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Longest Common Subsequence

O A string obtained by removing O or more characters from
string A is called a subsequence of A.

O The longest subsequence that occurs in both strings A

and B is called the longest common subsequence
(LCS) of A and B.

A: b achB&aaba
B:bc&Eaba

[—> LCS(AB)=bcaba

O LCS is a common metric for sequence comparison.
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Dynamic Programming
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Fully Incremental LCS Problem

O Given LCS(A,B) and character ¢, compute LCS(cA,B),
LCS(Ac,B), LCS(A,cB) and LCS(A,Bc).

€ So we are able to e.g. process log files backdating to the past,
and compute alignments between suffixes of one and the other.

O Naive use of DP table takes O(mn) time for computing
LCS(cA,B) and LCS(A,cB) from LCS(A,B).

@ More efficiently!?
O Landau et al. presented an algorithm that computes
LCS(cA,B) in O(L) time, where L = LCS(A,B).

O This work: efficient computation for LCS(A,cB),
LCS(Ac,B) and LCS(A,Bc)
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Fully Incremental LCS Problem [cont.]
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Fully Incremental LCS Problem [cont.]

Time and Space Comparison (fixed alphabet)

Naive DP

Modified algo. of
Kim & Park

Our algorithm

LCS(cA,B)

O(mn)

O(m+n)

O(L)

LCS(Ac,B)

O(m)

O(L)

LCS(A,cB)

O(mn)

O(n)

LCS(A,Bc)

O(n)

O(n)

Total space

O(mn)

O(mn)

O(nL+m)
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Our Approach

O The algorithm of Laudau et al. computes LCS(cA,B) in
O(L) time.

O Their algorithm does not compute the whole DP matrix —
it only considers the set P of partition points.

O Based on their algorithm, we compute LCS(A,cB) in
O(n) time by considering partition points only.

O Suppose we have computed DP for strings A and B. Let
us denote by DPB" the DP matrix that is obtained from
DP after we add a new character to the head (left) of B.

O Same for P5h and P.
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Match Point & Partition Point

O Pair (i, j) is said to be a match point it A[j] = BJi].

O Pair (i, j) is said to be a partition point
if DPYi, j] = DP[i-1, j] + 1.
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Match Point & Partition Point [cont.]

O The set of partition points of DP is denoted by P.
O If (i, j) is a partition point with score v,
we write as Py, j] = i.

P2, 3] =4

Pl4,7] =6

NABEANNY=EE
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Computing LCS(A,cB)
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O There are no changes to the partition points until the 1st
occurrence of “b” in A.

O All the cells in the 1st row of DPB" after the first
occurrence of “b” get score 1.

O At most one partition point is eliminated at each column.
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Eliminated Partition Point

O Lemma 1. For any column j, there exists row index E; s.t.
DP?BMi, j1 = DPYi, j] + 1 fori < E;,
DP?i, j1 = DPYi, j] fori> E;.
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O (E;, j) is the partition point to be eliminated in DP5".

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005



Eliminated Partition Point [cont.]

O Lemma 2. Let (Ej.1, j-1) and (Ej, j) be the partition points
eliminated at columns j-1 and j, resp. Let DP[Ej.1, j-1] = v.
Then,

Ej1 < E; < PBh[y+1, j-1].
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Eliminated Partition Point [cont.]

O Lemma 3-1. If there is no match point (x, j) such that
PBhly, j-1] <x < E,,
Ej = Ej
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Eliminated Partition Point [cont.]

O Lemma 3-2. Otherwise,
Ej = Pv+1, j].

boint
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Eliminated Partition Point [cont.]

O Due to Lemma 3-1 and 3-2, the partition points to be
eliminated in DPB" can be computed by processing the
columns of DP from left to right.

O The remaining thing is how to judge whether there exists
a partition point (x, j) such that P5"[y, j-1] <x < E; , at
each columnjj. mp Next Match Table

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005



Next Match Table

O NextMatchli, c] returns the first occurrence of “c” after
position i in string B, if such exists. Otherwise, it returns
null.
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O Using NextMatch table we can check P8y, j-1] < x < E;
In constant time.
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Update Next Match Table

O When we get a new character to the head of B...
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O For fixed alphabet X it takes constant time.
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Complexity for Computing LCS(A, cB)

O When updating DP to DPBh, at most n partition points
are newly added, and at most n partition points are
eliminated.

O Using NextMatch Table, each eliminated partition point
can be found in O(1) time.

O NextMatch table can be updated in O(1) time.

O Conclusion: LCS(A, ¢B) can be computed from LCS(A,
B) in O(n) time.
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Computing LCS(Ac,B)

O If there exist match points between P[v-1, n] and P[v,n],
the uppermost match point becomes the new partition
point of score v at column n+1.

O Since there are L intervals to be checked at column n+1,
it takes O(L) time (we can use NextMatch table).
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Computing LCS(A,Bc)

O New partition points at row m+1 can be computed in the
same way as the standard DP approach.

O There are n columns to be checked at row m+1.
Therefore O(n) time.
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Update Next Match Table

O When we get a new character to the tail of B...
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O There can be at most m entries to be updated in
NextMatch table. But the amortized time complexity for
each new character is constant.
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Conclusion & Future Work

O Given LCS(A,B), the proposed algorithm computes
€ LCS(cA, B) in O(L) time,
€ LCS(Ac, B) in O(L) time,
€ LCS(A, ¢B) in O(n) time, and
€ LCS(A, Bc) in O(n) time,

including (amortized) constant time update of NextMatch.

O Possible future work would be to extend our algorithm to
compressed strings - fully incremental LCS computation
without decompression. Run-length encoding?
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