
“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

“Fully Incremental
LCS Computation”

Yusuke Ishida, Shunsuke Inenaga, Masayuki Takeda
Kyushu Univ., Japan

&
Ayumi Shinohara

Tohoku Univ., Japan

15th International Symposium on Fundamentals on Computing Theory (FCT’05),
17-20 August 2005, Luebeck, Germany

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Longest Common Subsequence

 A string obtained by removing 0 or more characters from
string A is called a subsequence of A.

 The longest subsequence that occurs in both strings A
and B is called the longest common subsequence
(LCS) of A and B.

A: c b a c b a a b a
B: b c d a b a LCS(A,B) = b c a b a

 LCS is a common metric for sequence comparison.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Dynamic Programming
 LCS (and its length) of strings A and B can be computed

by dynamic programming approach.

5444333210a

4433322210b

3333222110a

2222221110d

2222221110c

1111111100b

0000000000

abaabcabc

DP[i, j] =
0, if i=0 or j=0
max{DP[i-1, j],DP[i, j-1]}, if A[j]=B[i] and i, j ＞0
DP[i-1, j-1] + 1, if A[j]=B[i] and i, j ＞0

A

B

O(mn) time & space

n = |A|
m = |B|

LCS(A,B) = 5

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Fully Incremental LCS Problem

 Given LCS(A,B) and character c, compute LCS(cA,B),
LCS(Ac,B), LCS(A,cB) and LCS(A,Bc).
So we are able to e.g. process log files backdating to the past,

and compute alignments between suffixes of one and the other.

 Naïve use of DP table takes O(mn) time for computing
LCS(cA,B) and LCS(A,cB) from LCS(A,B).
More efficiently!?

 Landau et al. presented an algorithm that computes
LCS(cA,B) in O(L) time, where L = LCS(A,B).

 This work: efficient computation for LCS(A,cB),
LCS(Ac,B) and LCS(A,Bc)

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Fully Incremental LCS Problem [cont.]

a b
0 0 0

b 0 0 1
a 0 1 1

b
0
1
1

b a
0 0 0

b 0 1 1
a 0 1 2

b
0
1
2

b
0
1
2

a b
0 0 0

b 0 0 1
a 0 1 1

b
0
1
1

c
0
1
1

a b
0 0 0

a 0 1 1

b
0
1

b 0 1 2 2
a 0 1 2 2

a b
0 0 0

b 0 0 1

b
0
1

a 0 1 1 1
b 0 1 2 2

A

B

bA Ac

aB

Bb

O(L)

O(n)

O(L)

O(n)

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Fully Incremental LCS Problem [cont.]

Naïve DP Modified algo. of
Kim & Park Our algorithm

LCS(cA,B) O(mn) O(m+n) O(L)

LCS(Ac,B) O(m) O(m) O(L)

LCS(A,cB) O(mn) O(m+n) O(n)

LCS(A,Bc) O(n) O(n) O(n)

Total space O(mn) O(mn) O(nL+m)

Time and Space Comparison (fixed alphabet)

L = LCS(A,B) < min(m,n)

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Our Approach

 The algorithm of Laudau et al. computes LCS(cA,B) in
O(L) time.

 Their algorithm does not compute the whole DP matrix –
it only considers the set P of partition points.

 Based on their algorithm, we compute LCS(A,cB) in
O(n) time by considering partition points only.

 Suppose we have computed DP for strings A and B. Let
us denote by DPBh the DP matrix that is obtained from
DP after we add a new character to the head (left) of B.

 Same for PBh and P.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Match Point & Partition Point

 Pair (i, j) is said to be a match point if A[j] = B[i].
 Pair (i, j) is said to be a partition point

if DP[i, j] = DP[i-1, j] + 1.

5444333210a

4433322210b

3333222110a

2222221110d

2222221110c

1111111100b

0000000000

abaabcabc

A

B

match point

partition point

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Match Point & Partition Point [cont.]

 The set of partition points of DP is denoted by P.
 If (i, j) is a partition point with score v,

we write as P[v, j] = i.

5444333210a

4433322210b

3333222110a

2222221110d

2222221110c

1111111100b

0000000000

abaabcabc

A

B

P[2, 3] = 4

P[4, 7] = 6

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Computing LCS(A,cB)

 There are no changes to the partition points until the 1st
occurrence of “b” in A.

 All the cells in the 1st row of DPBh after the first
occurrence of “b” get score 1.

 At most one partition point is eliminated at each column.

A

B

A

bB

3322211110b

3222111110a

2211100000b

1110000000c

0000000000

abcabaaaa

4333222210a

4322211110b

432111110a

3321100000b

2221100000c

4333222210a

0000000000

abcabaaaa

1111100000b

2

DP
DPBh

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Eliminated Partition Point

 Lemma 1. For any column j, there exists row index Ej s.t.
DPBh[i, j] = DP[i, j] + 1 for i < Ej,
DPBh[i, j] = DP[i, j] for i > Ej.

DP
DPBh

j
j

Ej Ej

0
1
2
2
3
3
3
4
5

0
1
2
3
3
3
3
3
4
5

+1

=

 (Ej, j) is the partition point to be eliminated in DPBh.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Eliminated Partition Point [cont.]

 Lemma 2. Let (Ej-1, j-1) and (Ej, j) be the partition points
eliminated at columns j-1 and j, resp. Let DP[Ej-1, j-1] = v.
Then,

Ej-1 < Ej < PBh[v+1, j-1].

DP
DPBh

j-1
j-1

Ej-1

j
j

v+1

v

v

v+1

v-1

Ej

PBh[v+1, j-1]

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Eliminated Partition Point [cont.]

 Lemma 3-1. If there is no match point (x, j) such that
PBh[v, j-1] < x < Ej-1,

Ej = Ej-1

DP
DPBh

j-1
j-1

Ej-1 = Ej

j
j

v vv v

v+1

v-1 PBh[v, j-1]

v-2

v-1

v-1v-1

v
v+1

v

v-1

v

no match point

P [v-1, j-1]

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Eliminated Partition Point [cont.]

 Lemma 3-2. Otherwise,
Ej = P[v+1, j].

DP
DPBh

j-1
j-1

Ej-1

j
j

v

v+1

v
v

v+1

v-1 PBh[v, j-1]

v-2

v-1

v-1

v-1

v
v+1

v

v-1

v

P [v+1, j] v+1
v

v+1
v

v+1

match point

Ej

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Eliminated Partition Point [cont.]

 Due to Lemma 3-1 and 3-2, the partition points to be
eliminated in DPBh can be computed by processing the
columns of DP from left to right.

 The remaining thing is how to judge whether there exists
a partition point (x, j) such that PBh[v, j-1] < x < Ej-1 at
each column j. Next Match Table

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Next Match Table

 NextMatch[i, c] returns the first occurrence of “c” after
position i in string B, if such exists. Otherwise, it returns
null.

0

1

2

3

4

null

null

null

null

null

1

3

3

null

null

2

2

null

null

null

4

4

4

4

null

a

b

c

b

d

b c d

B

Σ

 Using NextMatch table we can check PBh[v, j-1] < x < Ej-1
in constant time.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Update Next Match Table

 When we get a new character to the head of B…

 For fixed alphabet Σ it takes constant time.

0

1

2

3

4

null

null

null

null

null

1

3

3

null

null

2

2

null

null

null

4

4

4

4

null

a

b

c

b

d

b c d

aB

Σ

a

0 1 2 4-1

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Complexity for Computing LCS(A, cB)

 When updating DP to DPBh, at most n partition points
are newly added, and at most n partition points are
eliminated.

 Using NextMatch Table, each eliminated partition point
can be found in O(1) time.

 NextMatch table can be updated in O(1) time.

 Conclusion: LCS(A, cB) can be computed from LCS(A,
B) in O(n) time.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Computing LCS(Ac,B)

 If there exist match points between P[v-1, n] and P[v,n],
the uppermost match point becomes the new partition
point of score v at column n+1.

v

v-1

v match point

DP

 Since there are L intervals to be checked at column n+1,
it takes O(L) time (we can use NextMatch table).

n

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Computing LCS(A,Bc)

 New partition points at row m+1 can be computed in the
same way as the standard DP approach.

vj
vj-1

DP

 There are n columns to be checked at row m+1.
Therefore O(n) time.

j-1 j

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Update Next Match Table
 When we get a new character to the tail of B…

0

1

2

3

4

null

null

null

null

null

1

3

3

null

null

2

2

null

null

null

4

4

4

4

null

a

b

c

b

d

b c d

B

Σ

0

1

2

3

4

nullnullnull null

1

3

3

null

null

2

2

null

null

null

4

4

4

4

null

a

b

c

b

d

b c d

Ba

Σ

a 5

5

5

5

5

5

 There can be at most m entries to be updated in
NextMatch table. But the amortized time complexity for
each new character is constant.

“Fully Incremental LCS Computation” FCT2005 Luebeck, 20.8.2005

Conclusion & Future Work

 Given LCS(A,B), the proposed algorithm computes
LCS(cA, B) in O(L) time,
LCS(Ac, B) in O(L) time,
LCS(A, cB) in O(n) time, and
LCS(A, Bc) in O(n) time,

including (amortized) constant time update of NextMatch.

 Possible future work would be to extend our algorithm to
compressed strings - fully incremental LCS computation
without decompression. Run-length encoding?

	スライド番号 1
	Longest Common Subsequence
	Dynamic Programming
	Fully Incremental LCS Problem
	Fully Incremental LCS Problem [cont.]
	Fully Incremental LCS Problem [cont.]
	Our Approach
	Match Point & Partition Point
	Match Point & Partition Point [cont.]
	Computing LCS(A,cB)
	Eliminated Partition Point
	Eliminated Partition Point [cont.]
	Eliminated Partition Point [cont.]
	Eliminated Partition Point [cont.]
	Eliminated Partition Point [cont.]
	Next Match Table
	Update Next Match Table
	Complexity for Computing LCS(A, cB)
	Computing LCS(Ac,B)
	Computing LCS(A,Bc)
	Update Next Match Table
	Conclusion & Future Work

