

Algorithms on grammar compressed strings

Shunsuke Inenaga Kyushu University, Japan

What we did after Dagstuhl Seminar 08261

- In Dagstuhl Seminar 08261 (in 2008),
 I gave a survey talk about algorithmic results on grammar-based compressed strings, which were achieved before 2008.
- ✓ Today, I will talk about our new(er) results we achieved after 2008.

Collaborations

✓ Japanese:

Hideo Bannai, Tomohiro I, Masayuki Takeda, Keisuke Goto, Yuto Nakashima, Kouji Shimohira, Takanori Yamamoto (Kyushu U.), Ayumi Shinohara, Kazuyuki Narisawa, Wataru Matsubara (Tohoku U.)

✓ International:

Paweł Gawrychowski (Max Planck), Travis Gagie (U. Helsinki), Gad M. Landau (U. Haifa), Moshe Lewenstein (Bar Ilan U.)

Compressed String Processing (CSP)

Compressed String Processing [Cont.]

- Suppose that huge string data is stored in a compressed form.
- Given a compressed string, our goal is to perform various kinds of processing on the compressed string, without decompressing the whole string.
- ✓ Our input is a <u>straight-line program (SLP)</u>.

Straight Line Program (SLP)

An SLP is a sequence of productions

$$X_1 = expr_1, X_2 = expr_2, \dots, X_n = expr_n$$

• $expr_i = a$ $(a \in \Sigma)$
• $expr_i = X_l X_r$ $(l, r < i)$

- \checkmark The size of the SLP is the number *n* of productions.
- \checkmark An SLP is essentially a CFG deriving a single string.
- ✓ SLPs model outputs of grammar-based compression algorithms (e.g., Re-pair, Sequitur, LZ78, etc).

Example of SLP

SLP *S* Derivation tree *T* of SLP *S*

string represented by SLP S

DAG view of SLP

DAG for SLP *S* Derivation tree *T* of SLP *S*

✓ DAG is compressed representation of derivation tree.
 ✓ SLP is compressed representation of string.

Important Remark

- Derivation trees are used only for explanations, and are never constructed in our algorithms.
- CSP on SLPs can be seen as algorithmic technique to perform various kinds of operations on the DAG for SLP, not on the derivation tree.

Notations

- *n* : the size of a given SLP *S*
- *h* : the height of the derivation tree *T* of *S*
- *N* : the length of the decompressed string *w* that is represented by SLP *S*

- ✓ $\log_2 N \le h \le n$ always holds.
- ✓ In theory, $N = O(2^n)$.
 - \succ Solutions polynomial in *n* are beneficial.

Pattern Mining

problem	time	space (words)	
<i>q</i> -gram frequencies	O(qn)	O(qn)	
<i>q</i> -gram frequencies	$O(N-\alpha)$	$O(N-\alpha)$	
<i>q</i> -gram non-overlapping frequencies	$O(q^2n)$	O(qn)	
longest repeating substring	$O(n^4 \log n)$	$O(n^3)$	

 $N-\alpha \leq \min(qn, N)$ always holds

SLP Text v.s Uncompressed Pattern

problem	time	space (words)	
(window) subsequence matching	O(nM)	O(nM)	
(window) VLDC pattern matching	O(nM)	O(nM)	
convolution	$O((N-\beta)\log M)$	$O((N-\beta) \log M)$	

M is the length of uncompressed pattern
 N-β ≤ min(*nM*, *N*) always holds

String Regularities

problem	time	space (words)	
square freeness	$O(n^3h \log N)$	$O(n^2)$	
repetitions (runs & squares)	$O(n^3h)$	$O(n^2)$	
palindromes	$O(nh(n+h\log N))$	$O(n^2)$	
gapped palindromes	$O(nh (n^2 + g \log N))$	$O(n \ (n+g))$	
periods	$O(n^2h)$	$O(n^2)$	
covers	$O(nh(n + \log^2 N))$	$O(n^2)$	

g is the fixed gap length

Factorization

problem	time	space (words)
LZ78 factorization	$O(n\sqrt{N} + s \log N)$	$O(n\sqrt{N}+s)$
LZ78 factorization	$O(n + s \log s)$	$O(n + s \log s)$
LZ77 factorization	$O(zn^2h\log N)$	$O(n^2 + z)$
Lyndon factorization	$O(n^4 + mn^3h)$	$O(n^2)$
Lyndon factorization	$O(nh(n + \log^2 N))$	$O(n^2)$

s is the number of LZ78 factors
 z is the number of LZ77 factors
 m is the number of Lyndon factors

And Some Others

problem	time	space (words)	
longest common substring	$O(n^4 \log n)$	$O(n^2 \log N)$	
longest common extension	<i>O</i> (<i>n</i> ³ <i>h</i>) preprocess <i>O</i> (<i>h</i> log <i>N</i>) query	$O(n^2)$	
Aho-Corasick automaton	$O(n^4 \log n)$	$O(n^2 \log N)$	

Our SLP-based Aho-Corasick automaton runs in $O(|u| (k + h + \log|\Sigma|))$ time on uncompressed text u, where k is the number of patterns.

q-gram Frequency on SLP

Problem 1 (q-gram frequencies on SLP)

Given an SLP *S* representing string *w* and a positive integer *q*, compute Occ(w, p)for all substrings *p* of *w* of length *q*.

Occ(*w*, *p*) : the number of occurrences of *p* in *w*

✓ Given the uncompressed string w, we can solve the q-gram frequencies problem in O(N) time, using the suffix array and LCP array of w.

	SA	LCP
3	8	_
	7	0
	5	1
	3	3
	1	5
	6	0
	4	2
	2	4

q =

\$ a\$ aba\$ ababa\$ abababa\$ ba\$ baba\$

✓ Given the uncompressed string w, we can solve the q-gram frequencies problem in O(N) time, using the suffix array and LCP array of w.

	SA	LCP	
= 3	8	_	\$
	7	0	a\$
	5	1	aba\$
	3	3	aba <mark>ba</mark> \$
	1	5	<mark>aba</mark> baba\$
	6	0	ba\$
	4	2	baba\$
	2	4	bababa\$

q

	SA	LCF)		
$\gamma = 3$	8	_		\$	
_	7	0		a\$	
	5	1	< 3	aba	\$
	3	3	≥3	aba	ba\$
	1	5		aba	baba\$
	6	0		ba\$	•
	4	2		bab	a\$
	2	4		bab	aba\$

In the sequel, I will show how to simulate this O(N)-time algorithm in O(qn) time.

SA LCP Output (pos, q, # occ) 8 q = 3\$ 7 0 a\$ (5, 3, 3)5 aba\$ 3 3 ababa\$ 5 1 <mark>aba</mark>baba\$ 6 0 ba\$ (4, 3, 2)2 4 <3 baba\$ 4 ≥3 bababa\$

Stab

An integer interval [b, e] $(1 \le b \le e \le N)$ is said to be stabbed by a variable X_i , if the LCA of the *b*th and *e*th leaves of the derivation tree *T* is labeled by X_i .

Observation

- ✓ Assume that the occurrence of a q-gram p starting at position j is stabled by variable X_i .
- ✓ Then, in any other occurrence of X_i in T, there is another stabbed occurrence of p.

Sub-problems

✓ Hence, the *q*-gram frequencies problem on
 SLP reduces to the following sub-problems:

Problem 2

For each variable X_i , count the number of occurrences of X_i in the derivation tree T.

Problem 3

For each variable X_i , count the number of occurrences of each q-gram stabbed by X_i .

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

✓ The root occurs exactly once.

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

Lemma 1

Problem 2 can be solved in O(n) time.

✓ Each variable X_i can stab at most q-1 occurrences of q-grams.

✓ We decompress substring $t_i = X_l[|X_l|-q+2..|X_l|] X_r[1..q-1]$ of length 2q-2.

✓ Clearly, all q-grams stabbed by X_i occur inside t_i .

Lemma 2

Problem 3 can be solved in O(qn) time.

- ✓ For all variables X_i , substring t_i can be computed in a total of O(qn) time, by a simple DP.
- ✓ We construct the suffix array and LCP array for string $z = t_1 t_2 ... t_n$, in O(|z|) = O(qn) time.

q-gram Frequency on SLP

Theorem 1 [JDA 2013]

Problem 1 (*q*-gram frequencies on SLP) can be solved in O(qn) time.

✓ Easily follows from Lemma 1 and Lemma 2.

Experimental Result

English text (200MB) from Pizza & Chili corpus

Improved Algorithm for Larger q

- ✓ For smaller values of *q*, our *O*(*qn*) solution overcomes the *O*(*N*) solution both in theory and in practice.
- ✓ Is it possible to improve our solution so that it works efficiently for larger values of q?
- ✓ At least in theory, the answer is yes!

Improved Algorithm for Larger q

Lemma 3

We can construct, in linear time, an edgelabeled tree of size $O(N-\alpha)$ representing all *q*-grams which occur in *w*.

✓ $N-\alpha \le \min(qn, N)$ denotes the total length of the edge labels of the tree.

Example of Edge-Labeled Tree

Example of Edge-Labeled Tree

Example of Edge-Labeled Tree

Improved Algorithm for larger q

Theorem 1 [CPM 2012]

Problem 1 (*q*-gram frequencies on SLP) can be solved in $O(N-\alpha) = O(\min(qn, N))$ time.

- ✓ We use a linear-time algorithm to construct the suffix tree of a tree (cf. Shibuya 2003).
- ✓ Our improved solution is at least as efficient as the O(N)-time solution, and can be much faster when q and n are small.

Finding Repetitions on SLP

Problem 4 (finding repetitions on SLP)

Given an SLP *S* representing string *w*, compute squares and runs that occur in *w*.

Stabbed Runs

✓ For each run in the string *w*, there is a unique variable X_i that stabs the run.

✓ In other occurrences of X_i in the derivation tree, the same run is stabled by X_i .

✓ Computing runs in string *w* reduces to computing stabbed runs for each variable X_i .

 ✓ For each variable X_i, firstly we compute (the beginning and ending positions of) stabbed squares.

- ✓ We then determine how long the periodicity continues to the right and to the left.
 - \succ We can efficiently do this without decompressing X_i .

- ✓ We then determine how long the periodicity continues to the right and to the left.
 - > We can efficiently do this without decompressing X_i .

Finding Repetitions on SLP

Theorem 2 [MFCS 2013]

<u> $O(n \log N)$ -size representation</u> of all runs and squares can be computed in $O(n^3h)$ time using $O(n^2)$ space.

- ✓ There are $\Theta(N)$ runs in a string of length *N*.
 - > Naïve representation of runs requires $O(2^n)$ space in the worst case.
- ✓ Hence we need a compact representation of output.

Compact Representation of Runs

Lemma 4

Our *O*(*n* log *N*)-size representation of runs supports the following query in *O*(*h* log *N*) time:

Given an interval [b, e] with $1 \le b \le e \le N$, count the number of runs and squares that occur in the substring w[b..e].

Problem 5 (finding palindromes on SLP)

Given an SLP *S* representing string *w*, compute maximal palindromes of *w*.

maximal palindromes abbbaabbbaabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w, compute maximal palindromes of w.

maximal

palindromes abbbaabbbaabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP S representing string w, compute maximal palindromes of w.

maximal

palindromes abbbaabbbaabbbaab

Stabbed Palindromes

✓ For each variable X_i , there can be 3 different types of stabbed maximal palindromes.

Computing Type 1 Palindromes

✓ Type 1 maximal palindromes of X_i can be computed by extending the arms of the <u>suffix palindromes</u> of X_l .

Suffix Palindromes

Lemma 5 [Apostolico et al., 1995]

For any string of length N, the lengths of its suffix palindromes can be represented by $O(\log N)$ arithmetic progressions.

 We can extend the suffix palindromes belonging to the same arithmetic progression in a batch, efficiently, using the periodicity.

Theorem 3 [TCS 2009]

<u> $O(n \log N)$ -size representation</u> of all maximal palindromes can be computed in $O(nh (n + h \log N))$ time using $O(n^2)$ space.

✓ The above time complexity is improved to $O(nh (n + \log^2 N))$ by using our recent LCE algorithm on SLP.

Finding Gapped Palindromes on SLP

Problem 6 (finding gapped palindromes on SLP)

Given an SLP *S* representing string *w* and a positive integer *g*, compute *g*-gapped palindromes that occur in *w*.

3-gapped palindromes

abababcbabaabbabca

Stabbed g-gapped Palindromes

✓ There are 3 types of *g*-gapped palindromes stabbed by variable X_i .

Finding Gapped Palindromes on SLP

Theorem 4 [MFCS 2013]

<u> $O(n (\log N + g))$ -size representation</u> of all g-gapped palindromes can be computed in $O(nh (n^2 + g \log N))$ time using $O(n^2)$ space.

- ✓ Because of the gap between arms, we cannot use Lemma 5 (ar. pr. suffix palindromes).
- ✓ Instead, we used a similar technique to our solution for computing stabbed squares.

Concluding Remarks

- ✓ A number of string problems can be efficiently solved on SLP-compressed strings.
- ✓ The common key concept is stabbing, which we call "串 (kushi)", a Japanese meaning a skewer.

