
Dagstuhl Seminar 13232

Algorithms on
grammar compressed strings

Shunsuke Inenaga
Kyushu University, Japan

What we did after Dagstuhl Seminar
08261

 In Dagstuhl Seminar 08261 (in 2008),
I gave a survey talk about algorithmic results on
grammar-based compressed strings, which were
achieved before 2008.

 Today, I will talk about our new(er) results
we achieved after 2008.

Collaborations

 Japanese:
Hideo Bannai, Tomohiro I, Masayuki Takeda,
Keisuke Goto, Yuto Nakashima, Kouji Shimohira,
Takanori Yamamoto (Kyushu U.),
Ayumi Shinohara, Kazuyuki Narisawa,
Wataru Matsubara (Tohoku U.)

 International:
Paweł Gawrychowski (Max Planck),
Travis Gagie (U. Helsinki), Gad M. Landau (U. Haifa),
Moshe Lewenstein (Bar Ilan U.)

compressed
data

.

.

.

.

.

.

.

.

.

.

uncompressed
data

output

output

processprocess
In CSP we do not

decompress
the whole data

Compressed String Processing (CSP)

decompress processprocess

non-CSP

compressed
data

CSP

Compressed String Processing [Cont.]

 Suppose that huge string data is stored in a
compressed form.

 Given a compressed string, our goal is to perform
various kinds of processing on the compressed
string, without decompressing the whole string.

 Our input is a straight-line program (SLP).

Straight Line Program (SLP)

An SLP is a sequence of productions

X1 = expr1, X2 = expr2, ···, Xn = exprn

• expri = a (a)
• expri = Xl Xr (l, r < i)

 The size of the SLP is the number n of productions.

 An SLP is essentially a CFG deriving a single string.

 SLPs model outputs of grammar-based compression
algorithms (e.g., Re-pair, Sequitur, LZ78, etc).

SLP S

X1 = a
X2 = b
X3 = X1 X1
X4 = X1 X2
X5 = X3 X4
X6 = X5 X4
X7 = X5 X6

Example of SLP

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

Derivation tree T of SLP S

string represented by SLP S

DAG for SLP S Derivation tree T of SLP S

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

DAG view of SLP

 DAG is compressed representation of derivation tree.
 SLP is compressed representation of string.

X4

Important Remark

 Derivation trees are used only for explanations,
and are never constructed in our algorithms.

 CSP on SLPs can be seen as algorithmic technique
to perform various kinds of operations
on the DAG for SLP, not on the derivation tree.

21

6

1
4

1
3

a a a b a b

5

1 2

4

X6

X5

Notations

n : the size of a given SLP S

h : the height of the derivation tree T of S

N : the length of the decompressed string w
that is represented by SLP S

 log2 N h n always holds.

 In theory, N = O(2n).
 Solutions polynomial in n are beneficial.

Pattern Mining

problem time space (words)
q-gram

frequencies O(qn) O(qn)

q-gram
frequencies O(N-) O(N-)

q-gram
non-overlapping

frequencies
O(q2n) O(qn)

longest repeating
substring O(n4 log n) O(n3)

N- min(qn, N) always holds

SLP Text v.s Uncompressed Pattern

problem time space (words)
(window)

subsequence
matching

O(nM) O(nM)

(window)
VLDC pattern

matching
O(nM) O(nM)

convolution O((N-) log M) O((N-) log M)

 M is the length of uncompressed pattern
 N- min(nM, N) always holds

String Regularities

problem time space (words)
square freeness O(n3h log N) O(n2)

repetitions
(runs & squares) O(n3h) O(n2)

palindromes O(nh (n + h log N)) O(n2)
gapped

palindromes O(nh (n2+ g log N)) O(n (n + g))

periods O(n2h) O(n2)
covers O(nh (n log2 N)) O(n2)

g is the fixed gap length

Factorization

problem time space (words)
LZ78 factorization O(n + s log N) O(n + s)
LZ78 factorization O(n + s log s) O(n + s log s)
LZ77 factorization O(zn2h log N) O(n2 + z)

Lyndon
factorization O(n4 + mn3h) O(n2)

Lyndon
factorization O(nh (n + log2 N)) O(n2)

 s is the number of LZ78 factors
 z is the number of LZ77 factors
 m is the number of Lyndon factors

And Some Others

problem time space (words)

longest common
substring O(n4 log n) O(n2 log N)

longest common
extension

O(n3h) preprocess
O(h log N) query

O(n2)

Aho-Corasick
automaton O(n4 log n) O(n2 log N)

Our SLP-based Aho-Corasick automaton runs
in O(|u| (k + h + log||)) time on uncompressed text u,
where k is the number of patterns.

Problem 1 (q-gram frequencies on SLP)

q-gram Frequency on SLP

Given an SLP S representing string w
and a positive integer q, compute Occ(w, p)
for all substrings p of w of length q.

Occ(w, p) : the number of occurrences of p in w

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

q = 3

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

q = 3

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3
3

q = 3

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3

3
3

q = 3

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP Output (pos, q, #occ)

<3

<3
3
3

(5, 3, 3)

q = 3

Solution for Uncompressed String

 Given the uncompressed string w, we can solve
the q-gram frequencies problem in O(N) time,
using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP Output (pos, q, #occ)

<3
3

(5, 3, 3)

(4, 3, 2)

q = 3

Solution for Uncompressed String

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP Output (pos, q, #occ)

<3
3

(5, 3, 3)

(4, 3, 2)

q = 3

In the sequel, I will show how to simulate
this O(N)-time algorithm in O(qn) time.

Stab

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

1 2 3 4 5 6 7 8 9 10

An integer interval [b, e] (1 b e N) is said to be
stabbed by a variable Xi, if the LCA of the bth and
eth leaves of the derivation tree T is labeled by Xi.

Observation

Xi

j

 Assume that the occurrence of a q-gram p
starting at position j is stabbed by variable Xi.

 Then, in any other occurrence of Xi in T,
there is another stabbed occurrence of p.

j+q -1

T

p

Xi

p

Xi

pw

Problem 2

Sub-problems
 Hence, the q-gram frequencies problem on

SLP reduces to the following sub-problems:

For each variable Xi, count the number of
occurrences of Xi in the derivation tree T.

For each variable Xi, count the number of
occurrences of each q-gram stabbed by Xi.

Problem 3

Solving Problem 2

6

5
3 4

1 2

a b

Lemma 1

Problem 2 can be solved in O(n) time.

7

Solving Problem 2

7
6

5
3 4

1 2

a b

1
 The root occurs exactly once.

Lemma 1

Problem 2 can be solved in O(n) time.

Solving Problem 2

7
6

5
3 4

1 2

a b

1

1

1

 For each node in a topological
order, propagate its number of
occurrences to its children.

Lemma 1

Problem 2 can be solved in O(n) time.

Solving Problem 2

7
6

5
3 4

1 2

a b

1

2

1

1

Lemma 1

Problem 2 can be solved in O(n) time.

 For each node in a topological
order, propagate its number of
occurrences to its children.

Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.

7
6

5
3 4

1 2

a b

1

2

1

32

 For each node in a topological
order, propagate its number of
occurrences to its children.

Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.

7
6

5
3 4

1 2

a b

1

2

1

32

4

 For each node in a topological
order, propagate its number of
occurrences to its children.

Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.

7
6

5
3 4

1 2

a b

1

2

1

32

7 3

 For each node in a topological
order, propagate its number of
occurrences to its children.

Lemma 1

Solving Problem 2

Problem 2 can be solved in O(n) time.

7
6

5
3 4

1 2

a b

1

2

1

32

7 3 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

Solving Problem 3
 Each variable Xi can stab at most q-1 occurrences

of q-grams.

Xi

q-1

Xl Xr

Solving Problem 3
 We decompress substring

ti = Xl[|Xl|-q+2..|Xl|] Xr[1..q-1] of length 2q-2.

Xi

q-1 q-1

Xl Xr

ti

Solving Problem 3
 Clearly, all q-grams stabbed by Xi occur inside ti.

Xi

q-1 q-1

Xl Xr

ti

Lemma 2

Solving Problem 3

Problem 3 can be solved in O(qn) time.

 For all variables Xi, substring ti can be
computed in a total of O(qn) time, by a
simple DP.

 We construct the suffix array and LCP array
for string z = t1t2 … tn, in O(|z|) = O(qn) time.

Theorem 1 [JDA 2013]

q-gram Frequency on SLP

Problem 1 (q-gram frequencies on SLP) can
be solved in O(qn) time.

 Easily follows from Lemma 1 and Lemma 2.

Experimental Result

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10

SLP

uncompressed string

q

Ti
m

e
(s

ec
)

English text (200MB) from Pizza & Chili corpus

 For smaller values of q,
our O(qn) solution overcomes the O(N) solution
both in theory and in practice.

 Is it possible to improve our solution so that
it works efficiently for larger values of q?

 At least in theory, the answer is yes!

Improved Algorithm for Larger q

Improved Algorithm for Larger q

Lemma 3

We can construct, in linear time, an edge-
labeled tree of size O(N-) representing all
q-grams which occur in w.

 N- min(qn, N) denotes the total length
of the edge labels of the tree.

Example of Edge-Labeled Tree

7

a

1

4

a b

2
3

1

a b

2
3

1

a

1

4

a b

2
3

1

5
6

a b

2
3

1

a

1

4

a b

2
3

1

5

derivation tree T

4
6

7

5
aa

ab

edge-labeled tree (q = 3)

a baab

Example of Edge-Labeled Tree

7

a

1

4

a b

2
3

1

a b

2
3

1

a

1

4

a b

2
3

1

5
6

a b

2
3

1

a

1

4

a b

2
3

1

5

derivation tree T

4
6

7

5
aa

aab a b

ab

edge-labeled tree (q = 3)

Example of Edge-Labeled Tree

7

a

1

4

a b

2
3

1

a b

2
3

1

a

1

4

a b

2
3

1

5
6

a b

2
3

1

a

1

4

a b

2
3

1

5

derivation tree T

4
6

7

5
aa

aab a b

ab

edge-labeled tree (q = 3)

This tree contains all the
information needed to
compute q-grams stabbed
by each variable.

Theorem 1 [CPM 2012]

Improved Algorithm for larger q

Problem 1 (q-gram frequencies on SLP) can
be solved in O(N-) = O(min(qn, N)) time.

 We use a linear-time algorithm to construct
the suffix tree of a tree (cf. Shibuya 2003).

 Our improved solution is at least as
efficient as the O(N)-time solution, and can
be much faster when q and n are small.

Problem 4 (finding repetitions on SLP)

Finding Repetitions on SLP

Given an SLP S representing string w,
compute squares and runs that occur in w.

abbabbabbbabbbabbba

squares
(of form xx)

runs
(maximal repetition xk x’)

Stabbed Runs

 For each run in the string w, there is a unique
variable Xi that stabs the run.

T

w

Xi

Stabbed Runs [Cont.]

 In other occurrences of Xi in the derivation
tree, the same run is stabbed by Xi.

T

w

Xi Xi

Stabbed Runs [Cont.]

 Computing runs in string w reduces to
computing stabbed runs for each variable Xi.

T

w

Xi Xi

Stabbed Runs [Cont.]

 For each variable Xi, firstly we compute
(the beginning and ending positions of)
stabbed squares.

Xi

Stabbed Runs [Cont.]

 We then determine how long the periodicity
continues to the right and to the left.

 We can efficiently do this without decompressing Xi.

Xi

Stabbed Runs [Cont.]

 We then determine how long the periodicity
continues to the right and to the left.

 We can efficiently do this without decompressing Xi.

Xi

Theorem 2 [MFCS 2013]

Finding Repetitions on SLP

O(n log N)-size representation of all runs
and squares can be computed in O(n3h)
time using O(n2) space.

 There are (N) runs in a string of length N.
 Naïve representation of runs requires

O(2n) space in the worst case.

 Hence we need a compact representation of output.

Compact Representation of Runs

Lemma 4

Our O(n log N)-size representation of runs
supports the following query in O(h log N) time:

Given an interval [b, e] with 1 ,
count the number of runs and squares that
occur in the substring w[b..e].

Finding Palindromes on SLP

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w,
compute maximal palindromes of w.

abbbaabbbbabbbaab
maximal
palindromes

Finding Palindromes on SLP

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w,
compute maximal palindromes of w.

abbbaabbbbabbbaab
maximal
palindromes

Finding Palindromes on SLP

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w,
compute maximal palindromes of w.

abbbaabbbbabbbaab
maximal
palindromes

Stabbed Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 For each variable Xi, there can be 3 different
types of stabbed maximal palindromes.

Computing Type 1 Palindromes

Xi

Xl
Xr

a b

 Type 1 maximal palindromes of Xi can be
computed by extending the arms of the
suffix palindromes of Xl.

Lemma 5 [Apostolico et al., 1995]

Suffix Palindromes

For any string of length N, the lengths of its
suffix palindromes can be represented by
O(log N) arithmetic progressions.

 We can extend the suffix palindromes
belonging to the same arithmetic progression
in a batch, efficiently, using the periodicity.

Theorem 3 [TCS 2009]

Finding Palindromes on SLP

O(n log N)-size representation of all maximal
palindromes can be computed
in O(nh (n + h log N)) time using O(n2) space.

 The above time complexity is improved to
O(nh (n + log2 N)) by using our recent LCE
algorithm on SLP.

Finding Gapped Palindromes on SLP

GiGi

Problem 6 (finding gapped palindromes on SLP)

Given an SLP S representing string w and
a positive integer g, compute g-gapped
palindromes that occur in w.

abababcbabaabbabca

3-gapped
palindromes

Stabbed g-gapped Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 There are 3 types of g-gapped palindromes
stabbed by variable Xi.

Theorem 4 [MFCS 2013]

Finding Gapped Palindromes on SLP

O(n (log N + g))-size representation of all
g-gapped palindromes can be computed
in O(nh (n2 + g log N)) time using O(n2) space.

 Because of the gap between arms, we cannot
use Lemma 5 (ar. pr. suffix palindromes).

 Instead, we used a similar technique to our
solution for computing stabbed squares.

Concluding Remarks

 A number of string problems can be efficiently
solved on SLP-compressed strings.

 The common key concept is stabbing, which we
call “串 (kushi)”, a Japanese meaning a skewer.

Oden
(traditional
Japanese food)

