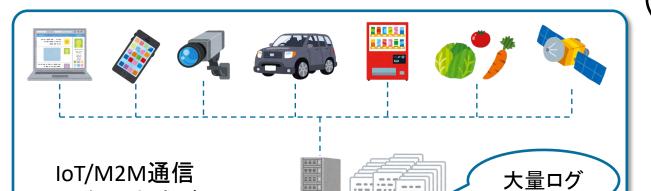
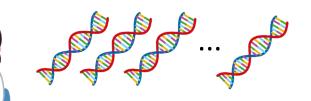
一般セッション [22]

文字列圧縮アルゴリズムの感度


赤木亨 (九州大学)

舩越満 (九州大学)

〇稲永俊介(九州大学)


データ圧縮

半自動生成データ

これ圧縮しといて

配列データベース

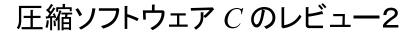
CACTCGCATCG... CACACGCATCG... CACTCGCGTCG...

CTCTCGCATGG...

zip? gzip? lha? 7z? bzip2? xz? ○○。 新入社員 どの圧縮法が いいんだろう...?

圧縮法の新評価指標

圧縮ソフトウェア С のレビュー1


T = ababaaba...ab

C(T)

テストデータが相当縮みました! 圧縮解凍も爆速です! しかも圧縮したまま検索できます!

T' = aXabaaba..ab

C(T')

でも、試しに1文字編集してみたらいきなり圧縮率悪くなりました...

レビュー読んでみたら

- (1) 圧縮率
- (2) 圧縮/展開速度
- (3) 圧縮検索 全部揃った *C* が良さそう!

え~、そんなことあるの?

うちの会社で扱うデータは 更新されるから不安だなぁ...

本研究: 新たな評価指標 (4) 圧縮感度 を提案

圧縮感度

【定義】

圧縮アルゴリズム C の感度

T'はTに1文字編集操作 (挿入・削除・置換)を 行って得られる任意の文字列

最悪時感度(比)

 $\max\{|C(T')|/|C(T)|: T \in \Sigma^n, \text{EditDistance}(T, T') = 1\}$

最悪時感度(差分)

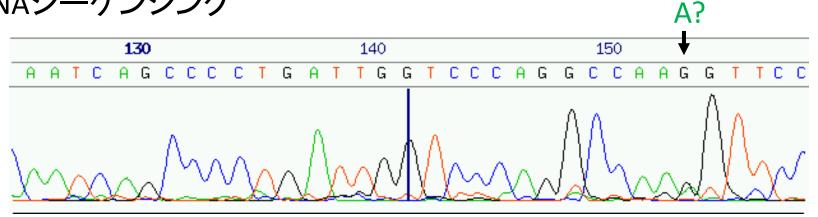
 $\max\{|C(T')|-|C(T)|: T \in \Sigma^n, \text{ EditDistance}(T, T') = 1\}$

【直感的理解】

感度が小さい圧縮 ⇔ 編集やエラーに影響されにくい圧縮

編集やエラーを含むデータ

Wikipediaページの更新履歴


- * [[bzip]] (bunzip) 特許<mark>侵害</mark> のために配布が中止された高圧 縮形式。[[算術符号]]使用。
- * [[bzip2]] (bunzip ver. 2)
 主に[[UNIX]]で使われるオー
 プンソースの高圧縮形式。bzip
 の後継として開発された。
- * [[bzip]] (<u>*. bz</u>) 特許<u>問題</u> **+** のために配布が中止された高圧 縮形式。[[算術符号]]使用。
- * [[bzip2]] (<u>*. bz 2</u>)

 主に[[UNIX]]で使われるオー

 プンソースの高圧縮形式。bzip

 の後継として開発された。

DNAシーケンシング

http://www.chevreux.org/thesis/node10.html

圧縮感度(比)

圧縮法•力	反復'	性指標
-------	-----	-----

LZ77 *z*

LZSS S

双方向スキーム b

最小文法 g*

BISECTION $g_{
m BISCTN}$

GCIS $g_{\rm GCIS}$

LZ78 g_{78}

RLBWT r

部分文字列複雑性δ

圧縮感度(比)

関連研究はわずか感度も良くない

圧縮法•反復性指標	上界	下界
LZ77 z		
LZSS s		
双方向スキーム b		
最小文法 g*		
BISECTION $g_{ m BISCTN}$		
GCIS $g_{ m GCIS}$		
LZ78 g ₇₈		$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
RLBWT r		$\Omega(\log n)$ [Sofsem 2021]
部分文字列複雑性 δ		

RLBWT の圧縮感度(下界)

 \tilde{F} : 逆向きフィボナッチ文字列

\tilde{F}_6	baabaababaaba
2	aabaababaabab
10	aababaabaabab
5	aababaababaab
13	abaabaababaab
8	abaababaabaab
3	abaababaababa
11	ababaabaababa
6	ababaababaaba
1	baabaababaaba
9	baababaabaaba
4	baababaababaa
12	babaabaababaa
7	babaababaabaa

辞書式順序にソート

r:入力文字列のローテーションを 辞書式順序に整列した行列の 最右列文字列の連長圧縮サイズ

$b\tilde{F}_6$	bbaabaababaaba	
3	aabaababaababb	
6	aababaababbaab	
11	aababbaabaabab	
4	abaababaababba	
9	abaababbaabaab	
7	ababaababbaaba	b の追加によって
12	ababbaabaababa	ソート順が
14	abbaabaababaab	大きく変わる
2	baabaababaabab	
5	baababaababbaa	
10	baababbaabaaba	
8	babaababbaabaa	
13	babbaabaababaa	
1	bbaabaababaaba	

任意の $i \ge 2$ について, $r(\tilde{F}_i) = 2$ かつ $r(b\tilde{F}_i) = i = \log_{\phi} n$

 \rightarrow RLBWT の圧縮感度の下界は $r(b\tilde{F}_i)/r(\tilde{F}_i) = \Omega(\log n)$

圧縮感度(比)

ōō.

他の圧縮アルゴリズムの 感度はどれくらいなんだろう...?

圧縮法•反復性指標	編集操作	上界	下界
LZ77 z	任意		
LZSS s	挿入		
LZ33 S	削除•置換		
双方向スキーム b	任意		
最小文法 g*	任意		
BISECTION $g_{ m BISCTN}$	任意		
GCIS $g_{ m GCIS}$	任意		
LZ78 g ₇₈	任意		$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
RLBWT r	挿入		$\Omega(\log n)$ [SOFSEM 2021]
如八寸亨加海洲州。	削除		
部分文字列複雑性δ	挿入•置換		

圧縮感度(比)(本研究成果)

主要な圧縮手法の感度は O(1) であることを証明

圧縮法•反復性指標	編集操作	上界	下界
LZ77 z	任意	2	2
1700 ~	挿入	2	2
LZSS s	削除•置換	3	3
双方向スキーム b	任意	2	2
最小文法 g*	任意	2	_
BISECTION $g_{ m BISCTN}$	任意	2	2
GCIS $g_{ m GCIS}$	任意	4	4
LZ78 g ₇₈	任意	1	$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
RLBWT r	挿入	$O(\log r \log n)$	$\Omega(\log n)$ [SOFSEM 2021]
部分文字列複雑性 δ	削除	1.5	1.5
ロリカメナグが多種性	挿入•置換	2	2

圧縮感度(比)(本研究成果)

多くの圧縮法について タイトな上下界を与えた

圧縮法•反復性指標	編集操作	上界	下界
LZ77 z	任意	2	2 411!
1700 g	挿入	2	2 411!
LZSS s	削除•置換	3	3 411!
双方向スキーム b	任意	2	2 411!
最小文法 g*	任意	2	_
BISECTION $g_{ m BISCTN}$	任意	2	2 411!
GCIS $g_{ m GCIS}$	任意	4	4 41+!
LZ78 g ₇₈	任意	-	$\Omega(n^{1/4})$ [Lagarde & Perifel SODA 2018]
RLBWT r	挿入	$O(\log r \log n)$	$\Omega(\log n)$ [SOFSEM 2021]
部分文字列複雑性 δ	削除	1.5	1.5 41+!
可万义于刘扬和江	挿入·置換	2	2 411!

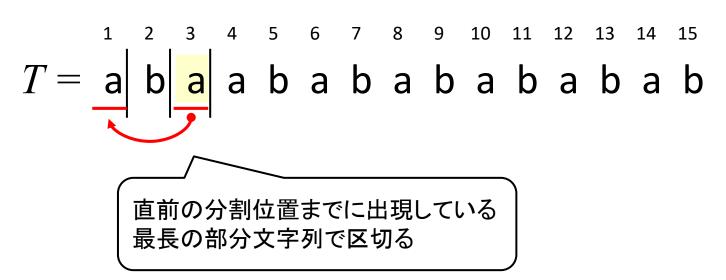
圧縮感度(比)(本研究成果)

LZSS圧縮について説明

圧縮法•反復性指標	編集操作	上界	_	下界	
LZ77 z	任意	2		2	411!
17CC ~	挿入	2		2	41F!
LZSS s	削除•置換	3		3	411
双方向スキーム b	任意	2		2	41F!
最小文法 g*	任意	2		-	
BISECTION $g_{ m BISCTN}$	任意	2		2	411!
GCIS $g_{ m GCIS}$	任意	4		4	41r!
LZ78 g ₇₈	任意	1	$\Omega(n^{1/4})$	_	de & Perifel 2018]
RLBWT r	挿入	$O(\log r \log n)$	$\Omega(\log n)$	[SOFS	SEM 2021]
· 部分文字列複雑性 δ	削除	1.5		1.5	41F!
ロルカスナグが変称に上の	挿入·置換	2		2	411!

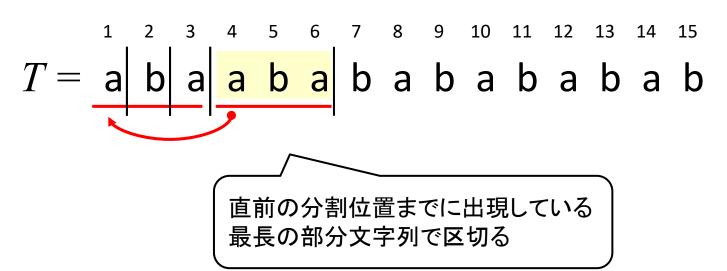
LZSS [Storer-Szymanski, 1982]

- 初出現の文字が出たら区切る
- ・ 直前の分割位置までに出現している 最長の部分文字列で区切る


LZSS [Storer-Szymanski, 1982]

- 初出現の文字が出たら区切る
- 直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]


- 初出現の文字が出たら区切る
- 直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]

- 初出現の文字が出たら区切る
- 直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]

LZSS [Storer-Szymanski, 1982]

直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & b & a & b & a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$

直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \ a & b & a & b & a & b & a & b & a & b \ \end{vmatrix}$$

直前の分割位置までに出現している 最長の部分文字列で区切る

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & b & a & b & a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & b & a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$
(a) (b)(1, 1) (1, 3) (2, 3) (5, 8) (5, 7)

圧縮サイズ(項数)=7

LZSS [Storer-Szymanski, 1982]

$$T = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ a & b & a & b & a & b & a & b & a & b & a & b & a & b \end{vmatrix}$$
(a) (b)(1, 1) (1, 3) (2, 3) (5, 8) (5, 7)

圧縮サイズ(項数)=7

LZSS(自己参照あり)

s:編集前の文字列のLZSS圧縮サイズ

s':編集後の文字列のLZSS圧縮サイズ

定理 [LZSS圧縮の感度の上界]

任意の文字列に対して以下が成り立つ.

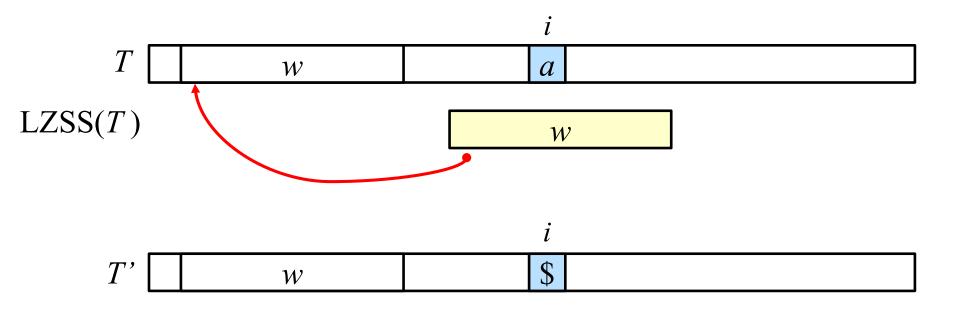
感度(比) $s'/s \leq 3$

感度(差分) $s' - s \le 2s - 2$

※この上界は自己参照なし/ありの両方で成立

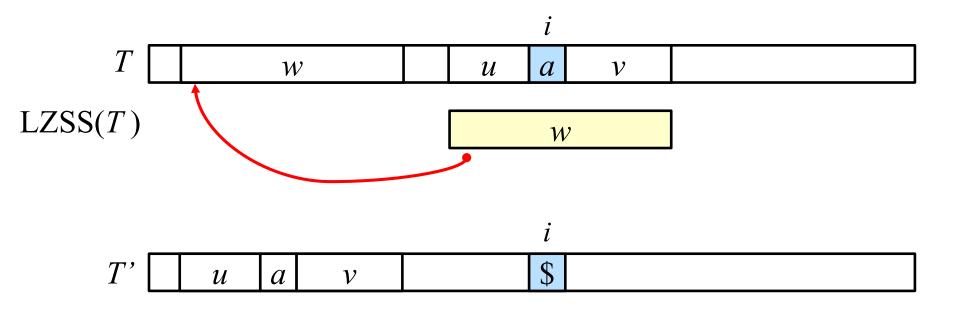
$[s' \leq 3s$ を示す]

Claim 1: 編集位置 *i* を含む項 w について,

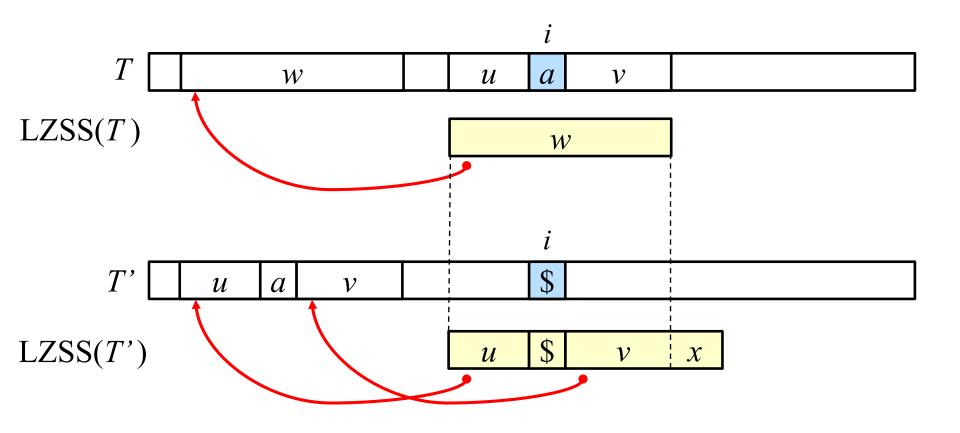

wの区間内から始まる項の個数は高々3に増える

	i	
T	a	

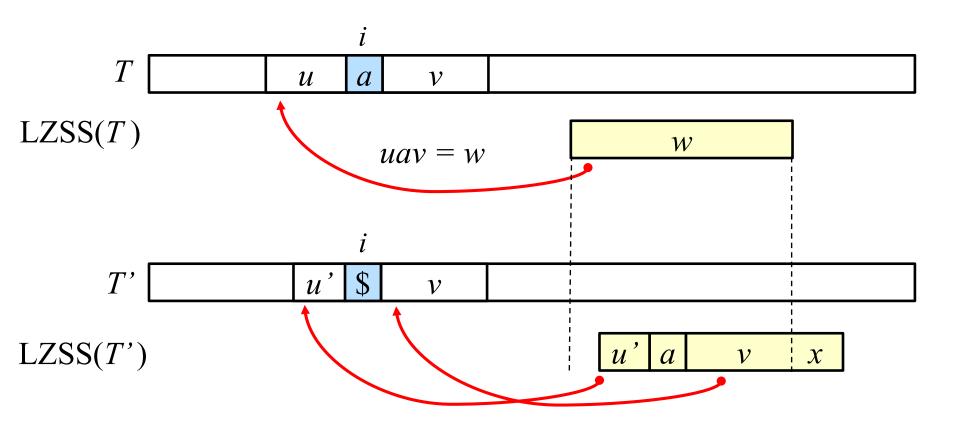
i T' \$


$[s' \leq 3s$ を示す]

Claim 1: 編集位置 *i* を含む項 *w* について, *w* の区間内から始まる項の個数は高々3に増える


$[s' \leq 3s$ を示す]

Claim 1: 編集位置 *i* を含む項 *w* について, *w* の区間内から始まる項の個数は高々3に増える


$[s' \leq 3s$ を示す]

Claim 1: 編集位置 *i* を含む項 *w* について, *w* の区間内から始まる項の個数は高々3に増える

$[s' \leq 3s$ を示す]

Claim 2: 編集位置 *i* より右側にある項 *w* について, *w* の区間内から始まる項の個数は高々3に増える

LZSS圧縮の感度(上界・下界)

定理 [LZSS圧縮の感度の上界]

任意の文字列に対して以下が成り立つ.

感度(比)
$$s'/s \leq 3$$

感度(差分) $s' - s \le 2s - 2$

定理 [LZSS圧縮の感度の下界]

以下を満たす長さnの文字列が存在する.

感度(比)
$$\lim_{s\to\infty}\inf(s'/s)=3$$

感度(差分)
$$s' - s = 2s - \Theta(\sqrt{s}) = \Omega(\sqrt{n})$$

【下界の証明の概要】

前ページの上界の証明に限りなく近い状況を満たす文字列の 構成法を示した.

実際の圧縮ソフトウェアの感度

理論的に2倍とか3倍になることはわかったけど、 実際のソフトでそんな状況起こるのかな…?

圧縮ソフト 7zip の圧縮感度を調査

- ➤ 拡張子 .7z の圧縮形式をサポート
- 7z は zip の上位互換版(7z のほうが 30~70% 圧縮率がよい)
- \rightarrow 7z = LZSS + RangeCoder

Zip
Zip (パスワード)
7z
BZip2
GZip

自己解凍形式詳細設定

実際の圧縮ソフトウェアの感度

7z の感度が高くなるように 巧妙に構成された とてもイジワルな文字列

stringX: 長さ 1,172,887 (1.12 MB)

!"#\$%&'()*+,./0123456789:;⇔?@ABCDEFGHIJKLMN!"#\$%&'()*+,./01234 56789:;⇔?@ABCDEFGHIJKLM!"#\$%&'()*+,./0123456789:;<=>?@ABCDEF GHIJKL!"#\$%&'()*+,./0123456789:;<=>?@ ABCDE 中略 "#\$%!"#\$!"#!"!!{OOPOPQOPQROPQRSOPQRSTOPQRSTUOPQRST 以降略

stringXp

1083 番目の文字"{"を"~"で置換

!"#\$%&'()*+,./0| 23456789:;⇔?@ABCDEFGHIJKLMN!"#\$%&'()*+,./01234 56789:; <> ?@AB | DEFGHIJKLM!"#\$%&'()*+,./0123456789:; <=>?@ABCDEF GHIJKL!"#\$%&'(| [+,./0123456789:;<=>?@ABCDE 中略 '!"#\$%&!

"#\$%!"#\$!"#!"!!~OOPOPQOPQROPQRSOPQRSTOPQRSTUOPQRST以降略

7-Zipで圧縮したサイズ	stringX.7z 4,884 / 1.	
/-Zip Ci土油した リイス	stgingXp.7z	7,189 バイト

感度(比) 約1.5倍!!

まとめと今後の課題

- □ 圧縮アルゴリズムの新たな評価指標 圧縮感度 を提案し、 多くの圧縮アルゴリズムの感度のタイトな上下界を示した。
- □ 実際の圧縮ソフトに対して、感度が約1.5倍になる 実例を発見した(1文字/120万文字の編集で達成)。
- ◆ 以下の圧縮法の上界・下界の解明

圧縮法•反復性指標	上界(比)	下界(比)
最小文法 g*	2	-
LZ78 g ₇₈	-	$\Omega(n^{1/4})$
RLBWT r	$O(\log r \log n)$	$\Omega(\log n)$
文字列アトラクタ γ	$O(\log n)$	2
AVL / a-balanced / Recomression 文法	$O(\log n)$	2
RePair / Greedy / Longest 文法	-	-

圧縮感度(差分)

圧縮法•反復性指標	上界	下界	下界 (nの関数)
LZ77圧縮 z	z-1	z-1	$\Omega(\sqrt{n})$
LZSS圧縮 s	2s-s	$2s - \Theta(\sqrt{s})$	$\Omega(\sqrt{n})$
AVL 文法	$O(s \log n)$	1	-
双方向スキーム b	b+2	b/2 - 3	$\Omega(\sqrt{n})$
最小文法 g*	<i>g</i> *	1	-
BISECTION $g_{ m BISCTN}$	$g_{ m BISCTN}$	$g_{ m BISCTN}-4$	$2\log_2 n - 4$
GCIS圧縮 $g_{ ext{GCIS}}$	$3g_{ m GCIS}$	$3g_{GCIS}-29$	3n/4 + 1
LZ78圧縮 g ₇₈	-	$\Omega(g_{78}^{3/2})$	$\Omega(n/\log n)$
連長BW変換 r	$O(r \log r \log n)$	ı	$\Omega(\log n)$
部分文字列複雑性 δ	1	1	1
文字列アトラクタ γ	$O(\gamma \log n)$	γ–3	$\Omega(\sqrt{n})$