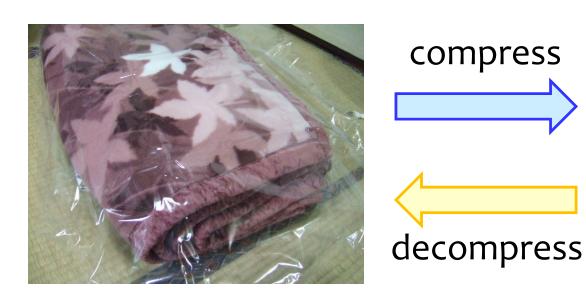
Finding Characteristic Substrings from Compressed Texts

Shunsuke Inenaga Kyushu University, Japan

Hideo Bannai Kyushu University, Japan

Text Mining and Text Compression

- Text mining is a task of finding some rule and/or knowledge from given textual data.
- Text compression is to reduce a space to store given textual data by removing redundancy.



Our Contribution

- We present efficient algorithms to find characteristic substrings (patterns) from given compressed strings directly (i.e., without decompression).
 - Longest repeating substring (LRS)
 - Longest non-overlapping repeating substring (LNRS)
 - Most frequent substring (MFS)
 - Most frequent non-overlapping substring (MFNS)
 - Left and right contexts of given pattern

Text Compression by Straight Line Program

SLP 7

$$X_1 = a$$

 $X_2 = b$
 $X_3 = X_1 X_2$
 $X_4 = X_3 X_1$
 $X_5 = X_3 X_4$
 $X_6 = X_5 X_5$
 $X_7 = X_4 X_6$
 $X_8 = X_7 X_5$

$$T=$$
abaababaabababa

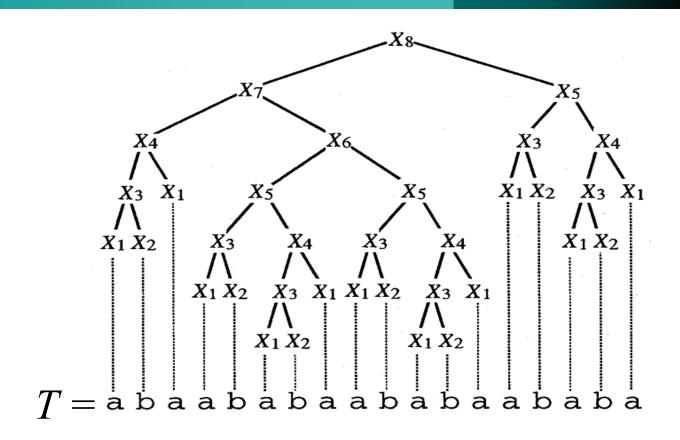
SLP 7 is a CFG in the Chomsky normal form which generates language $\{T\}$.

Text Compression by Straight Line Program

SLP 7

$$X_1 = a$$

 $X_2 = b$
 $X_3 = X_1 X_2$
 $X_4 = X_3 X_1$
 $X_5 = X_3 X_4$
 $X_6 = X_5 X_5$
 $X_7 = X_4 X_6$
 $X_8 = X_7 X_5$



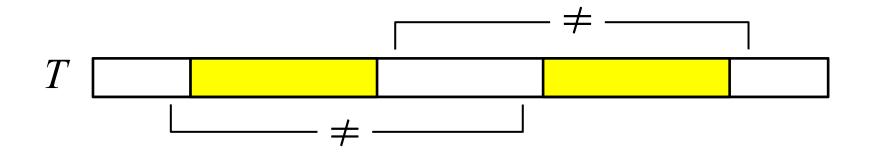
Encodings of the LZ-family, run-length, Sequitur, etc. can quickly be transformed into SLP.

Exponential Compression by SLP

- Highly repetitive texts can be exponentially large w.r.t. the corresponding SLP-compressed texts.
- Text T = ababab···ab (T is an N repetition of ab)
- SLP 7: $X_1 = a$, $X_2 = b$, $X_3 = X_1X_2$, $X_4 = X_3X_3$, $X_5 = X_4X_4$, ..., $X_n = X_{n-1}X_{n-1}$
- $N = O(2^n)$
- Any algorithms that decompress given SLPcompressed texts can take exponential time!
- We present efficient (i.e., polynomial-time) algorithms without decompression.

Finding Longest Repeating Substring

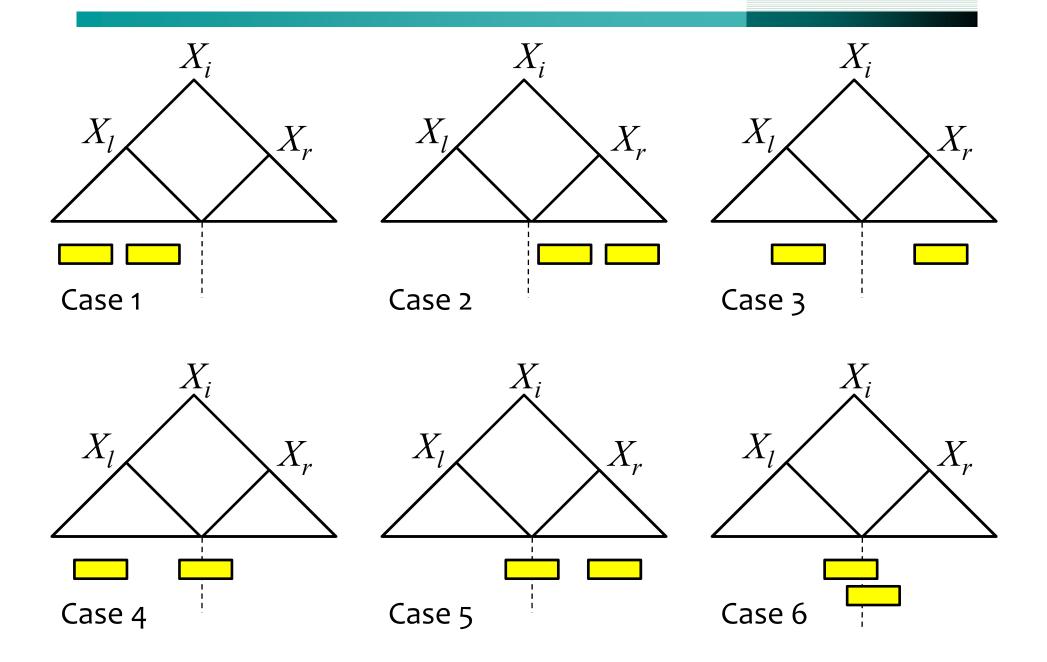
- Input: SLP 7 which generates text T
- Output: A longest repeating substring (LRS) of T



Example

T = aabaabcabaabb

Key Observation – 6 Cases of Occurrences of LRS



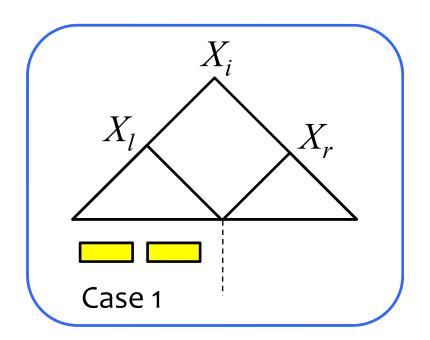
```
Input: SLP 7
Output: LRS of text T
foreach variable X_i of SLP 7 do
  compute LRS of Case 1;
  compute LRS of Case 2;
  compute LRS of Case 3;
  compute LRS of Case 4;
  compute LRS of Case 5;
  compute LRS of Case 6;
return two positions and the length of
       the "longest" LRS above;
```

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 1; compute LRS of Case 2; compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



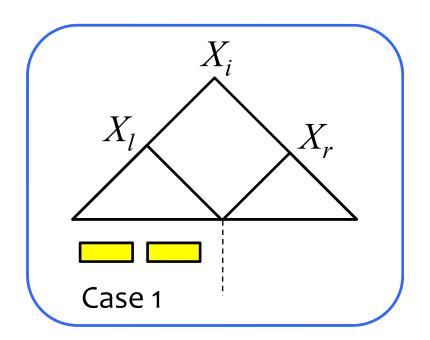
return two positions and the length of the "longest" LRS above;

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 1; compute LRS of Case 2; compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



return two positions and the length of the "longest" LRS above;

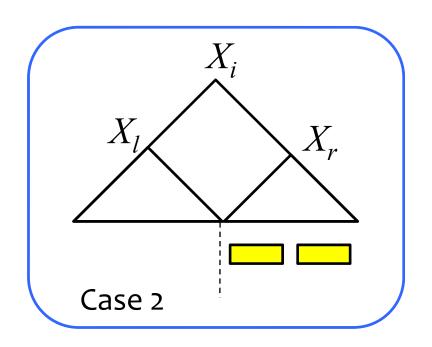
```
Input: SLP 7
Output: LRS of text T
foreach variable X_i of SLP 7 do
  compute LRS of Case 2;
  compute LRS of Case 3;
  compute LRS of Case 4;
  compute LRS of Case 5;
  compute LRS of Case 6;
return two positions and the length of
       the "longest" LRS above;
```

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 2; compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



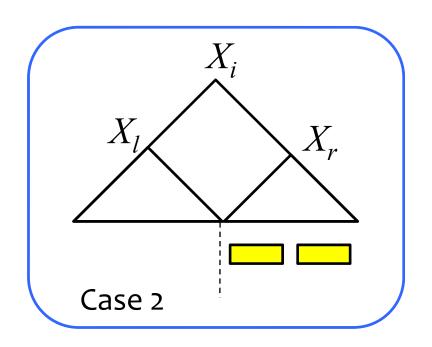
return two positions and the length of the "longest" LRS above;

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 2; compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



return two positions and the length of the "longest" LRS above;

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

```
compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;
return two positions and the length of
the "longest" LRS above;
```

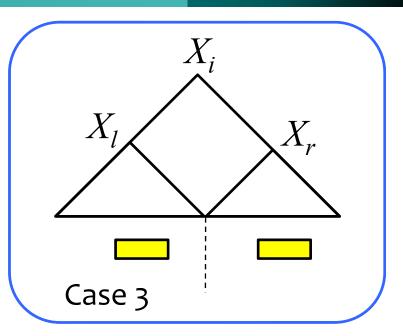
Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;

return two positions and the lengt the "longest" LRS above;



LRS of X_i of Case 3 is the longest common substring of X_l and X_r .

Longest Common Substring of Two SLPs

Theorem 1 [Matsubara et al. 2009]

For every pair of variables X_l and X_r , we can compute a longest common substring of X_l and X_r in total of $O(n^4 \log n)$ time.

n is num. of variables in SLP 7

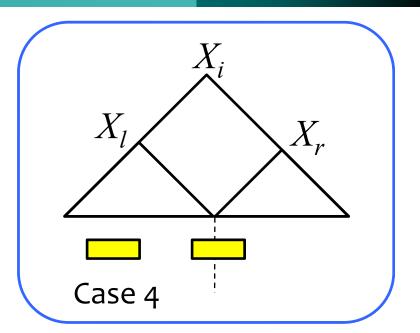
Input: SLP 7

Output: LRS of text *T*

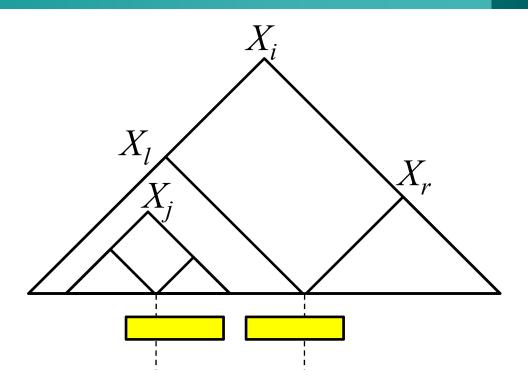
foreach variable X_i of SLP **7 do**

compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;

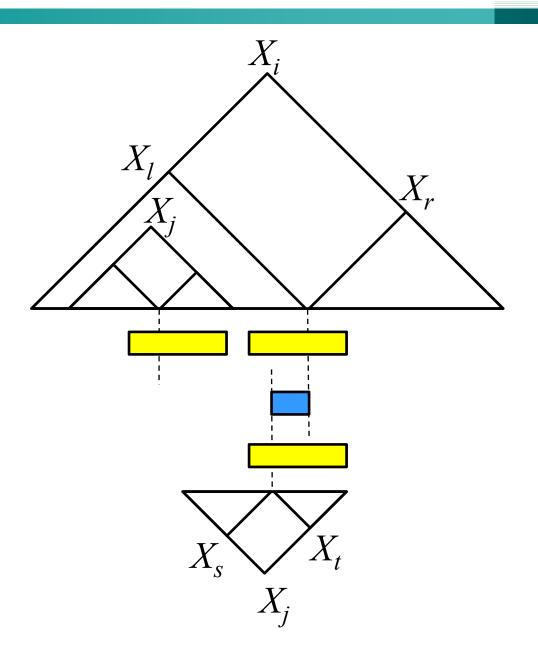
return two positions and the length of the "longest" LRS above;

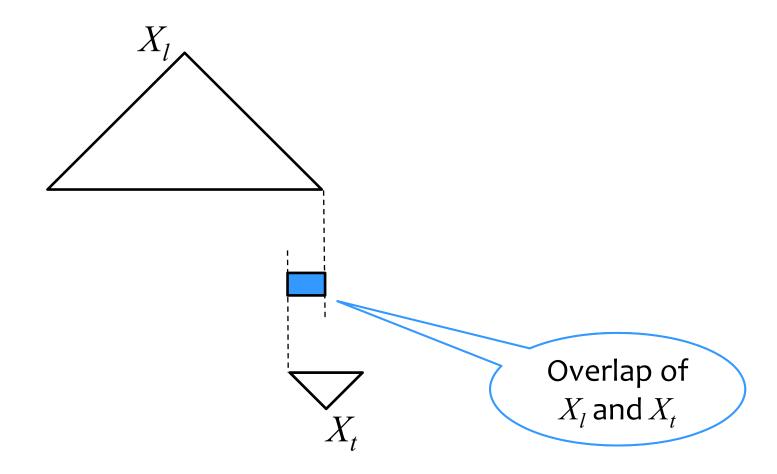


Case 4

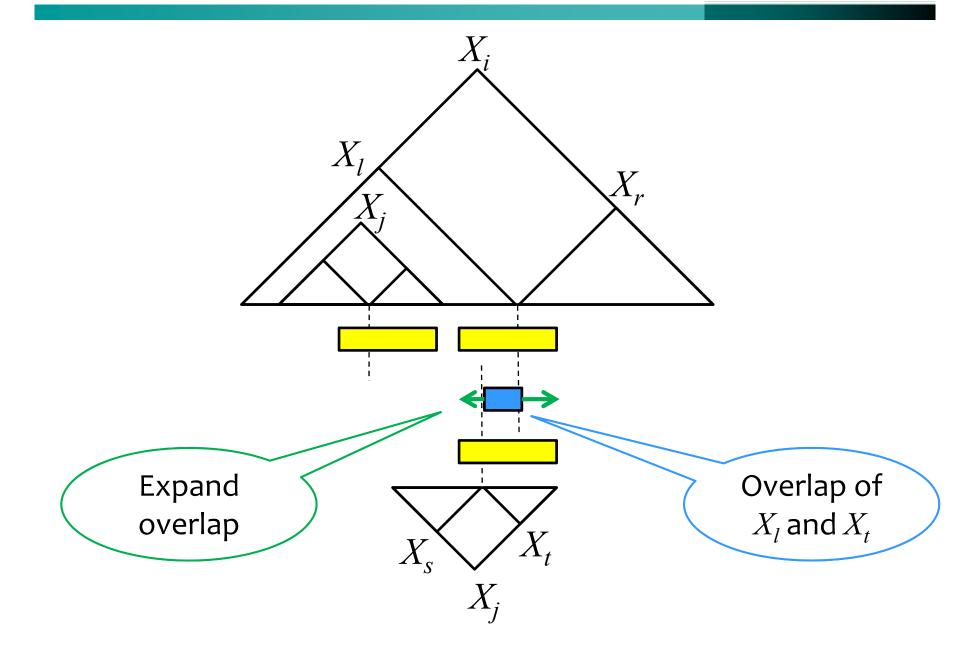


Case 4-1

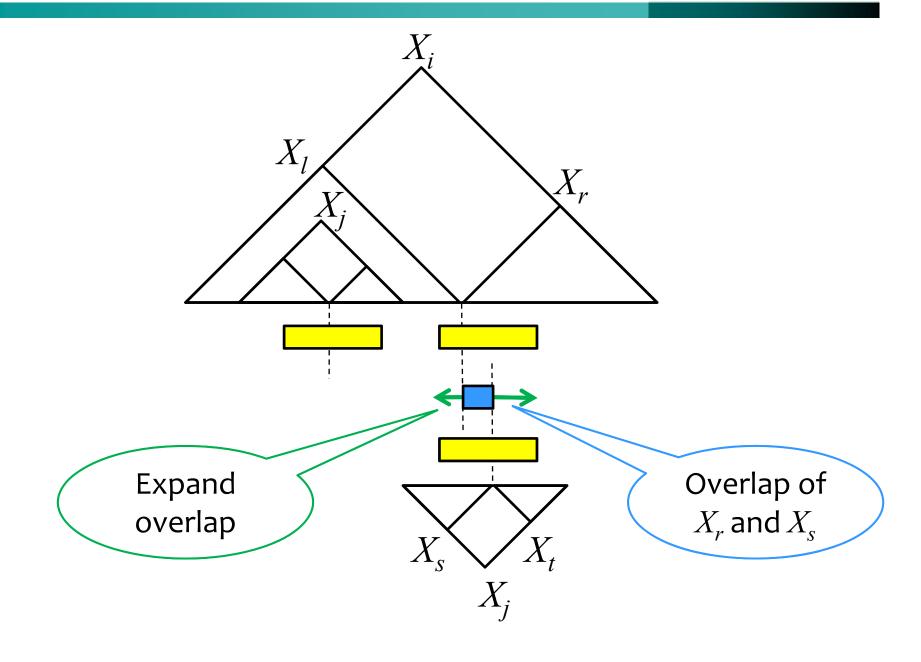




Case 4-1

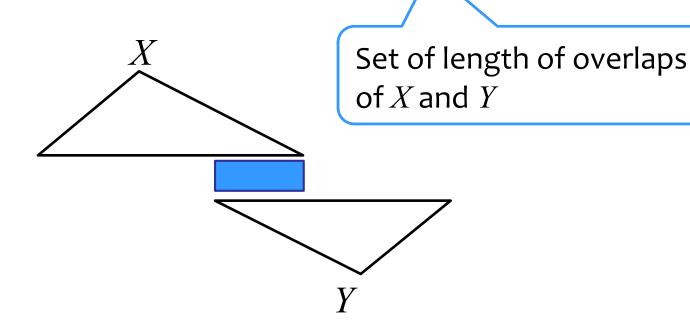


Case 4-2



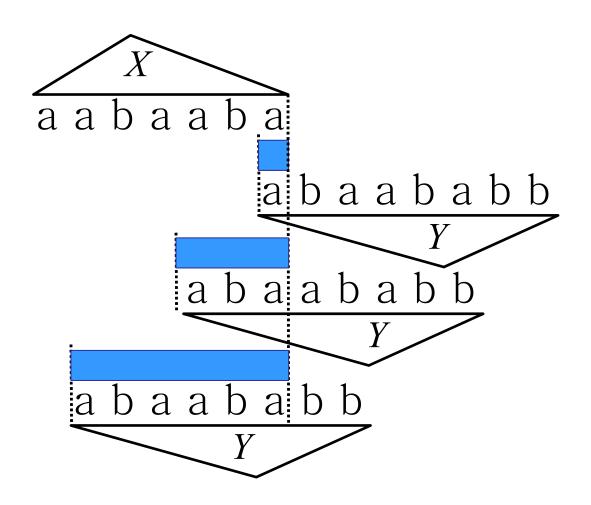
Set of Overlaps

$$OL(X,Y) = \{k > 0 \mid X[|X| - k + 1 : |X|] = Y[1 : k]\}$$



Set of Overlaps

 $OL(aabaaba, abaababb) = \{1, 3, 6\}$



Set of Overlaps

Lemma 1 [Kaprinski et al. 1997]

For every pair of variables X_i and Y_j , $OL(X_i, Y_i)$ forms O(n) arithmetic progressions.

Lemma 2 [Kaprinski et al. 1997]

For every pair of variables X_i and Y_j , $OL(X_i, Y_j)$ can be computed in total of $O(n^4 \log n)$ time.

n is num. of variables in SLP 7

Case 4

Lemma 3

For every variable X_i , a longest repeating substring in Case 4 can be computed in $O(n^3 \log n)$ time.

[Sketch of proof]

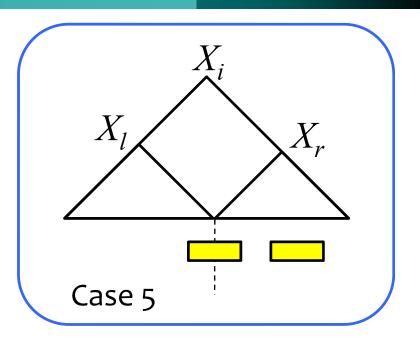
- We can expand all elements of each arithmetic progression of $OL(X_i, X_i)$ in $O(n \log n)$ time.
- The size of $OL(X_i, X_j)$ is O(n) by Lemma 1.
- There are at most n-1 descendants X_j of X_i .

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



Symmetric to Case 4

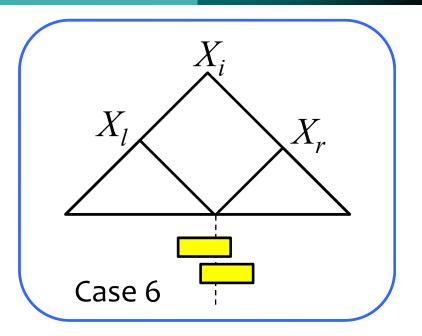
return two positions and the length of the "longest" LRS above;

Input: SLP 7

Output: LRS of text *T*

foreach variable X_i of SLP **7 do**

compute LRS of Case 3; compute LRS of Case 4; compute LRS of Case 5; compute LRS of Case 6;



Similarly to Case 4

return two positions and the length of the "longest" LRS above;

Finding Longest Repeating Substring

Theorem 2

For any SLP 7 which generates text T, we can compute an LRS of T in $O(n^4 \log n)$ time.

n is num. of variables in SLP 7

Finding Longest Non-Overlapping Repeating Substring

- Input: SLP 7 which generates text T
- Output: A longest non-overlapping repeating substring (LNRS) of T

Example

$$T = \underline{ab\underline{ababab}}\underline{ab}$$

LRS of T is abababab LRNS of T is abab

Finding Longest Non-Overlapping Repeating Substring

Theorem 3

For any SLP 7 which generates text T, we can compute an LNRS of T in $O(n^6 \log n)$ time.

n is num. of variables in SLP 7

Finding Most Frequent Substring

- Input: SLP 7 which generates text T
- Output: A most frequent substring (MFS) of T

The solution is always the empty string ϵ .

Finding Most Frequent Substring

- Input: SLP 7 which generates text T
- Output: A most frequent substring (MFS) of T of length 2

 $|\Sigma|^2$ substrings of length 2

Input: SLP 7

Output: MFS of text *T*

foreach substring P of T of length 2 **do** construct an SLP \mathcal{P} which generates substring P; compute num. of occurrences of P in T;

return substring of maximum num. of occurrences;

Lemma 4

For every pair of variables X_i and Y_j , the number of occurrences of Y_i in X_i can be computed in total of $O(n^2)$ time.

Finding Most Frequent Substring

Theorem 4

For any SLP 7 which generates text T, we can compute an MFS of T of length 2 in $O(|\Sigma|^2n^2)$ time.

n is num. of variables in SLP 7

Finding Most Frequent Non-Overlapping Substring

- Input: SLP 7 which generates text T
- Output: A most frequent non-overlapping substring (MFNS) of T of length 2

Example

$$T = \underline{\underline{aaaababab}}$$
 MFS of T of length 2 is $\underline{\underline{aa}}$ MFNS of T of length 2 is $\underline{\underline{ab}}$

Finding Most Frequent Non-Overlapping Substring

Theorem 5

For any SLP 7 which generates text T, we can compute an MFNS of T of length 2 in $O(n^4 \log n)$ time.

n is num. of variables in SLP 7

Computing Left and Right Contexts of Given Pattern

- Input: Two SLPs 7 and ₱ which generate text T and pattern P, respectively
- Output: Substring $\alpha P\beta$ of T such that
 - $\blacksquare \alpha$ (resp. β) always precedes (resp. follows) P in T
 - $\blacksquare \alpha$ and β are as long as possible

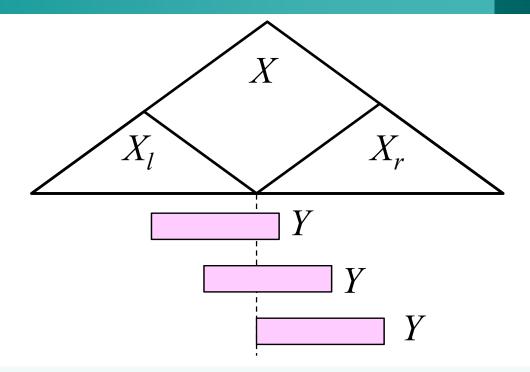
Example

$$T = b\underline{baab}aabbaabb$$
 $P = \underline{ab}$ $\alpha = \underline{ba}$ $\beta = \varepsilon$

Computing Left and Right Contexts of Given Pattern

- Examples of applications of computing left and right contexts of patterns are:
 - Blog spam detection [Narisawa et al. 2007]
 - Compute maximal extension of most frequent substrings (MFS)

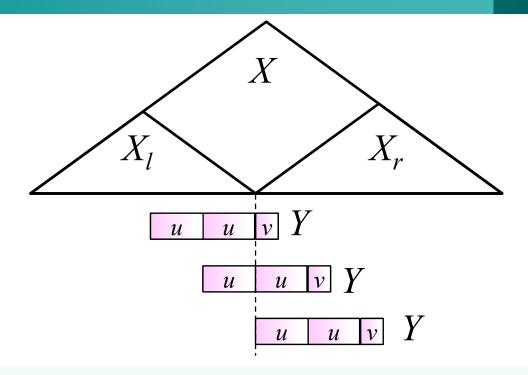
Boundary Lemma [1/2]



Lemma 5 [Miyazaki et al. 1997]

For any SLP variables $X = X_l X_r$ and Y, the occurrences of Y that touch or cover the boundary of X form a single arithmetic progression.

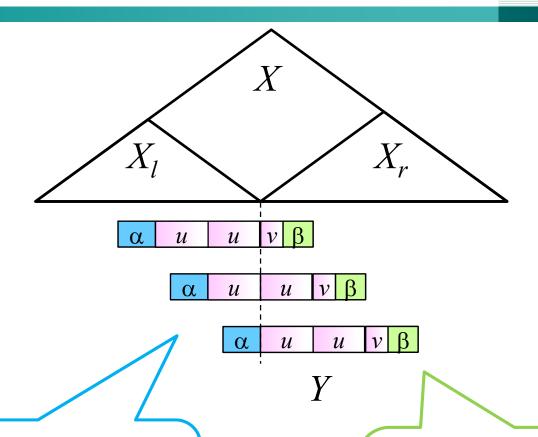
Boundary Lemma [2/2]



Lemma 5 [Miyazaki et al. 1997]

(Cont.) If the number of elements in the progression is more than 2, then the step of the progression is the smallest period of Y.

Left and Right Contexts



The left context α of Y in X is a suffix of u.

The right context β of Y in X is a prefix of uv[|v|:|uv|].

Computing Left and Right Contexts of Given Pattern

Theorem 6

For any SLPs 7 and \mathcal{P} which generate text T and pattern P, respectively, we can compute the left and right contexts of P in T in $O(n^4 \log n)$ time.

n is num, of variables in SLP 7

Conclusions and Future Work

- We presented polynomial time algorithms to find characteristic substrings of given SLP-compressed texts.
 - Our algorithms are more efficient than any algorithms that work on uncompressed strings.
- Would it be possible to efficiently find other types of substrings from SLP-compressed texts?
 - Squares (substrings of form xx)
 - Cubes (substrings of form xxx)
 - Runs (maximal substrings of form x^k with $k \ge 2$)
 - Gapped palindromes (substrings of form xyx^R with $|y| \ge 1$)