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What we did after Dagstuhl Seminar 
08261

 In Dagstuhl Seminar 08261 (in 2008), 
I gave a survey talk about algorithmic results on
grammar-based compressed strings, which were 
achieved before 2008.

 Today, I will talk about our new(er) results 
we achieved after 2008.
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Compressed String Processing [Cont.]

 Suppose that huge string data is stored in a 
compressed form.

 Given a compressed string, our goal is to perform 
various kinds of processing on the compressed 
string, without decompressing the whole string.

 Our input is a straight-line program (SLP).



Straight Line Program (SLP)

An SLP is a sequence of productions

X1 = expr1, X2 = expr2, ···, Xn = exprn

• expri = a (a )
• expri = Xl Xr ( l, r < i )

 The size of the SLP is the number n of productions.

 An SLP is essentially a CFG deriving a single string.

 SLPs model outputs of grammar-based compression
algorithms (e.g., Re-pair, Sequitur, LZ78, etc).



SLP S

X1 = a
X2 = b
X3 = X1 X1
X4 = X1 X2
X5 = X3 X4
X6 = X5 X4
X7 = X5 X6

Example of SLP
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DAG for SLP S Derivation tree T of SLP S
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DAG view of SLP

 DAG is compressed representation of derivation tree.
 SLP is compressed representation of string.



X4

Important Remark

 Derivation trees are used only for explanations,
and are never constructed in our algorithms.

 CSP on SLPs can be seen as algorithmic technique
to perform various kinds of operations 
on the DAG for SLP, not on the derivation tree.
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Notations

n : the size of a given SLP S

h : the height of the derivation tree T of S

N : the length of the decompressed string w
that is represented by SLP S

 log2 N h n always holds.

 In theory, N = O(2n).
 Solutions polynomial in n are beneficial.



Pattern Mining

problem time space (words)
q-gram 

frequencies O(qn) O(qn)

q-gram 
frequencies O(N-) O(N-)

q-gram 
non-overlapping 

frequencies
O(q2n) O(qn)

longest repeating 
substring O(n4 log n) O(n3)

N- min(qn, N) always holds



SLP Text v.s Uncompressed Pattern

problem time space (words)
(window) 

subsequence
matching

O(nM) O(nM)

(window)
VLDC pattern 

matching
O(nM) O(nM)

convolution O((N-) log M) O((N-) log M)

 M is the length of uncompressed pattern
 N- min(nM, N) always holds



String Regularities

problem time space (words)
square freeness O(n3h log N) O(n2)

repetitions
(runs & squares) O(n3h) O(n2)

palindromes O(nh (n + h log N)) O(n2)
gapped 

palindromes O(nh (n2+ g log N)) O(n (n + g))

periods O(n2h) O(n2)
covers O(nh (n  log2 N)) O(n2)

g is the fixed gap length



Factorization

problem time space (words)
LZ78 factorization O(n + s log N) O(n + s)
LZ78 factorization O(n + s log s) O(n + s log s)
LZ77 factorization O(zn2h log N) O(n2 + z)

Lyndon
factorization O(n4 + mn3h) O(n2)

Lyndon
factorization O(nh (n + log2 N)) O(n2)

 s is the number of LZ78 factors
 z is the number of LZ77 factors
 m is the number of Lyndon factors



And Some Others

problem time space (words)

longest common 
substring O(n4 log n) O(n2 log N)

longest common 
extension

O(n3h) preprocess
O(h log N) query

O(n2)

Aho-Corasick
automaton O(n4 log n) O(n2 log N)

Our SLP-based Aho-Corasick automaton runs 
in O(|u| (k + h + log||)) time on uncompressed text u,
where k is the number of patterns.



Problem 1 (q-gram frequencies on SLP)

q-gram Frequency on SLP

Given an SLP S representing string w
and a positive integer q, compute Occ(w, p) 
for all substrings p of w of length q.

Occ(w, p) : the number of occurrences of p in w



Solution for Uncompressed String

 Given the uncompressed string w, we can solve 
the q-gram frequencies problem in O(N) time, 
using the suffix array and LCP array of w.
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Solution for Uncompressed String
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In the sequel, I will show how to simulate 
this O(N)-time algorithm in O(qn) time.



Stab
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An integer interval [b, e] (1 b e N) is said to be 
stabbed by a variable Xi, if the LCA of the bth and 
eth leaves of the derivation tree T is labeled by Xi.



Observation

Xi

j

 Assume that the occurrence of a q-gram p
starting at position j is stabbed by variable Xi.

 Then, in any other occurrence of Xi in T, 
there is another stabbed occurrence of p.

j+q -1

T

p

Xi

p

Xi

pw



Problem 2

Sub-problems
 Hence, the q-gram frequencies problem on 

SLP reduces to the following sub-problems:

For each variable Xi, count the number of 
occurrences of Xi in the derivation tree T.

For each variable Xi, count the number of 
occurrences of each q-gram stabbed by Xi.

Problem 3



Solving Problem 2
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Lemma 1

Problem 2 can be solved in O(n) time.
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Solving Problem 2
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 The root occurs exactly once.

Lemma 1

Problem 2 can be solved in O(n) time.



Solving Problem 2
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 For each node in a topological 
order, propagate its number of 
occurrences to its children.

Lemma 1

Problem 2 can be solved in O(n) time.



Solving Problem 2
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Problem 2 can be solved in O(n) time.

 For each node in a topological 
order, propagate its number of 
occurrences to its children.



Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.
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Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.
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Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.
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Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.
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Solving Problem 3
 Each variable Xi can stab at most q-1 occurrences 

of q-grams.

Xi

q-1

Xl Xr



Solving Problem 3
 We decompress substring 

ti = Xl[|Xl|-q+2..|Xl|] Xr[1..q-1] of length 2q-2.

Xi

q-1 q-1

Xl Xr

ti



Solving Problem 3
 Clearly, all q-grams stabbed by Xi occur inside ti.

Xi

q-1 q-1

Xl Xr

ti



Lemma 2

Solving Problem 3

Problem 3 can be solved in O(qn) time.

 For all variables Xi, substring ti can be 
computed in a total of O(qn) time, by a 
simple DP.

 We construct the suffix array and LCP array 
for string z = t1t2 … tn, in O(|z|) = O(qn) time.



Theorem 1  [JDA 2013] 

q-gram Frequency on SLP

Problem 1 (q-gram frequencies on SLP) can 
be solved in O(qn) time.

 Easily follows from Lemma 1 and Lemma 2.



Experimental Result
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 For smaller values of q, 
our O(qn) solution overcomes the O(N) solution 
both in theory and in practice.

 Is it possible to improve our solution so that 
it works efficiently for larger values of q?

 At least in theory, the answer is yes!

Improved Algorithm for Larger q



Improved Algorithm for Larger q

Lemma 3

We can construct, in linear time, an edge-
labeled tree of size O(N-) representing all 
q-grams which occur in w.

 N- min(qn, N) denotes the total length 
of the edge labels of the tree.



Example of Edge-Labeled Tree
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Example of Edge-Labeled Tree
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Example of Edge-Labeled Tree
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This tree contains all the 
information needed to 
compute q-grams stabbed 
by each variable.



Theorem 1  [CPM 2012] 

Improved Algorithm for larger q

Problem 1 (q-gram frequencies on SLP) can 
be solved in O(N-) = O(min(qn, N)) time.

 We use a linear-time algorithm to construct 
the suffix tree of a tree (cf. Shibuya 2003).

 Our improved solution is at least as 
efficient as the O(N)-time solution, and can 
be much faster when q and n are small.



Problem 4 (finding repetitions on SLP)

Finding Repetitions on SLP

Given an SLP S representing string w, 
compute squares and runs that occur in w.

abbabbabbbabbbabbba

squares
(of form xx)

runs
(maximal repetition xk x’)



Stabbed Runs

 For each run in the string w, there is a unique 
variable Xi that stabs the run.

T

w

Xi



Stabbed Runs [Cont.]

 In other occurrences of Xi in the derivation 
tree, the same run is stabbed by Xi.

T

w

Xi Xi



Stabbed Runs [Cont.]

 Computing runs in string w reduces to 
computing stabbed runs for each variable Xi.

T

w

Xi Xi



Stabbed Runs [Cont.]

 For each variable Xi, firstly we compute 
(the beginning and ending positions of) 
stabbed squares.

Xi



Stabbed Runs [Cont.]

 We then determine how long the periodicity 
continues to the right and to the left.

 We can efficiently do this without decompressing Xi.

Xi



Stabbed Runs [Cont.]

 We then determine how long the periodicity 
continues to the right and to the left.

 We can efficiently do this without decompressing Xi.

Xi



Theorem 2 [MFCS 2013] 

Finding Repetitions on SLP

O(n log N)-size representation of all runs 
and squares can be computed in O(n3h)
time using O(n2) space.

 There are (N) runs in a string of length N.
 Naïve representation of runs requires 

O(2n) space in the worst case.

 Hence we need a compact representation of output.



Compact Representation of Runs

Lemma 4

Our O(n log N)-size representation of runs 
supports the following query in O(h log N) time:

Given an interval [b, e] with 1 , 
count the number of runs and squares that 
occur in the substring w[b..e].



Finding Palindromes on SLP

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w, 
compute maximal palindromes of w.

abbbaabbbbabbbaab
maximal 
palindromes
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Stabbed Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 For each variable Xi, there can be 3 different 
types of stabbed maximal palindromes. 



Computing Type 1 Palindromes

Xi

Xl
Xr

a b

 Type 1 maximal palindromes of Xi can be 
computed by extending the arms of the 
suffix palindromes of Xl.



Lemma 5 [Apostolico et al., 1995]

Suffix Palindromes

For any string of length N, the lengths of its 
suffix palindromes can be represented by 
O(log N) arithmetic progressions.

 We can extend the suffix palindromes 
belonging to the same arithmetic progression 
in a batch, efficiently, using the periodicity.



Theorem 3 [TCS 2009] 

Finding Palindromes on SLP

O(n log N)-size representation of all maximal 
palindromes can be computed 
in O(nh (n + h log N)) time using O(n2) space.

 The above time complexity is improved to 
O(nh (n + log2 N)) by using our recent LCE 
algorithm on SLP.



Finding Gapped Palindromes on SLP

GiGi

Problem 6 (finding gapped palindromes on SLP)

Given an SLP S representing string w and 
a positive integer g,  compute g-gapped 
palindromes that occur in w.

abababcbabaabbabca

3-gapped 
palindromes



Stabbed g-gapped Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 There are 3 types of g-gapped palindromes 
stabbed by variable Xi. 



Theorem 4 [MFCS 2013] 

Finding Gapped Palindromes on SLP

O(n (log N + g))-size representation of all 
g-gapped palindromes can be computed 
in O(nh (n2 + g log N)) time using O(n2) space.

 Because of the gap between arms, we cannot 
use Lemma 5 (ar. pr. suffix palindromes).

 Instead, we used a similar technique to our 
solution for computing stabbed squares.



Concluding Remarks

 A number of string problems can be efficiently 
solved on SLP-compressed strings.

 The common key concept is stabbing, which we 
call “串 (kushi)”, a Japanese meaning a skewer.

Oden
(traditional 
Japanese food)


