
Discovering Most Classificatory Patterns for
Very Expressive Pattern Classes

Masayuki Takeda1,2, Shunsuke Inenaga3,
Hideo Bannai4, Ayumi Shinohara1,2,

and Setsuo Arikawa1

1Department of Informatics, Kyushu University
2Japan Science Technology Corporation Agency

3Department of Computer Science, University of Helsinki
4Human Genome Center, University of Tokyo

Background and Motivation

Distinguish two given string datasets
- to obtain a good rule and/or useful knowledge

Grade up BONSAI system
- so that it can deal with more expressive pattern
classes

Negative
Examples

Positive
Examples

Indexing Decision Tree Accuracy

Accuracy
Evaluation

Combinatorial
Optimization

Algorithm

POS NEGnegpos

I(POS) I(NEG)I(neg)I(pos)

Indexing

BONSAI ABCDEFGHIJKLMNOPQRSTUVWXY
0011001010001110000011010

x 11 y

x 101 y

x 111 y N

NP

P

Decision Tree
Generator

Machine Discovery System BONSAI

Datasets

[Shimozono et. al 1994]

Find a pattern string that occurs in all strings of A
and in no strings of B.

WAKANOHANA TAKANOHANA

CONTRIBUTIONS OF UN

TRADITIONAL APPROACHES

GENETIC ALGORITHMS

PROBABILISTIC RULE

NUMERIC TRANSFORMATION

PLAIN OMELETTE

TOY EXAMPLES

A B

Answer: BONSAI

Pattern Discovery from Datasets

AKEBONO MUSASHIMARU

CONTRIBUTIONS OF AI

BEYOND MESSY LEARNING

BASED ON LOCAL SEARCH ALGORITHMS

BOOLEAN CLASSIFICATION

SYMBOLIC TRANSFORMATION

BACON SANDWICH

PUBLICATION OF DISSERTATION

xp : The num. of strings in S that p matches.
yp : The num. of strings in T that p matches.

Optimization Problem

 Input: Two sets S, Tof strings
 Output: A pattern p that maximizes the

score function f(xp, yp, |S|, |T|).

Score function f expresses the goodness of p
in terms of separating the two sets S and T.

T

S
INPUT

OUTPUT

computing the “goodness”
for all possible patterns

the pattern of best score

as fast as
possible!!

Process of Computation

Previous Work

• BONSAI
(discovering best Substring pattern), Shimozono et al., 1994

• Discovering best Subsequence pattern, Hirao et al., 2000

• Discovering best Episode pattern, Hirao et al., 2001

• Discovering best VLDC pattern, Inenaga et al., 2002

• Discovering best Window Accumulated VLDC pattern,
Inenaga et al., 2002

This Work

We present efficient algorithms to discover:

• the best Fixed/Variable Length Don’t Care Pattern
• the best Approximate FVLDC Pattern

The aim is to apply more expressive pattern classes to BONSAI

• the best Window Accumulated FVLDC Pattern
• the best Window Accumulated Approx. FVLDC Pattern

The aim is to add a more classificatory power to the pattern classes

The goodness of pattern p

good(p, S, T) = f(xp, yp, |S|, |T|)

S, T : two given sets of strings
xp : num. of strings in S that p matches
yp : num. of strings in T that p matches

Score Function

If score function f is conic, then we can apply an efficient
pruning technique for speeding up the computation.

x

y

x

f

Score Function to be Conic

y

fx

y

(x, y)
(0, y)

(x, 0)(0, 0)

(x’, y’)

= max{f(0, 0), f(x, 0), f(0, y), f(x, y)}

f(x’, y’) ≤ upperBound(x, y)

upperBound(x, y) : the max value on the square

Conic Function Property

numOfMatchedStr(p, S)

nu
m

O
fM

at
ch

ed
St

r(
p,

 T
)

d∗sco

d∗scover

< The current
best score≤The goodness of

d∗scover
The upperBound of

d∗sco

Pruning Technique

FVLDC Pattern

A Fixed/Variable Length Don’t Care Pattern
is an element of Π = (Σ∪{○, ★})∗, where ○ matches
any character and ★ matches any string.

e.g. FVLDC pattern ab○a○★b matches abbaabbb.

b a bbab a

FVLDC Pattern Matching

We use an NFA that recognizes the language of a
given FVLDC pattern p. The num. of states is m+1,
where m is the num. of constants and ○’s in p.

p = ★ab○★b

a b b

Σ

Σ

Σ

Using the bit-parallel technique, we can do
matching for p in O(m|Σ|) preprocessing time
and O(n) running time .

Approximate FVLDC Pattern

An Approximate FVLDC Pattern is an element of
Π×Ν, where Ν is the set of non-negative integers.

Approx. FVLDC pattern <p, k> is said to match
a string w within distance k if the Hamming Distance
between p and w is within k.

e.g. Approx. FVLDC pattern <ab○a○★b, 1>
matches abbaabba.

b a bbaab a

Approx. FVLDC Pattern Matching

We use an NFA that recognizes the language
of a given approx. FVLDC pattern <p, k>.

The NFA has (m+1)(k+1) states, but (m-k+1)(k+1)
bits are actually enough.

If (m-k+1)(k+1) is not larger than the computer
word length, our bit-parallel algorithm runs
in O(|n|) time after O(m|Σ|)-time preprocessing for p.

Approx. FVLDC Pattern Matching

p = <★ab○★b, 2>

a b b

Σ

Σ

Σ
a b b

Σ

Σ

Σ
a b b

Σ

Σ

Σ

Σ ΣΣΣ

Σ Σ Σ Σ

The NFA has (m+1)(k+1) states.

Mismatches=0

Mismatches=1

Mismatches=2

m=4
k=2

Approx. FVLDC Pattern Matching

a b b

Σ

Σ

Σ
a b b

Σ

Σ

Σ
a b b

Σ

Σ

Σ

Σ ΣΣΣ

Σ Σ Σ Σ

Mismatches=0

Mismatches=1

Mismatches=2

Only (m-k+1)(k+1) states are necessary.

p = <★ab○★b, 2> m=4
k=2

More Classificatory Pattern Class

p = ★d○★sc○★very★

w = fhdihertlhglehglioogfrg
xawpolmkhhjqirvnbotuhxxxxr
ylnvhbtriscovbgneinmvgerig
eooitrnrnvevroigreintnnvoi
woireohirlneroiveryniritro
eitruijnnbrymxbairive

any pattern similar
to “discovery”?

Window Accumulation

p = ★d○★sc○★very★

h

Bound the length of occurrence of p
by a window size h.

This way we can get rid of redundant
matches, and obtain better classification!

Window Accumulated Pattern Matching

We use two NFAs each recognizes the language
of either a given FVLDC pattern p or its reversal.

prev = b★○ab★

b a b

Σ

Σ

Σ

Using the bit-parallel technique, we can do
pattern matching for <p, h> in O(m|Σ|) preprocessing
time and in O(n2) running time .

Same for Win-Acc. approx. FVLDC patterns.

Experimental Environment

Machine: Alpha Station XP1000
CPU: Alpha21264 processor of 667MHz
OS: Tru64 Unix OS V4.0F

Datasets:
(1) completely random data
(2) VLDC pattern embedded data
(3) FVLDC pattern embedded data
(4) 2-approx. VLDC pattern embedded data
(5) window-accumulated 2-approx.

VLDC pattern embedded data

Experimental Result 1

Experimental Result 2

Experimental Result 3

Experimental Result 4

(8377)43044008449238809396approx. VLDC (kmax= 4)

(5679)31462868332427396973approx. VLDC (kmax= 3)

(3558)20351790218516604569approx. VLDC (kmax= 2)
(1820)102685310887252203approx. VLDC (kmax= 1)

(1579)6235146453311068FVLDC

(554)224182236109423VLDC

pattern class
dataset

(1) (5)(2) (3) (4) (5)

Execution times (in seconds) for different pattern classes:
The maximum pattern length was set to 7.
Execution time for each window-accumulated version with dataset (5)
is shown in parentheses.

	Discovering Most Classificatory Patterns for Very Expressive Pattern Classes
	Background and Motivation
	Machine Discovery System BONSAI
	Pattern Discovery from Datasets
	Optimization Problem
	Process of Computation
	Previous Work
	This Work
	Score Function
	Score Function to be Conic
	Conic Function Property
	Pruning Technique
	FVLDC Pattern
	FVLDC Pattern Matching
	Approximate FVLDC Pattern
	Approx. FVLDC Pattern Matching
	Approx. FVLDC Pattern Matching
	Approx. FVLDC Pattern Matching
	More Classificatory Pattern Class
	Window Accumulation
	Window Accumulated Pattern Matching
	Experimental Environment
	Experimental Result 1
	スライド番号 24
	Experimental Result 3
	Experimental Result 4

