do matching for p in $O(m|\Sigma|)$ preprocessing time and O(n) running time .

Approximate FVLDC Pattern

An Approximate FVLDC Pattern is an element of $\Pi \times N$, where N is the set of non-negative integers.

Approx. FVLDC pattern $\langle p, k \rangle$ is said to match a string w within distance k if the Hamming Distance between p and w is within k.

e.g. Approx. FVLDC pattern <aboatomous abbaabba.

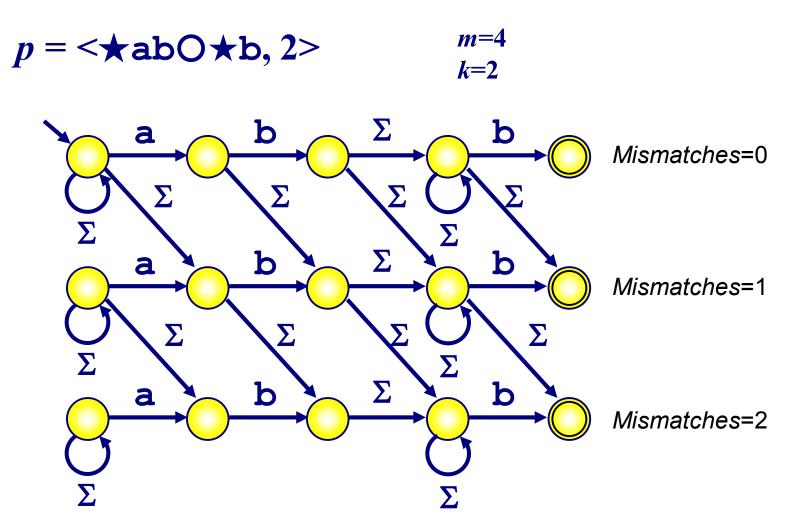
Approx. FVLDC Pattern Matching

We use an NFA that recognizes the language of a given approx. FVLDC pattern $\langle p, k \rangle$.

The NFA has (m+1)(k+1) states, but (m-k+1)(k+1) bits are actually enough.

If (m-k+1)(k+1) is not larger than the computer word length, our bit-parallel algorithm runs in O(|n|) time after $O(m|\Sigma|)$ -time preprocessing for p.

Approx. FVLDC Pattern Matching



The NFA has (m+1)(k+1) states.

Approx. FVLDC Pattern Matching

Only (m-k+1)(k+1) states are necessary.

More Classificatory Pattern Class

$$p = \star dO \star scO \star very \star$$

any pattern similar to "discovery"?

w = fhdihertlhglehglioogfrg xawpolmkhhjqirvnbotuhxxxxr ylnvhbtriscovbgneinmvgerig eooitrnrnvevroigreintnnvoi woireohirlneroiveryniritro They're far apart!! eitruijnnbrymxbairive

Bound the length of occurrence of *p* by a window size *h*.

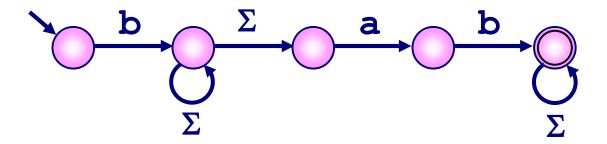
$$p = \star d0 \star sc0 \star very \star h$$

This way we can get rid of redundant matches, and obtain better classification!

Window Accumulated Pattern Matching

We use two **NFAs** each recognizes the language of either a given FVLDC pattern **p** or its reversal.

$$p^{\text{rev}} = b \star Oab \star$$



Using the **bit-parallel technique**, we can do pattern matching for $\langle p, h \rangle$ in $O(m|\Sigma|)$ preprocessing time and in $O(n^2)$ running time.

Same for Win-Acc. approx. FVLDC patterns.

Experimental Environment

Machine: Alpha Station XP1000

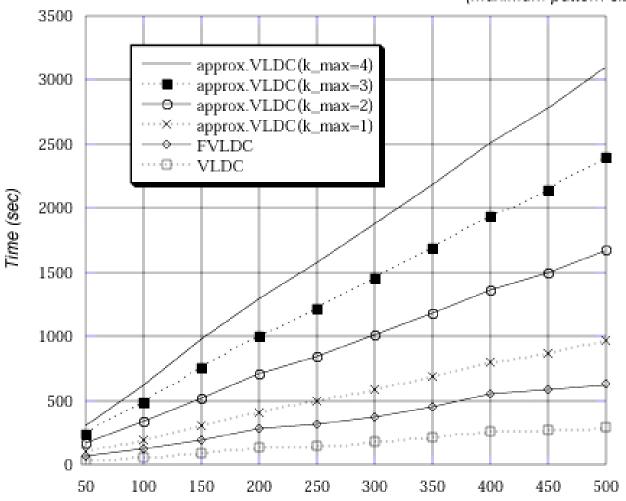
CPU: Alpha21264 processor of 667MHz

OS: Tru64 Unix OS V4.0F

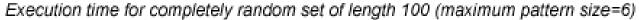
Datasets:

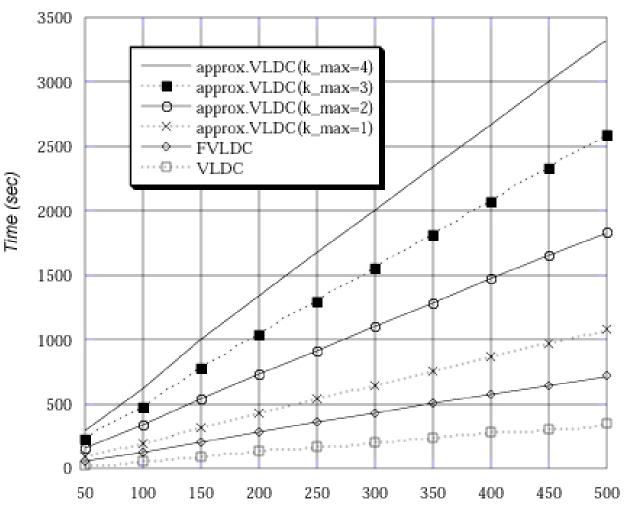
- (1) completely random data
- (2) VLDC pattern embedded data
- (3) FVLDC pattern embedded data
- (4) 2-approx. VLDC pattern embedded data
- (5) window-accumulated 2-approx. VLDC pattern embedded data

Execution time for 100 positive/100 negative completely random data of length 100 (maximum pattern size=6)

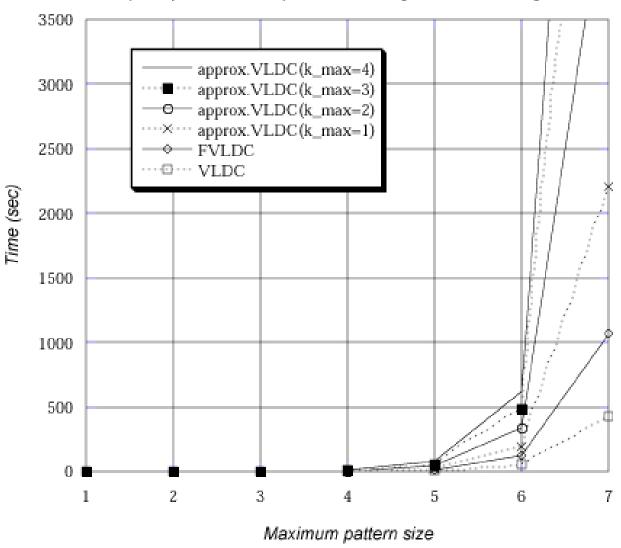


Length of each string in positive/negative set





of strings in each positive/negative set



	dataset					
pattern class	(1)	(2)	(3)	(4)	(5)	(5)
VLDC	423	109	236	182	224	(554)
FVLDC	1068	331	645	514	623	(1579)
approx. VLDC $(k_{max}=1)$	2203	725	1088	853	1026	(1820)
approx. VLDC $(k_{max}=2)$	4569	1660	2185	1790	2035	(3558)
approx. VLDC $(k_{max}=3)$	6973	2739	3324	2868	3146	(5679)
approx. VLDC $(k_{max}=4)$	9396	3880	4492	4008	4304	(8377)

Execution times (in seconds) for different pattern classes:

The maximum pattern length was set to 7.

Execution time for each window-accumulated version with dataset (5) is shown in parentheses.