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Labeled Trees
 A string is a sequence of characters, which is equivalent 

to a single path where each edge is labeled.
 A labeled tree is a generalization of a string which has  

branches, and it can also be seen as a compact 
representation of a set of strings.
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Labeled Tree Indexing Problem
 We deal with the indexing version of the pattern 

matching problem on labeled trees (a.k.a. tries).

Preprocess input: A trie T.
Query input: A pattern string P.
Query output: Every sub-path of T that matches P.

Problem

 We consider two version of tries:
Forward Tries: paths are read from root to leaves.
Backward Tries: paths are read from leaves to root.



Indexing Forward/Backward Tries
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Indexing Forward Tries
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Three kinds of indexing structures 
for Forward Trie T.

Partial DFA that accepts 
all substrings of T .

Compact trie representing 
all substrings of T .

Compact DAG representing 
all substrings of T .



Indexing Backward Tries
Three kinds of indexing structures 
for Backward Trie T R .

Partial DFA that accepts 
all substrings of T R .

Compact trie representing 
all substrings of T R .

Compact DAG representing 
all substrings of T R .
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DAWGs (Directed Acyclic Word Graphs)
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 A substring (i.e. sub-path) X of a forward trie T is said to 
be left-maximal if (1) there are two distinct characters a, b
such that both aX and bX are substrings of T, or (2) X has 
an occurrence begging at the root of T .

 This generalizes Blumer et al.’s DAWGs for strings to trees.
 DAWGs for backward tries T R are defined similarly.
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Suffix Trees
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 A substring (i.e. sub-path) X of a forward trie T is said to 
be right-maximal if (1) there are two distinct characters 
a, b such that both Xa and Xb are substrings of T, or 
(2) X has an occurrence ending at a leaf of T .

 This generalizes Weiner’s suffix trees for strings to trees.
 Suffix trees for backward tries T R are defined similarly.

SuffixTree(T )

b

ba

c ab
b

c

b
b b

a ab

c

a

b

b

bc

b
c

b



CDAWGs (Compact DAWGs)

b

c b b ca
a

Forward Trie T
CDAWG(T ) cabab

cabab
cabab
caba
cabab
cabab

 A substring (i.e. sub-path) X of a forward trie T is said to 
be bi-maximal if X is both left-maximal and right-maximal 
in T .

 Intuitively, CDAWGs are mixture of DAWGs and Suffix Trees.
 This generalizes Blumer et al.’s CDAWGs for strings to trees.
 CDAWGs for backward tries T R are defined similarly.
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Sizes of Indexing Structures for Tries
Size Bounds of Indexing Structures for Tries (Existing Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG Ο(n) − − −
CDAWG − − − −

Suffix Tree − − Ο(n) Ο(n)
Suffix Array − n−1

n is # of nodes in the input trie.

upper
bounds



Sizes of Indexing Structures for Tries
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ο(n2) Ο(n2) Ο(n2)
CDAWG 2n−3 Ο(n2) 2n−3 2n−4

Suffix Tree Ο(n2) Ο(n2) 2n−3 2n−4
Suffix Array Ο(n2) n−1

n is # of nodes in the input trie.

upper
bounds

Note: For a string (i.e. path tree) with n characters,
the sizes of these indexing structures are all O(n).



Matching Upper/Lower Bounds
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ο(n2) Ο(n2) Ο(n2)
CDAWG 2n−3 Ο(n2) 2n−3 2n−4

Suffix Tree Ο(n2) Ο(n2) 2n−3 2n−4
Suffix Array Ο(n2) n−1

upper
bounds

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ω(n2) Ω(n2) Ω(n2)
CDAWG 2n−3 Ω(n2) 2n−3 2n−4

Suffix Tree Ω(n2) Ω(n2) 2n−3 2n−4
Suffix Array Ω(n2) n−1

lower
bounds



Linear-size Indexing for Forward Tries
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Θ(n2) Θ(n2) Θ(n2)
CDAWG 2n−3 Θ(n2) 2n−3 2n−4

Suffix Tree Θ(n2) Θ(n2) 2n−3 2n−4
Suffix Array Θ(n2) n−1

There exists an Ο(n)-size compact representation of the 
DAWG for forward trie T which can be built in O(n) time.
Also, this compact representation supports bidirectional 
pattern matching queries on the trie in O(m log σ + occ) time.

n: # nodes in T ，m: pattern length，σ: alphabet size，occ：# pattern occurrences

Theorem [This Work]

upper
bounds



Connections of DAWG(T ) and SuffixTree(T R)
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abThere is a one-to-one correspondence between the nodes 

of DAWG(T ) and the nodes of SuffixTree(T R ), but there 
is no such correspondence between their edges. 



Simulating DAWG(T ) edges with SuffixTree(T R)
We can simulate all the O(n2) edges of DAWG(T )
with SuffixTree(T R) using only O(n) space.

Decompose SuffixTree(T R ) into
O(n/σ) clusters, O(σ)-size each,
where σ is the alphabet size.

Store carefully-selected DAWG 
edges in each cluster, 
so that the other DAWG edges 
can be retrieved upon query.



Conclusions and Open Question
 We have shown a complete perspective on the size 

bounds of classical indexing structures for forward tries 
and backward tries.

 We can simulate the DAWG for a forward trie with the 
suffix tree for a backward trie, using O(n) space.

 Can we simulate the CDAWG for a forward trie with the 
CDAWG for a backward trie, using O(n) space?

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Θ(n2) Θ(n2) Θ(n2)
CDAWG 2n−3 Θ(n2) 2n−3 2n−4

Suffix Tree Θ(n2) Θ(n2) 2n−3 2n−4
Suffix Array Θ(n2) n−1
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