
Pattern Matching on
Compressed Texts II

Shunsuke Inenaga
Kyushu University, Japan

Agenda

 Fully Compressed Pattern Matching
 Straight Line Program
 Compressed String Comparison
 Period of Compressed String
 Pattern Discovery from Compressed

String (Palindrome and Square)
 FCPM for 2D SLP
 Open Problems

Fully Compressed Pattern Matching [1/3]

pattern:

compressed text:
geoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(J
PED(A%RJG)ER%U)JGODAAQWT$JGWRE)$R
J)REWJFDOPIJKSeoiy083qa0gj(#*gpfomo)#(JG
WRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAA
QWT$JGWRE)$geoiy083qa0gj(#*gpfomo)#(JG
WRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAA
QWT$JGWRE)$geoiy083qa0gj(#*gpfomo)#(JG
WRE$(U)%ARY)(

Dagstuhl&(aGcompressed pattern:

compressed
text

classical pattern
matching algorithm

compressed pattern
matching algorithm

uncompressed
pattern

uncompressed
text

uncompressed
pattern

p
compressed

pattern

fully compressed pattern
matching algorithm

Fully Compressed Pattern Matching [2/3]

compressed
text

where.jpg wally.jpg

I’m here. compressed
pattern

compressed text

Possible Application of FCPM

Input : T = compress(T) and P = compress(P).

Output : Set Occ(T, P) of substring occurrences
of pattern P in text T.

Fully Compressed Pattern Matching [3/3]

FCPM Problem

 (,) | | 1: , ,Occ T P u T uPw u w

SLP T : sequence of assignments
X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a (
Xi Xj (i, j < k).

exprk :

SLP T for string T is a CFG in Chomsky
normal form s.t. L(T) = {T}.

Straight Line Program [1/2]

a

X1 = a
X2 = b
X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6

X8 = X7X5

n

N
N = O(2n)

T =

SLP T

Straight Line Program [2/2]

N
N = O(2n)

T =

X8

X7 X5

Straight Line Program [2/2]

X1 = a
X2 = b
X3 = X1X2

X4 = X3X1

X5 = X3X4

X6 = X5X5

X7 = X4X6

X8 = X7X5

n

SLP T

From LZ77 to SLP

[Rytter ’00, ’03, ’04]

For any string T given in LZ77-compressed
form of size k, an SLP generating T of size
O(k2) can be constructed in O(k2) time.

Input : SLP T for text T and SLP P for pattern P.

Output : Compact representation of set Occ(T, P)
of substring occurrences of P in T.

FCPM for SLP

 We want to solve the problem efficiently
(i.e., polynomial time & space in n and m).
◦ n = the size of SLP T, m = the size of SLP P

 |T| = O(2n) T (also P) cannot be decompressed
 |Occ(T,P)| = O(2n) compact representation

FCPM Problem for SLP

Xl Xr

X

Y

Occ (X, Y) = { i Occ(X, Y) | |Xl| - |Y| i |Xl|}

set of occurrences of Y
that cover or touch the
boundary of Xl and Xr.

X: variable of T
Y: variable of P

Key Definition

Xl Xr

X
Occ (X, Y) forms a single
arithmetic progression.

O(1) space

Y

Key Lemma

[Miyazaki et al. ’97]

X

Xl Xr

Y Y Y

Computing Occ(X, Y) is
reduced to computing
Occ (X, Y).

Key Observation

(,)
(,) (,) (,) | |l r l

Occ X Y
Occ X Y Occ X Y Occ X Y X

[Miyazaki et al. ’97]

X1X1

XiXi

XnXn

Y1Y1 YjYj YmYm

Occ (X1,Y1)Occ (X1,Y1)

Occ (Xi,Y1)Occ (Xi,Y1)

Occ (Xn,Y1)Occ (Xn,Y1) Occ (Xn,Yj)Occ (Xn,Yj)

Occ (Xi,Yj)Occ (Xi,Yj)

Occ (X1,Yj)Occ (X1,Yj) Occ (X1,Ym)Occ (X1,Ym)

Occ (Xi,Ym)Occ (Xi,Ym)

Occ (Xn,Ym)Occ (Xn,Ym)

Occ (T, P)DP for Occ (Xi, Yj)

O(1) space

Compact representation of Occ(T, P)
which answers a membership query to

Occ(T, P) in O(n) time.

Known Results

Time Space Compression

Miyazaki et al. ’97 O(m2n2) O(mn) SLP

Lifshits ’07 O(mn2) O(mn) SLP

Hirao et al. ’00 O(mn) O(mn) Balanced SLP

Balanced SLP

Fully Compressed Subsequence
Pattern Matching [1/2]

 P is said to be a subsequence of T, if P can be
obtained by removing zero or more characters
from T.

FC Subsequence PM Problem
Input : SLP T for text T and SLP P for pattern P.

Output : Find whether P is a subsequence of T.

Fully Compressed Subsequence
Pattern Matching [2/2]

The Fully Compressed Subsequence
Pattern Matching Problem on SLP
compressed strings is NP-hard.

[Lifshits & Lohrey ’06]

Input : SLPs T and S for strings T and S, resp.

Output : Dis(similarity) of T and S.

Compressed String Comparison [1/2]

CSC Problem

Compressed String Comparison [2/2]

Measure Time Space Reference
Equality O(mn2) O(mn) Lifshits ’07

Hamming
Distance #P-complete PSPACE Lifshits ’07

Longest Common
Substring O((m+n)4log(m+n)) O((m+n)3) Matsubara et

al. ’08

Longest Common
Subsequence NP-hard PSPACE Lifshits &

Lohrey ’06

Property of common substrings [1/3]

 For each common substring Z of string S and T,
there always exists a variable Xi = XlXr and Yj = YLYR
such that:
◦ Z is a common substring of Xi and Yj

◦ Z contains an overlap between Xl and YR

common
substring

ZZ

ZZ

Xi
Xl Xr

Yj
YL YR

ww

Overlap

• For each common substring Z of string S and T,
there always exists a string w such that:
– w is a substring of Z
– w is an overlap of variables of S and T

ww

Xi
Xl Xr

Yj
YL YR

Overlap

Property of common substrings [2/3]

 For each common substring Z of string S and T,
there always exists a string w such that:
◦ Z can be calculated by expanding w

common
substring

ww
ZZ

ZZ

Xi
Xl Xr

Yj
YL YR Expand

Process
Expand
Process

Overlap

Property of common substrings [1/3]

Computing Overlaps

Lemma [Karpinski et al. ’97]
For any variables Xi and Xj of SLP T, OL(Xi, Xj) can
be represented by O(n) arithmetic progressions.

Xi

Yj

Theorem [Karpinski et ai. ’97]
For any SLP T, OL(Xi, Xj) can be computed in total of
O(n4logn) time and O(n3) space for each i, j.

Input : SLP T for string T.

Output : Compact representation of set Period(T)
of periods of T.

Periods of Compressed String [1/2]

Compressed Period Problem

 () | | | | : , ,Period T T u T uv wu v w

Periods of Compressed String [2/2]

[Lifshits ’06, ’07]

An O(n)-size representation of
Period(T) can be computed in O(n4)
time with O(n3) space.

Input : SLP T for string T.

Output : Compact representation of set Pal(T)
of maximal palindromes of T.

Compressed Palindrome Discovery [1/2]

Compressed Palindrome Discovery Problem

 Pal(T) = { }

 ex. T = baabbaa

() / 2 .p q

(p,q) : T[p:q] is the maximal palindrome
centered at

Compressed Palindrome Discovery [2/2]

[Matsubara et al. ’08]

An O(n2)-size representation of
Pal(T) can be computed in O(n4)
time with O(n2) space.

Composition System

CS T : sequence of assignments
X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a (
Xi Xj (i, j < k),
[p]XiXj

[q] (i, j < k).
exprk :

 [p]X = X[1:p]
 X[q] = X[|X|-q+1:|X|]

a

From LZ77 to CS

For any string T given in LZ77-compressed
form of size k, a CS generating T of size
O(klogk) can be constructed in polynomial
time.

[Gasieniec et al. ’96]

Input : CS T for string T.

Output : Check the square freeness of T
(whether T contains a square or not).

Compressed Square Discovery [1/2]

Compressed Square Problem

 A square is any non-empty string of the
form xx.

Compressed Square Discovery [2/2]

[Gasieniec et al. ’96, Rytter’00]

We can test square freeness of T in
polynomial time in the size of given
composition system T.

2D SLP
2D SLP T : sequence of assignments

X1 = expr1 ; X2 = expr2; … ; Xn = exprn;

Xk : variable,
a (
Xi Xj (i, j < k, height(Xi) = height(Xj)),
Xi Xj (i, j < k, width(Xi) = width(Xj)),

exprk :

Xk Xi Xj=
Xi

Xj
Xk =

horizontal concatenation
vertical concatenation

a

[Berman et al. ’97, Rytter’00]

The Fully Compressed Pattern
Matching Problem for 2D SLP is

-complete.

FCPM for 2D SLP

2
P

Open Problems [1/2]

 Edit distance of two SLP-compressed
strings.

 Compact representation of all maximal
runs of an SLP-compressed string.

◦ A run is any string x whose minimal period p
satisfies p |x|/2.

◦ ex.

8
3()aab aabaabaa

0.927N
[Franek et al. ’03]

1.05N

0.90N

0.95N

c

0.944565N
[Kusano et al. ’08]

1.048N
[Crochemore et al. ’08]

Max Number of Runs
in a String

5N
[Rytter ’06]

3.48N
[Puglisi et al. ’08]

3.44N
[Rytter ’07]

1.6N
[Crochemore & Ilie ’08]

N

2N

3N

4N

5N

0

cN
[Kolpakov & Kucherov ’99]

c

1.00N

N: (uncompressed) text length

Open Problems [2/2]
 Fully Compressed Tree Pattern Matching for

grammar based XML compression.
◦ TGCA (Tree Grammar Compression Algorithm)

[Onuma et al. ’06]

References [1/5]
 [Matsubara et al. ’08] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T.

Nakamura, and K. Hashimoto, Computing longest common
substring and all palindromes from compressed strings, Proc.
SOFSEM'08, LNCS4910, pp. 364-375, 2008

 [Lifshits ’07] Y. Lifshits, Processing compressed texts: A tractability
border , Proc. CPM'07, LNCS 4580, pp 228-240, 2007

 [Lifshits ’06] Y. Lifshits, Solving Classical String Problems an
Compressed Texts, Dagstuhl Seminar Proceedings 06201, Schloss
Dagstuhl, 2006

 [Hirao et ail. ’00] M. Hirao, A. Shinohara, M. Takeda, and S. Arikawa, Faster
fully compressed pattern matching algorithm for balanced
straight-line programs, Proc. of SPIRE2000, pp. 132-138, IEEE Computer
Society, 2000

References [2/5]
 [Miyazaki et al. ’97] M. Miyazaki, A. Shinohara, and M. Takeda, An

improved pattern matching algorithm for strings in terms of
straight-line programs, Proc. CPM'97, LNCS1264, pp.1-11, 1997

 [Gasieniec ’96] L. Gasieniec, M. Karpinski, W. Plandowski, W. Rytter,
Efficient Algorithms for Lempel-Zip Encoding (Extended
Abstract), Proc. SWAT’96, LNCS1097, pp. 392-403, 1996

 [Lifsthis & Lohrey ’06] Y. Lifshits and M. Lohrey, Querying and
Embedding Compressed Texts, Proc. MFCS’06, LNCS4162, pp. 681-692,
2006

 [Rytter ’04] W. Rytter, Grammar Compression, LZ-Encodings, and
String Algorithms with Implicit Input, Proc. ICALP 2004, LNCS 3142,
pp. 15-27, 2004

References [3/5]
 [Rytter ’03] W. Rytter, Application of Lempel-Ziv factorization to

the approximation of grammar-based compression, TCS, Volume
302, Number 1-3, pp. 211-222, 2003

 [Rytter ’00] W. Rytter, Compressed and fully compressed pattern
matching in One and Two Dimensions, Proceedings of IEEE, Volume
88, Number 11, pp. 1769-1778, 2000

 [Berman et al. ’97] P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, W.
Rytter, On the Complexity of Pattern Matching for Highly
Compressed Two-Dimensional Texts, Proc. CPM’97, LNCS1264, pp.
40-51 1997

 [Onuma et al. ’06] J. Onuma, K. Doi, and A. Yamamoto, Data compression
and anti-unification for semi-structured documents with tree
grammars (in Japanese), IEICE Technical Report AI2006-9, pages 45–50,
2006.

References [4/5]
 [Kusano et al. ’08] K. Kusano, W. Matsubara, A. Ishino, H. Bannai, A.

Shinohara, New Lower Bounds for the Maximum Number of Runs
in a String, http://arxiv.org/abs/0804.1214

 [Franek et al. ’03] F. Franek, R. Simpson, W. Smyth, The maximum
number of runs in a string, Proc. AWOCA’03, pp. 26–35, 2003.

 [Kolpakov & Kucherov ’99] R. Kolpakov and G. Kucherov, Finding
maximal repetitions in a word in linear time, Proc. FOCS’99, pp.
596–604, 1999.

 [Rytter ’06] W. Rytter, The number of runs in a string: Improved
analysis of the linear upper bound, Proc. STACS’06, LNCS3884, pp.
184–195, 2006.

References [5/5]
 [Rytter ’07] W. Rytter, The number of runs in a string, Inf. Comput.,

Volume 205, Number 9, pp. 1459–1469, 2007.

 [Crochemore & Ilie ’08] M. Crochemore and L. Ilie, Maximal repetitions
in strings, J. Comput. Syst. Sci., Volume 74, Number 5, pp. 796-807, 2008.

 [Crochremore et al. ’08] M. Crochemore, L. Ilie, and L. Tinta, Towards a
Solution to the "Runs" Conjecture, Proc. CPM’08, LNCS5029, pp. 290-
302, 2008.

 [Puglisi et al. ’08] S. Puglisi, J. Simpson, W. F. Smyth, How many runs can a
string contain?, TCS, Volume 401, Issues 1-3, pp.165-171, 2008.

 [Kaprinski et al. ’97] M. Karpinski, W. Rytter, A. Shinohara, An efficient
pattern-matching algorithm for strings with short descriptions,
Nordic Journal of Computing, Number 4, pp.172–186, 1997.

