Finding Characteristic Substrings
from Compressed Texts

Shunsuke Inenaga
Kyushu University, Japan

Hideo Bannai
Kyushu University, Japan

Text Mining and Text Compression

® Text mining is a task of finding some rule and/or
knowledge from given textual data.

" Text compression is to reduce a space to store
given textual data by removing redundancy.

Our Contribution

" We present efficient algorithms to find
characteristic substrings (patterns) from given
compressed strings directly (i.e., without
decompression).

Longest repeating substring (LRS)

Longest non-overlapping repeating substring (LNRS)
Most frequent substring (MFS)

Most frequent non-overlapping substring (MFNS)

Left and right contexts of given pattern

Text Compression by Straight Line Program

SLP 7
X, =a
X,=Db

X; = XX,
X, = XX,
X5 = XX,
X = XX,
X, = X, X,
Xy = XX

T:abaababaababaababa

4 D
SLP 7is a CFG in the Chomsky normal form

which generates language {T}.
.

Text Compression by Straight Line Program

SLP 7

X, =a

X,=Db

X; = XX,
X, = X;3X,
X5 = X3X,
X, = XX,
X, = X, X
Xy = X-X

I\
X3 X_i

/\

X1 X2

/\
s

/6\
/\ /\
/\- /\ /\ /\

X1}§2 X3 X1 X1 X2 X3 Xi

ANTTT T

i i H i H H
H ; H i H H H H H :
H - S S S S S S S
! i H ; H - A T

: A A N T -

Xs '
/\ l\

X1 Xz X3 X1

I\

i X1 X2

T_abaababaababaababa

r

.

Encodings of the LZ-family, run-length,
Sequitur, etc. can quickly be transformed into SLP.

~\

y,

Exponential Compression by SLP
L —

= Highly repetitive texts can be exponentially large
w.r.t. the corresponding SLP-compressed texts.

» Text I'=ababab--:ab (Tis an N repetition of ab)
" SLP7:X, =a, X, =b, X, =X.X,, X, = X,X,,
Xs =X Xy, . , X, =X X |

= N=0(2"
* Any algorithms that decompress given SLP-
compressed texts can take exponential time!

— > We present efficient (i.e., polynomial-time)
algorithms without decompression.

Finding Longest Repeating Substring

o T ———
® [nput: SLP 7which generates text T
= Qutput: A longest repeating substring (LRS) of T

—

| ’ |

Example

T = aabaabcabaabb

Key Observation — 6 Cases of Occurrences of LRS

Algorithm to Compute LRS
L

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 1;
compute LRS of Case 2;
compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 1;
compute LRS of Case 2;
compute LRS of Case 3; 1 .
compute LRS of Case 4; C E

ase 1
compute LRS of Case 5; K /
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 1;
compute LRS of Case 2;
compute LRS of Case 3; 1 .
compute LRS of Case 4; C E

ase 1
compute LRS of Case 5; K /
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS
L

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 2;
compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 2;
compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;

K Case 2

return two positions and the length of

the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 2;
compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;

K Case 2

return two positions and the length of

the “longest” LRS above;

Algorithm to Compute LRS
L

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 3;
compute LRS of Case 4;
compute LRS of Case 5;
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 3; \ Case3 /
compute LRS of Case 4;

compute LRS of Case 5;
compute LRS of Case 6;

return two positions and the lengt
the “longest” LRS above;

LRS of X of Case 3 is
the longest common
substring of X;and X..

Longest Common Substring of Two SLPs

Theorem 1 [Matsubara et al. 2009]

For every pair of variables X;and X, we can
compute a longest common substring of X;
and X in total of O(rn*logn) time.

n is num. of variables in SLP 7

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 3; \ Case4 /
compute LRS of Case 4;

compute LRS of Case 5;
compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Case 4

Case 4-1

Case 4-1

Overlap of
X;and X,

Case 4-1

Expand
overlap

Overlap of
X;and X,

Case 4-2

Expand
overlap

Overlap of
X.and X,

Set of Overlaps

OLX,Y)={k>0| X[|X|-k+1:|X[]=Y[L:k])

Set of length of overlaps]

X
/\ of Xand Y

%

Set of Overlaps

OL(aabaaba, abaababb) = {1, 3, 6}

X~

aabaaba
B
abaababb

s

éabagababb

—

abaababb

T~

Set of Overlaps

Lemma 1 [Kaprinski et al. 1997]

For every pair of variables X; and Y,
OL(X, Y) forms O(n) arithmetic progressions.

Lemma 2 [Kaprinski et al. 1997]

For every pair of variables X; and Y,
OL(X; Y) can be computed in total of O(n*logn) time.

n is num. of variables in SLP 7

Case 4

Lemma 3

For every variable X, a longest repeating substring
in Case 4 can be computed in O(r’logn) time.

[Sketch of proof]

* We can expand all elements of each arithmetic
progression of OL(X;, X)) in O(nlogn) time.

* The size of OL(X,, X)) is O(n) by Lemma 1.

* There are at most n-1 descendants X, of X,.

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

compute LRS of Case 3; \Case 5 /
compute LRS of Case 4;
compute LRS of Case 5; Symmetric to Case 4

compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Algorithm to Compute LRS

Input: SLP 7
Output: LRS of text T

foreach variable X, of SLP 7 do

1
compute LRS of Case 3; \ Case6 /
compute LRS of Case 4;
compute LRS of Case 5; Similarly to Case 4

compute LRS of Case 6;

return two positions and the length of
the “longest” LRS above;

Finding Longest Repeating Substring

Theorem 2

For any SLP 7 which generates text 7, we
can compute an LRS of T'in O(n*logn) time.

n is num. of variables in SLP 7

Finding Longest Non-Overlapping Repeating Substring

® Input: SLP 7which generates text T

" Qutput: A longest non-overlapping repeating
substring (LNRS) of T

Example

T = ababababab LRS of T'is abababab
LRNS of 7T'is abab

Finding Longest Non-Overlapping Repeating Substring

Theorem 3

For any SLP 7 which generates text 7, we
can compute an LNRS of T'in O(n®logn) time.

n is num. of variables in SLP 7

Finding Most Frequent Substring

® Input: SLP 7which generates text T
= Qutput: A most frequent substring (MFS) of T

The solution is always
the empty string «.

Finding Most Frequent Substring

® Input: SLP 7which generates text T

= Qutput: A most frequent substring (MFS) of T
of length 2

Algorithm to Compute MFS

2] substrings

flength 2
Input: SLP 7 oriens

Output: MFS of text T

foreach substring P of T'of length 2 do
construct an SLP 2 which generates substring P;

compute num. of occurrences of Pin T;
return substring of m- {imum num. of occurrences;

Lemma 4

For every pair of variables X; and Y, the number of
occurrences of Y, in X; can be computed in total of O(n*) time.

Finding Most Frequent Substring

Theorem 4

For any SLP 7 which generates text 7, we can
compute an MFS of T of length 2 in O(|Z]>n?)
time.

n is num. of variables in SLP 7

Finding Most Frequent Non-Overlapping Substring

® Input: SLP 7which generates text T

= Qutput: A most frequent non-overlapping substring
(MENS) of T of length 2

Example

T = aaaaababab MFS of T of length 2 is aa
— MFNS of T of length 2 is ab

Finding Most Frequent Non-Overlapping Substring

Theorem 5

For any SLP 7 which generates text 7, we can
compute an MFNS of T of length 2 in
O(n*logn) time.

n is num. of variables in SLP 7

Computing Left and Right Contexts of Given Pattern

* Input: Two SLPs 7and 2 which generate
text T and pattern P, respectively

® Qutput: Substring aP3 of 7'such that

o (resp. B) always precedes (resp. follows) Pin T
a and [3 are as long as possible

Example

T =bbaabaabbaabb

P=ab
o =ba
B=¢

Computing Left and Right Contexts of Given Pattern

* Examples of applications of computing left and
right contexts of patterns are:

Blog spam detection [Narisawa et al. 2007]

Compute maximal extension of most frequent
substrings (MFS)

Boundary Lemma [1/2]

Lemma 5 [Miyazaki et al. 1997]

For any SLP variables X = XX and Y, the occurrences
of Y that touch or cover the boundary of Xform a

single arithmetic progression.

Boundary Lemma [2/2]

Lemma 5 [Miyazaki et al. 1997]

(Cont.) If the number of elements in the progression is
more than 2, then the step of the progression is the
smallest period of Y.

Left and Right Contexts

OLIu u |v|pB
4 v
s

The left context o of The right context 3
Yin Xis a suffix of u. of Yin X'is a prefix
\S J of uv[|v|: luvl].

Computing Left and Right Contexts of Given Pattern

Theorem 6

For any SLPs 7and 2 which generate text T
and pattern P, respectively, we can compute
the left and right contexts of Pin T'in

O(n*logn) time.

n is num. of variables in SLP 7

Conclusions and Future Work

* We presented polynomial time algorithms to find
characteristic substrings of given SLP-compressed
texts.

Our algorithms are more efficient than any algorithms
that work on uncompressed strings.

*= Would it be possible to efficiently find other types of
substrings from SLP-compressed texts?
Squares (substrings of form xx)
Cubes (substrings of form xxx)
Runs (maximal substrings of form x* with £ > 2)
Gapped palindromes (substrings of form xyx® with [y| > 1)

