

Algorithms on grammar compressed strings

Shunsuke Inenaga Kyushu University, Japan

What we did after Dagstuhl Seminar 08261

- \checkmark In Dagstuhl Seminar 08261 (in 2008), I gave a survey talk about algorithmic results on grammar-based compressed strings, which were achieved before 2008.
- \checkmark Today, I will talk about our new(er) results we achieved after 2008.

Collaborations

Japanese:

Hideo Bannai, Tomohiro I, Masayuki Takeda, Keisuke Goto, Yuto Nakashima, Kouji Shimohira, Takanori Yamamoto (Kyushu U.), Ayumi Shinohara, Kazuyuki Narisawa, Wataru Matsubara (Tohoku U.)

\checkmark International:

Pawe ł Gawrychowski (Max Planck), Travis Gagie (U. Helsinki), Gad M. Landau (U. Haifa), Moshe Lewenstein (Bar Ilan U.)

Compressed String Processing (CSP)

Compressed String Processing [Cont.]

- \checkmark Suppose that huge string data is stored in a compressed form.
- \checkmark Given a compressed string, our goal is to perform various kinds of processing on the compressed string, without decompressing the whole string.
- ← Our input is a straight-line program (SLP).

Straight Line Program (SLP)

An SLP is a sequence of productions
\n
$$
X_1 = expr_1
$$
, $X_2 = expr_2$, \dots , $X_n = expr_n$
\n• $expr_i = a$ $(a \in \Sigma)$
\n• $expr_i = X_iX_r$ $(l, r < i)$

- \checkmark The size of the SLP is the number *n* of productions.
- \checkmark An SLP is essentially a CFG deriving a single string.
- \checkmark SLPs model outputs of grammar-based compression algorithms (e.g., Re-pair, Sequitur, LZ78, etc).

Example of SLP

SLP *S* Derivation tree *T* of SLP *S*

string represented by SLP *S*

DAG view of SLP

DAG for SLP *S* Derivation tree *T* of SLP *S*

 \checkmark DAG is compressed representation of derivation tree. \checkmark SLP is compressed representation of string.

Important Remark

- \checkmark Derivation trees are used only for explanations , and are never constructed in our algorithms.
- \checkmark CSP on SLPs can be seen as algorithmic technique to perform various kinds of operations on the DAG for SLP, not on the derivation tree.

Notations

- *ⁿ*: the size of a given SLP *S*
- *h* : the height of the derivation tree *T* of *S*
- *N* : the length of the decompressed string *^w* that is represented by SLP *S*

- \checkmark $\log_2 N \leq h \leq n$ always holds.
- \checkmark In theory, $N = O(2^n)$.
	- \triangleright Solutions polynomial in *n* are beneficial.

Pattern Mining

 N - $\alpha \leq \min(qn, N)$ always holds

SLP Text v.s Uncompressed Pattern

 M is the length of uncompressed pattern \triangleright $N-\beta \leq \min(nM, N)$ always holds

String Regularities

g is the fixed gap length

Factorization

 ^s is the number of LZ78 factors \triangleright z is the number of LZ77 factors \triangleright *m* is the number of Lyndon factors

And Some Others

Our SLP-based Aho-Corasick automaton runs in $O(|u|\ (k+h+\log |\Sigma|))$ time on uncompressed text u , where *k* is the number of patterns.

q-gram Frequency on SLP

Problem 1 (*q*-gram frequencies on SLP)

Given an SLP *S* representing string *^w* and a positive integer *q*, compute *Occ*(*^w*, *p*) for all substrings *^p* of *^w* of length *q*.

Occ(*^w*, *p*) : the number of occurrences of *p* in *^w*

 Given the uncompressed string *^w*, we can solve the q -gram frequencies problem in $O(N)$ time, using the suffix array and LCP array of *w*.

abababa\$ ababa\$ aba\$ a\$ $\boldsymbol{\zeta}$ bababa\$ baba\$ ba\$

In the sequel, I will show how to simulate this $O(N)$ -time algorithm in $O(qn)$ time.

ababas ababa\$ aba\$ a\$ $\boldsymbol{\zeta}$ 3 bababa\$ <3 <mark>bab</mark>a\$ ba\$ 875 31642- $\overline{0}$ 135 \bigcap 2 4 SA LCPP **Output** $(pos, q, #occ)$ $(5, 3, 3)$ $(4, 3, 2)$ *q* ⁼ 3

Stab

An integer interval $[b, e]$ $(1 \le b \le e \le N)$ is said to be stabbed by a variable $X_{i\cdot}$ if the LCA of the b th and e th leaves of the derivation tree T is labeled by $X_{\vec{i}}.$

Observation

- Assume that the occurrence of a *q*-gram *^p* starting at position j is stabbed by variable X_i .
- \checkmark Then, in any other occurrence of X_i in *T*, there is another stabbed occurrence of *p*.

Sub-problems

 \checkmark Hence, the *q*-gram frequencies problem on SLP reduces to the following sub-problems:

Problem 2

For each variable $X_{i\cdot}$ count the number of occurrences of $X^{\vphantom{\dagger}}_i$ in the derivation tree $T^{\vphantom{\dagger}}$

Problem 3

For each variable *Xi*, count the number of occurrences of each *q*-gram stabbed by *Xi*.

Lemma 1

Problem 2 can be solved in $O(n)$ time.

Lemma 1

Problem 2 can be solved in $O(n)$ time.

 \checkmark The root occurs exactly once.

Lemma 1

Problem 2 can be solved in $O(n)$ time.

Lemma 1

Problem 2 can be solved in $O(n)$ time.

Lemma 1

Problem 2 can be solved in *O*(*n*) time.

Lemma 1

Problem 2 can be solved in *O*(*n*) time.

Lemma 1

Problem 2 can be solved in *O*(*n*) time.

Lemma 1

Problem 2 can be solved in *O*(*n*) time.

 \checkmark Each variable X_i can stab at most q -1 occurrences of *q*-grams.

 We decompress substring $t_i = X_l [|X_l|$ - $q+2..|X_l|]$ $X_r [1..q$ -1] of length 2 q -2.

 \checkmark Clearly, all *q*-grams stabbed by X_i occur inside t_i .

Lemma 2

Problem 3 can be solved in *O*(*qn*) time.

- \checkmark For all variables X_i , substring t_i can be computed in a total of *O*(*qn*) time, by a simple DP.
- \checkmark We construct the suffix array and LCP array for string $z = t_1 t_2 ... t_n$, in $O(|z|) = O(qn)$ time.

q-gram Frequency on SLP

Theorem 1 [JDA 2013]

Problem 1 (*q*-gram frequencies on SLP) can be solved in *O* (*qn*) time.

Easily follows from Lemma 1 and Lemma 2.

Experimental Result

English text (200MB) from Pizza & Chili corpus

Improved Algorithm for Larger *q*

- \checkmark For smaller values of q , our *O*(*qn*) solution overcomes the *O*(*N*) solution both in theory and in practice.
- \checkmark Is it possible to improve our solution so that it works efficiently for larger values of *q*?
- At least in theory, the answer is yes!

Improved Algorithm for Larger *q*

Lemma 3

We can construct, in linear time, an edgelabeled tree of size $O(N\text{-}\alpha)$ representing all *q*-grams which occur in *w*.

 \mathcal{N} Λ - $\alpha \leq \min(qn, N)$ denotes the total length of the edge labels of the tree.

Example of Edge-Labeled Tree

Example of Edge-Labeled Tree

Example of Edge-Labeled Tree

Improved Algorithm for larger *q*

Theorem 1 [CPM 2012]

Problem 1 (*q*-gram frequencies on SLP) can be solved in $O(N\text{-}\alpha) = O(\min(qn, N))$ time.

- \checkmark We use a linear-time algorithm to construct the suffix tree of a tree (cf. Shibuya 2003).
- \checkmark Our improved solution is at least as efficient as the $O(N)$ -time solution, and can be much faster when *q* and *n* are small.

Finding Repetitions on SLP

Problem 4 (finding repetitions on SLP)

Given an SLP *S* representing string *w*, compute squares and runs that occur in *w*.

Stabbed Runs

 \checkmark For each run in the string w, there is a unique variable $X_{\overline i}$ that stabs the run.

 \checkmark In other occurrences of X_i in the derivation tree, the same run is stabbed by $X_{\vec{i}}.$

 Computing runs in string *w* reduces to computing stabbed runs for each variable $X_{\vec{i}}.$

 \checkmark For each variable X_i , firstly we compute (the beginning and ending positions of) stabbed squares.

- \checkmark We then determine how long the periodicity continues to the right and to the left.
	- \triangleright We can efficiently do this without decompressing X_i .

- \checkmark We then determine how long the periodicity continues to the right and to the left.
	- \triangleright We can efficiently do this without decompressing X_i .

Finding Repetitions on SLP

Theorem 2 [MFCS 2013]

O (*n* log *N*)-size representation of all runs and squares can be computed in *O* (*n* 3 *h*) time using *O* (*n* 2) space.

- \checkmark There are $\Theta(N)$ runs in a string of length N.
	- \triangleright Naïve representation of runs requires *O*(2 *n*) space in the worst case.
- \checkmark Hence we need a compact representation of output.

Compact Representation of Runs

Lemma 4

Our $O(n \log N)$ -size representation of runs supports the following query in $O(h\log N)$ time:

Given an interval $[b, e]$ with $1 \leq b \leq e \leq N$, count the number of runs and squares that occur in the substring *w* [*b*.. *e*].

Problem 5 (finding palindromes on SLP)

Given an SLP *S* representing string *w*, compute maximal palindromes of *w*.

palindromes abbbaabbbabbbaab maximal

Problem 5 (finding palindromes on SLP)

Given an SLP *S* representing string *w*, compute maximal palindromes of *w*.

maximal

palindromes abbbaabbbabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP *S* representing string *w*, compute maximal palindromes of *w*.

maximal

palindromes abbbaabbbabbbaab

Stabbed Palindromes

 \checkmark For each variable X_i , there can be 3 different types of stabbed maximal palindromes.

Computing Type 1 Palindromes

 \checkmark Type 1 maximal palindromes of X_i can be computed by extending the arms of the suffix palindromes of *Xl*.

Suffix Palindromes

Lemma 5 [Apostolico et al., 1995]

For any string of length *N*, the lengths of its suffix palindromes can be represented by *O*(log *N*) arithmetic progressions.

 \checkmark We can extend the suffix palindromes belonging to the same arithmetic progression in a batch, efficiently, using the periodicity.

Theorem 3 [TCS 2009]

O (*n* log *N*)-size representation of all maximal palindromes can be computed in $O(nh$ $(n + h \log N))$ time using $O(n)$ 2) space.

 \checkmark The above time complexity is improved to $O(nh (n + log² N))$ by using our recent LCE algorithm on SLP.

Finding Gapped Palindromes on SLP

Problem 6 (finding gapped palindromes on SLP)

a positive integer g, compute g-gapped Given an SLP *S* representing string *w* and palindromes that occur in *w*.

3-gapped palindromes

abababcbabaabbabca

Stabbed *g*-gapped Palindromes

 There are 3 types of *g*-gapped palindromes stabbed by variable *Xi*.

Finding Gapped Palindromes on SLP

Theorem 4 [MFCS 2013]

 $O(n (\log N + g))$ -size representation of all *g*-gapped palindromes can be computed in $O(nh$ $(n^2 + g \log N))$ time using $O(n)$ 2) space.

- \checkmark Because of the gap between arms, we cannot use Lemma 5 (ar. pr. suffix palindromes).
- \checkmark Instead, we used a similar technique to our solution for computing stabbed squares.

Concluding Remarks

- \checkmark A number of string problems can be efficiently solved on SLP-compressed strings.
- \checkmark The common key concept is stabbing, which we call " 串 (kushi)", a Japanese meaning a skewer.

