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Fully Compressed Pattern Matching [1/3]

pattern:

compressed text:
geoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(J
PED(A%RJG)ER%U)JGODAAQWT$JGWRE)$R
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WRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAA
QWT$JGWRE)$geoiy083qa0gj(#*gpfomo)#(JG
WRE$(U)%ARY)(

Dagstuhl&(aGcompressed pattern:
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Fully Compressed Pattern Matching [2/3]

compressed
text



where.jpg wally.jpg

I’m here. compressed
pattern

compressed text

Possible Application of FCPM



Input : T = compress(T) and P = compress(P).

Output : Set Occ(T, P) of substring occurrences 
of pattern P in text T.

Fully Compressed Pattern Matching [3/3]



FCPM Problem

 ( , ) | | 1: , ,Occ T P u T uPw u w     



SLP T :  sequence of assignments
X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a ( 
Xi Xj ( i, j < k ).

exprk :

SLP T for string T is a CFG in Chomsky 
normal form s.t. L(T) = {T}.

Straight Line Program [1/2]

a 



X1 = a
X2 = b
X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6 

X8 = X7X5

n

N
N = O(2n)

T =

SLP T

Straight Line Program [2/2]



N
N = O(2n)

T =

X8

X7 X5

Straight Line Program [2/2]

X1 = a
X2 = b
X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6 

X8 = X7X5

n

SLP T



From LZ77 to SLP

[Rytter ’00, ’03, ’04]

For any string T given in LZ77-compressed 
form of size k, an SLP generating T of size 
O(k2) can be constructed in O(k2) time.



Input : SLP T for text T and SLP P for pattern P.

Output : Compact representation of set Occ(T, P) 
of substring occurrences of P in T.

FCPM for SLP

 We want to solve the problem efficiently
(i.e., polynomial time & space in n and m). 
◦ n = the size of SLP T, m = the size of SLP P

 |T| = O(2n)  T (also P) cannot be decompressed
 |Occ(T,P)| = O(2n) compact representation

FCPM Problem for SLP






Xl Xr

X

Y

Occ (X, Y) = { i Occ(X, Y) |  |Xl| - |Y|     i |Xl|}

set of occurrences of Y
that cover or touch the
boundary of Xl and Xr.

X: variable of T
Y: variable of P

Key Definition



Xl Xr

X
Occ (X, Y) forms a single 
arithmetic progression.

O(1) space

Y

Key Lemma

[Miyazaki et al. ’97]



X

Xl Xr

Y Y Y

Computing Occ(X, Y) is 
reduced to computing
Occ (X, Y).

Key Observation

( , )
( , ) ( , ) ( , ) | |l r l

Occ X Y
Occ X Y Occ X Y Occ X Y X



  

[Miyazaki et al. ’97]



X1X1

XiXi

XnXn

Y1Y1 YjYj YmYm

Occ  (X1,Y1)Occ  (X1,Y1)

Occ  (Xi,Y1)Occ  (Xi,Y1)

Occ (Xn,Y1)Occ (Xn,Y1) Occ (Xn,Yj)Occ (Xn,Yj)

Occ  (Xi,Yj)Occ  (Xi,Yj)

Occ  (X1,Yj)Occ  (X1,Yj) Occ  (X1,Ym)Occ  (X1,Ym)

Occ  (Xi,Ym)Occ  (Xi,Ym)

Occ  (Xn,Ym)Occ  (Xn,Ym)

Occ  (T, P)DP for Occ (Xi, Yj)

O(1) space

Compact representation of Occ(T, P)
which answers a membership query to 

Occ(T, P) in O(n) time.



Known Results

Time Space Compression

Miyazaki et al. ’97 O(m2n2) O(mn) SLP

Lifshits ’07 O(mn2) O(mn) SLP

Hirao et al. ’00 O(mn) O(mn) Balanced SLP

Balanced SLP



Fully Compressed Subsequence 
Pattern Matching [1/2]

 P is said to be a subsequence of T, if P can be 
obtained by removing zero or more characters 
from T.

FC Subsequence PM Problem
Input : SLP T for text T and SLP P for pattern P.

Output : Find whether P is a subsequence of T.



Fully Compressed Subsequence 
Pattern Matching [2/2]

The Fully Compressed Subsequence 
Pattern Matching Problem on SLP 
compressed strings is NP-hard.

[Lifshits & Lohrey ’06]



Input : SLPs T and S for strings T and S, resp.

Output : Dis(similarity) of T and S.

Compressed String Comparison [1/2]

CSC Problem



Compressed String Comparison [2/2]

Measure Time Space Reference
Equality O(mn2) O(mn) Lifshits ’07

Hamming 
Distance #P-complete PSPACE Lifshits ’07

Longest Common 
Substring O((m+n)4log(m+n)) O((m+n)3) Matsubara et 

al. ’08

Longest Common 
Subsequence NP-hard PSPACE Lifshits & 

Lohrey ’06



Property of common substrings [1/3]

 For each common substring  Z of string S and T,
there always exists a variable Xi = XlXr and Yj = YLYR
such that:
◦ Z is a common substring of Xi and Yj

◦ Z contains an overlap between Xl and YR

common 
substring

ZZ

ZZ

Xi
Xl Xr

Yj
YL YR

ww

Overlap



• For each common substring  Z of string S and T,
there always exists a string w such that:
– w is a substring of Z
– w is an overlap of variables of S and T

ww

Xi
Xl Xr

Yj
YL YR

Overlap

Property of common substrings [2/3]



 For each common substring  Z of string S and T,
there always exists a string w such that:
◦ Z can be calculated by expanding w

common 
substring

ww
ZZ

ZZ

Xi
Xl Xr

Yj
YL YR Expand 

Process
Expand 
Process

Overlap

Property of common substrings [1/3]



Computing Overlaps

Lemma [Karpinski et al. ’97]
For any variables Xi and Xj of SLP T, OL(Xi, Xj) can 
be represented by O(n) arithmetic progressions.

Xi

Yj

Theorem [Karpinski et ai. ’97]
For any SLP T, OL(Xi, Xj) can be computed in total of 
O(n4logn) time and O(n3) space for each i, j.



Input : SLP T for string T.

Output : Compact representation of set Period(T)
of periods of T.

Periods of Compressed String [1/2]

Compressed Period Problem

  ( ) | | | | : , ,Period T T u T uv wu v w      



Periods of Compressed String [2/2]

[Lifshits ’06, ’07]

An O(n)-size representation of 
Period(T) can be computed in O(n4)
time with O(n3) space. 



Input : SLP T for string T.

Output : Compact representation of set Pal(T)
of maximal palindromes of T.

Compressed Palindrome Discovery [1/2]

Compressed Palindrome Discovery Problem

 Pal(T) = {                             }

 ex. T = baabbaa

( ) / 2 .p q  

(p,q) : T[p:q] is the maximal palindrome 
centered at 



Compressed Palindrome Discovery [2/2]

[Matsubara et al. ’08]

An O(n2)-size representation of 
Pal(T) can be computed in O(n4)
time with O(n2) space. 



Composition System

CS T :  sequence of assignments
X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a ( 
Xi Xj ( i, j < k ),
[p]XiXj

[q] ( i, j < k ).
exprk :

 [p]X = X[1:p]
 X[q] = X[|X|-q+1:|X|]

a 



From LZ77 to CS

For any string T given in LZ77-compressed 
form of size k, a CS generating T of size 
O(klogk) can be constructed in polynomial 
time.

[Gasieniec et al. ’96]



Input : CS T for string T.

Output : Check the square freeness of T
(whether T contains a square or not).

Compressed Square Discovery [1/2]

Compressed Square Problem

 A square is any non-empty string of the 
form xx.



Compressed Square Discovery [2/2]

[Gasieniec et al. ’96, Rytter’00]

We can test square freeness of T in 
polynomial time in the size of given 
composition system T. 



2D SLP
2D SLP T :  sequence of assignments

X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a ( 
Xi Xj ( i, j < k, height(Xi) = height(Xj) ),
Xi     Xj ( i, j < k, width(Xi) = width(Xj) ),

exprk : 

Xk Xi Xj=
Xi

Xj
Xk =

horizontal concatenation 
vertical concatenation

a 



[Berman et al. ’97, Rytter’00]

The Fully Compressed Pattern 
Matching Problem for 2D SLP is 

-complete.

FCPM for 2D SLP

2
P



Open Problems [1/2]

 Edit distance of two SLP-compressed 
strings.

 Compact representation of all maximal 
runs of an SLP-compressed string.

◦ A run is any string x whose minimal period p
satisfies p     |x|/2.

◦ ex. 


8
3( )aab aabaabaa



0.927N
[Franek et al. ’03]

1.05N

0.90N

0.95N

c

0.944565N
[Kusano et al. ’08]

1.048N
[Crochemore et al. ’08]

Max Number of Runs
in a String

5N  
[Rytter ’06]

3.48N 
[Puglisi et al. ’08]

3.44N  
[Rytter ’07]

1.6N
[Crochemore & Ilie ’08]

N

2N

3N

4N

5N

0

cN
[Kolpakov & Kucherov ’99]

c

1.00N

N: (uncompressed) text length



Open Problems [2/2]
 Fully Compressed Tree Pattern Matching for 

grammar based XML compression.
◦ TGCA (Tree Grammar Compression Algorithm) 

[Onuma et al. ’06]
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