
PSC 2015

Faster Longest Common Extension on
Compressed Strings and Applications

Shunsuke Inenaga

Kyushu University, Japan

Collaborators

Takaaki

Nishimoto
Tomohiro

I

Hideo

Bannai

Masayuki

Takeda

This work is a collaboration with:

Longest common extension (LCE)

Longest common extension (LCE) on string T

is a task such that, given two positions p and q,

compute the length of the longest common

substring of T starting at positions p and q.

Longest common extension (LCE)

Longest common extension (LCE) on string T

is a task such that, given two positions p and q,

compute the length of the longest common

substring of T starting at positions p and q.

I argue string algorithms at Prague stringology

p = 6 q = 34

Longest common extension (LCE)

Longest common extension (LCE) on string T

is a task such that, given two positions p and q,

compute the length of the longest common

substring of T starting at positions p and q.

I argue string algorithms at Prague stringology

p = 6 q = 34

Longest common extension (LCE)

Longest common extension (LCE) on string T

is a task such that, given two positions p and q,

compute the length of the longest common

substring of T starting at positions p and q.

I argue string algorithms at Prague stringology

p = 6 q = 34

LCE(6, 34) = 9

Background & Motivation

 LCE has numerous applications, e.g.,

approximate pattern matching, computing

palindromes, computing approximate repeats.

 A string T of length u can be preprocessed

in O(u) time and space so that each LCE query

can be answered in O(1) time [Demaine et al.].

 However, the O(u) complexity can be prohibitive

for large-scaled text.

 To save preprocessing time and space,

we consider LCE on grammar-compressed text.

Straight Line Program (SLP)

An SLP is a sequence of n productions

X1 → expr1, X2 → expr2, ···, Xn → exprn

• expri = a (a ∈ Σ)

• expri = Xl Xr (l, r < i)

 An SLP is a CFG in the Chomsky normal form

which derives a single string.

 SLPs model outputs of grammar-based compression

algorithms (e.g., Re-pair, LZ78, LZDF, OLCA, etc).

Definition

Straight Line Program (SLP)

n : size (# of productions) of a given SLP S

h : height of the derivation tree of S

u : length of the uncompressed string T

represented by SLP S

SLP S

X1→ a

X2→ b

X3→ X1 X1

X4→ X1 X2

X5→ X3 X4

X6→ X5 X4

X7→ X5 X6

Example of SLP

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

Derivation tree of SLP S

SLP S

X1→ a

X2→ b

X3→ X1 X1

X4→ X1 X2

X5→ X3 X4

X6→ X5 X4

X7→ X5 X6

Example of SLP

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

Derivation tree of SLP S

n

u

h

SLP S

X1→ a

X2→ b

X3→ X1 X1

X4→ X1 X2

X5→ X3 X4

X6→ X5 X4

X7→ X5 X6

Example of SLP

21

6

7

a a a b

1

4

1

3

a a a b a b

5

1 2

4

1

3

1

5

1 2

4

Derivation tree of SLP S

 log2 u ≤ h ≤ n always holds.

 u can be exponential in n (e.g. consider string au).
 Hence, O(poly(n)) solutions are of significance.

n

u

h

X4

Important Remarks

 Derivation trees are only imaginary (used only

for explanations) and are never constructed explicitly.

21

6

1

4

1

3

a a a b a b

5

1 2

4

X6

X5

Problem 1 (grammar compressed LCE)

Longest Common Extension on SLP

Preprocess an input SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛

so that subsequent longest common

extension queries LCE(Xj, Xk, p, q) can be

answered quickly.

XkXj

abbabbabca acbbabcbbbac

p q

Preprocess an input SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛

so that subsequent longest common

extension queries LCE(Xj, Xk, p, q) can be

answered quickly.

XkXj

abbabbabca acbbabcbbbac

p q

Query output is LCE length 5

Longest Common Extension on SLP

Problem 1 (grammar compressed LCE)

What is the difficulty?

 We are not allowed to expand the SLP

(compressed text), since this takes O(2n) time

in the worst case.

 But we want to know the length of the

longest common extension!

LCE algorithms on SLPs

n: size of SLP

u: length of uncompressed string T

h: height of SLP derivation tree

L: LCE length (output)

z: size of LZ77 factorization of T

 log u ≤ h ≤ n

 L = O(u)

 log*u = o(log u)

 z ≤ n (due to Rytter ’03)

Algorithms Query time Preprocessing time Space

Folklore O(hL) O(n) O(n)

(extended)

Miyazaki et al. ’97

O(hn2) O(n4) O(n2)

(extended)

Lifshits ’07

O(hn2) O(hn2) O(n2)

I et al. ’15 O(h logu) O(hn2) O(n2)

Bille et al. ’15

(randomized)

O(logu + log2L) N/A O(n)

LCE algorithms on SLPs
Algorithms Query time Preprocessing time Space

Folklore O(hL) O(n) O(n)

(extended)

Miyazaki et al. ’97

O(hn2) O(n4) O(n2)

(extended)

Lifshits ’07

O(hn2) O(hn2) O(n2)

I et al. ’15 O(h logu) O(hn2) O(n2)

Bille et al. ’15

(randomized)

O(logu + log2L) N/A O(n)

This work O(logu+log*ulogL) O(n loglogn log*u logu) O(n+zlog*u logu)

 log u ≤ h ≤ n

 L = O(u)

 log*u = o(log u)

 z ≤ n (due to Rytter ‘03)

n: size of SLP

u: length of uncompressed string T

h: height of SLP derivation tree

L: LCE length (output)

z: size of LZ77 factorization of T

Logstar (iterated logarithm)

 The logstar is a very slowly growing function,

e.g., log* 265536 = 5.

The logstar of a positive integer u, denoted

log*u, is the number of times the logarithm

function needs to be iteratively applied to u

until the result becomes less than or equal to 1.

Definition

n: size of SLP

u: length of uncompressed string T

h: height of SLP derivation tree

L: LCE length (output)

z: size of LZ77 factorization of T

Algorithms Query time Preprocessing time Space

Folklore O(hL) O(n) O(n)

(extended)

Miyazaki et al. ’97

O(hn2) O(n4) O(n2)

(extended)

Lifshits ’07

O(hn2) O(hn2) O(n2)

I et al. ’15 O(h logu) O(hn2) O(n2)

Bille et al. ’15

(randomized)

O(logu + log2L) N/A O(n)

This work O(logu+log*ulogL) O(n loglogn log*u logu) O(n+zlog*u logu)

LCE algorithms on SLPs

 log u ≤ h ≤ n

 L = O(u)

 log*u = o(log u)

 z ≤ n (due to Rytter ‘03)

Fastest

deterministic

queries

Fastest

preprocessing

Smallest

in many cases

Our strategy

 All previous algorithms work on the SLP

derivation trees of two query non-terminals.

 Our new algorithm does NOT work on

the SLP derivation trees.

 Instead, we construct a different tree of

logarithmic height, based on

 locally consistent parsing

 signature encoding.

Locally consistent parsing

For any integer string Y ∈ {1..m}* in which no

adjacent elements are equal (i.e. Y[i] ≠ Y[i+1]),

there is a bit string d of length |Y| such that

1. no 1’s appear consecutively;

2. at most three 0’s appear consecutively;

3. each d[i] is determined locally, i.e.,

by Y[i−DL…i−1] and Y[i...i+DR],

where DL ≤ log*m + 6 and DR ≤ 4;

4. d can be computed in O(|Y|) time.

Lemma 1 [Mehlhorn et al., Alstrup et al.]

Locally consistent parsing

Y = 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5 , 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5

d = 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0

Locally consistent parsing

Y = 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5 , 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5

d = 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0

ΔRDL

DL ≤ log*m + 6

DR ≤ 4

Locally consistent parsing

 Using the bit string d, any integer string Y

can be uniquely decomposed in linear time

into blocks of length 2-4.

Y = 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5 , 1 , 2 , 3 , 5 , 2 , 3 , 4 , 2 , 5

d = 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

a b c a c a b b c a b a c c c aT =

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

1 2 3 1 3 1 3 1 2 1 1

T =

Each character is

assigned to a unique

integer called a signature.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

1 2 3 1 3 1 3 1 2 1 1

T =

4 5

Run of the same

signatures is assigned to

a new signature.

Maximal run of the same

signatures is assigned to

a new signature.

Signature encoding [Mehlhorn et al. ’97]

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

1 2 3 1 3 1 3 1 2 1 154

T =

Apply locally consistent

parsing to this string.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 9

T =

Each block is assigned to

a new signature.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

T =

Maximal run of the same

signatures is assigned to

a new signature.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

T =

Apply locally consistent

parsing to this string.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

T =

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

11 12

T =

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

11 12

T =

Apply locally consistent

parsing to this string.

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

11 12

T =

Signature encoding [Mehlhorn et al. ’97]

 Iteratively apply locally consistent parsing to
input string T until a single integer is obtained.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

11 12

T =

13

Signature encoding [Mehlhorn et al. ’97]

 The height of this tree, called the signature tree,
is O(log u), where u = |T|.

2 2 3 3 3

a b c a c a b b c a b a c c c a

7 7

1 2 3 1 3 1 3 1 2 1 154

6 8 6 910

11 12

13

T =

O(logu)

Signature encoding [Mehlhorn et al. ’97]

 The dictionary DT of signatures is
the signature encoding of input string T.

13 → 11, 12
12 → 8, 6, 9
11 → 6, 10
10 → 72

9 → 1, 5, 1
8 → 4, 3
7 → 3, 1
6 → 1, 2
5 → 33

4 → 22

3 → c

2 → b

1 → a

DT signature tree of T

Faster LCE algorithm on SLP

Given the signature encoding DT of string T

of length u, we can compute LCE(Xj, Xk, p, q)

for any variables Xj, Xk and positions p, q in

O(log u + log* u log L) time, where L is the

answer to the query (LCE length).

Lemma 2 (Faster LCE on SLP)

Faster LCE algorithm on SLP

1. For every non-terminal Xj, we precompute and
store its occurrence bj in the derivation tree of Xn.

Xn

bj

Xj

Faster LCE algorithm on SLP

2. Given query variables Xj and Xk for LCE,
we retrieve bj and bk.

Xn

Xk

bkbj

Xj

Faster LCE algorithm on SLP

3. Since the last variable Xn derives string T,
LCE(Xj, Xk, p, q) reduces to LCE(bj+p, bk+q)
on string T.

Xn

bj+p bk+q

T

bj

Xj

p

Xk

bk q

Faster LCE algorithm on SLP

4. We turn attention to the signature tree of T,
and compute LCE(p’, q’) there, where
p’ = bj+p and q’ = bk+q.

p’ q’

T

signature tree of T

Faster LCE algorithm on SLP

5. By the property of signature encoding,
at each level of the signature tree,
there must be a common sequence of signatures
for LCE(p’, q’) (yellow parts).

T
p’

a

q’
b

Faster LCE algorithm on SLP

5. [Cont.] The left boundaries of length DL+O(1)
may or may not be equal depending on the left
contexts at each level, while the right boundaries
of length DR+O(1) always have a mismatch.

T
p’

a

q’
b

Faster LCE algorithm on SLP

6. In a bottom-up manner, we re-compute
the left boundary signatures of length DL+O(1)
ignoring their left contexts, and compare them
until we find a mismatch.

T
p’ q’

Faster LCE algorithm on SLP

6. In a bottom-up manner, we re-compute
the left boundary signatures of length DL+O(1)
ignoring their left contexts, and compare them
until we find a mismatch.

T
p’ q’

Faster LCE algorithm on SLP

6. In a bottom-up manner, we re-compute
the left boundary signatures of length DL+O(1)
ignoring their left contexts, and compare them
until we find a mismatch.

T
p’ q’

Faster LCE algorithm on SLP

6. In a bottom-up manner, we re-compute
the left boundary signatures of length DL+O(1)
ignoring their left contexts, and compare them
until we find a mismatch.

T
p’ q’

Faster LCE algorithm on SLP

7. In a top-down manner, we compare
the right boundary signatures of length DR+O(1)
until we find the first mismatch.

T
p’ q’

Faster LCE algorithm on SLP

T
p’ q’

7. In a top-down manner, we compare
the right boundary signatures of length DR+O(1)
until we find the first mismatch.

Faster LCE algorithm on SLP

T
p’ q’

a b

7. In a top-down manner, we compare
the right boundary signatures of length DR+O(1)
until we find the first mismatch.

Analysis of LCE query time

 The paths from the root to the p’th and q’th
leaves of the signature tree can be found in
O(log u) time, since its height is O(log u).

 The total number of signatures to re-compute
and to compare is O(log*u log L), since:

 DL ≤ log*u + 6 and DR ≤ 4, and

 the first mismatch is found at the (logL)th
level from the bottom.

 Therefore, LCE query can be answered in
O(log u + log*u log L) time.

From SLP to signature encoding

Given an SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛 of size n

which derives a string T of length u,

we can compute the signature encoding of T

in O(n loglog n log*u log u) time.

Lemma 3 (SLP to signature encoding)

 In this talk I show a simpler
O(n log n log*u log u)-time construction.

From SLP to signature encoding

 Assume that, for a production Xi → Xl Xr,
we have computed the signature encodings of
the decompressed strings val(Xl) and val(Xr).

signature tree of val(Xl)

signature tree of val(Xr)

val(Xl) val(Xr)

From SLP to signature encoding

 By “concatenating” the signature trees of
val(Xl) and val(Xr), we obtain the signature
tree of val(Xi).

val(Xi)

signature tree of val(Xl)

signature tree of val(Xr)

val(Xl) val(Xr)

From SLP to signature encoding

 In a bottom-up manner, we re-compute
the boundary signatures of length DR+O(1) and
DL+O(1) each, and concatenate the new
signatures level-wise.

val(Xi)

signature tree of val(Xl)

signature tree of val(Xr)

val(Xl) val(Xr)

From SLP to signature encoding

 If a block of re-computed signatures already

exists somewhere else, then we assign the same

signature to the block at the next level.

This is done in O(log n) time each, using a BST.

7

3 1

6

1 2

5

2 3

5

2 3

7

3 1

6

1 2

From SLP to signature encoding

 Since the height of each signature tree is O(log u),
we can compute the signature encoding
of val(Xi) for each Xi in O(log n log*u log u) time.

val(Xi)

signature tree of val(Xi)

O(log u)

DR+DL+O(1)= O(log* u)

How much space?

The number of signatures involved in the

signature encoding of string T of length u is

O(z log*u log u), where z is the number of

factors in the Lempel-Ziv 77 factorization of T.

Lemma 4 [Sahinalp & Vishkin, ’95]

 In our data structure, we need an additive
n term to store beginning positions of
occurrences of all non-terminals in the
derivation tree of Xn.

Main result

For any SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛 of size n

which represents a string T of length u,

there exists a data structure which

 supports LCE in O(log u + log*u log L) time;

 requires O(n + z log*u log u) space;

 can be built in O(n loglog n log*u log u) time,

where L is the LCE length and z is the size of

the LZ77 factorization of T.

Theorem 1

App 1: Finding palindromes

Problem 2 (finding palindromes on SLP)

Given an SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛 representing

a string T, compute a compact representation

of all maximal palindromes in T.

T = abbbaabbbbabbbaab
maximal

palindromes

Stabbed Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 For each non-terminal Xi, there are 3 different

types of “stabbed” maximal palindromes.

Computing Type 1 Palindromes

Xi

Xl
Xr

a b

 Each Type 1 maximal palindrome of Xi

can be computed by extending the arms

of a suffix palindrome of Xl.

LCE query for

Xr and Xl
rev .

Lemma 5 [Apostolico et al., ’95]

Suffix Palindromes

For any string of length k, the lengths of its

suffix palindromes can be represented by

O(log k) arithmetic progressions.

 We can extend the arms of the suffix

palindromes belonging to the same arithmetic

progression in a batch, using periodicity.

Theorem 2

App 1: Finding Palindromes

Given an SLP of size n, an O(n log u)-size

representation of all maximal palindromes of

string T can be computed in O(n log*u log2 u) time.

With this representation, given an interval [i, j],

we can decide whether the substring T[i..j] is

a maximal palindrome or not in O(log u) time.

App 2: Comparing Suffixes on SLP

Problem 3 (lexicographical comparison of suffixes)

Preprocess an input SLP representing string T

so that later, any suffixes of the string T can be

lexicographically compared efficiently.

Theorem 3

App 2: Comparing Suffixes on SLP

We can preprocess an input SLP of size n

representing string T of length u in

O(n loglog n log*u log u) time such that later,

any suffixes of T can be lexicographically

compared in O(log u + log*u log L) time,

where L is the length of the LCP of the suffixes.

 Since the height of the signature tree is O(log u),
this theorem is immediate from our LCE data

structure.

App 3: Lyndon factorization on SLP

Problem 4 (Lyndon factorization on SLP)

Given an SLP 𝑆 = {𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖}𝑖=1
𝑛 representing

a string T, compute the factor boundaries of

the Lyndon factorization of T.

Lyndon word

A string is said to be a Lyndon word if it is

lexicographically smaller than any of its proper

cyclic shifts.

Definition

For example, “aaaab”, “abc”, “bcbcc”

are Lyndon words.

T = a b c a b b a b b a a b c a a a

The Lyndon factorization LF(T) of a string T

is the factorization u1

p1, …, um

pm of T such that

u1, ..., um is a sequence of Lyndon words in

lexicographical descending order, and pi ≥ 1.

Definition

u4 u4 u4u1 u2 u2 u3

LF(T) = (abc)1 (abb)2 (aabc)1 (a)3

u4
3u1

1 u2
2 u3

1

Lyndon factorization

zk

Lyndon factorization on SLP

 I et al. showed an algorithm which computes

LF(Xi) with Xi → Xl Xr in the above manner.

 The beginning and ending positions of the

median Lyndon factor zk can be found by a
binary search based on lex-comparison of suffixes.

LF(Xi)

LF(Xl) LF(Xr)

Theorem 4

App 3: Lyndon factorization on SLP

Given an SLP of size n representing string T

of length u, we can compute the factor

boundaries of the Lyndon factorization of T

in O(n loglogn log*u log u) time and

O(n2 + z log*u log u) space.

Conclusions & further work

 We proposed a new LCE algorithm on SLPs

with O(log u + log*u log L) query time.

 This is the fastest deterministic solution to date.

 More details can be found in our arxiv paper:

“Dynamic index, LZ factorization, and

LCE queries in compressed space”.

 Lower bound?

 Other applications?

