

Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees and DAWGs on Multiple Strings

Shunsuke Inenaga Kyushu University, Japan

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- Motivation: Indexing multi online/streaming data.
	- ◆ Sensing data, trajectory data, SNS, etc.

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- **D** Motivation: Indexing multi online/streaming data.
	- ◆ Sensing data, trajectory data, SNS, etc.

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- Motivation: Indexing multi online/streaming data.
	- ◆ Sensing data, trajectory data, SNS, etc.

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- Motivation: Indexing multi online/streaming data.
	- ◆ Sensing data, trajectory data, SNS, etc.

Overview of This Work

- We will consider **suffix trees** and **DAWGs** as indexing structures for fully-online multiple strings.
- \Box For suffix trees, we propose a Weiner-type algorithm where strings grow **from right to left**.
- **E** For **DAWGs**, we propose a Blumer et al.-type algorithm where strings grow **from left to right**.
- Our model of computation is the **pointer machine** that is strictly weaker than the word RAM.

Suffix Links

If *av* is a node and *a* is a character, then suffix $\text{link}(av) = v$.

Suffix Links

If av is a node and a is a character, then suffix $link(av) = v$.

Hard Weiner Links

The *reversed* suffix links with character labels are called **hard Weiner links**.

Soft Weiner Links

Soft Weiner links are "generalized" Weiner links.

Soft Weiner Links

Soft Weiner links are "generalized" Weiner links.

Soft Weiner Links

Soft Weiner links are "generalized" Weiner links.

DAWGs [Blumer et al. 1987]

The **DAWG** of multiple strings is a linear-size automaton that recognizes all substrings of the strings.

Duality of Suffix Trees and DAWGs

A) There is a one-to-one correspondence between **the nodes of the suffix tree of strings** and **the nodes of the DAWG of the reversed strings**.

Duality of Suffix Trees and DAWGs

B) There is a one-to-one correspondence between **the Weiner links of the suffix tree of strings** and **the edges of the DAWG of the reversed strings**.

Previous and This Work (Suffix Trees)

n : total string length , σ : alphabet size, *d* : max. # in-coming Weiner links

Both $O(n \log \sigma) \subseteq O(n \log n)$ and $O(n (\log \sigma + \log d)) \subseteq O(n \log n)$ hold

 \rightarrow The new algorithm achieves the same worst-case complexity on a **weaker model** of computation (**pointer machine**).

Previous and This Work (DAWGs)

n : total string length , σ : alphabet size, *d* : max. # in-coming Weiner links

Takagi et al.'s method only maintains an implicit representation of DAWG.

→ The new algorithm is the **first non-trivial algorithm** that maintains an **explicit representation of DAWG** for fully-online multiple stings.

Pointer Machine [cf. Tarjan 1979]

- The **pointer machine** is an abstract model of computation where the state of computation is stored as a digraph. Each node contains a const. number of data and pointers.
- The pointer machine **supports** instructions **(1)-(3):**
	- (1) creating / deleting nodes and pointers;
	- (2) manipulating data;
	- (3) performing comparisons,
	- but it **does NOT support** word RAM instructions **(4)-(5):**
	- (4) address arithmetics;
	- (5) unit-cost bit-wise operations.
- \Box Still, the pointer machine serves as a good basis for modelling linked structures such as trees and graphs.

Update string *T* to *aT*.

Find the lowest ancestor *v* of leaf *T* that has Weiner link with character *a*.

Update string *T* to *aT*.

Find the lowest ancestor *v* of leaf *T* that has Weiner link with character *a*.

Update string *T* to *aT*.

Find the lowest ancestor *v* of leaf *T* that has Weiner link with character *a*.

Update string T to aT .

To avoid the $\Omega(n^{1.5})$ work, we reduce the sub-problem of redirecting Weiner links to the **ordered split-insert-find problem**.

Ordered Split-Insert-Find

The **ordered split-insert-find** problem is to maintain a data structure on ordered sets which supports the following operations and queries efficiently:

- **Make-set**, which creates a new list that consists only of a single element;
- **Split**, which splits a given set into two disjoint sets, so that one set contains only smaller elements than the other set;
- **Insert**, which inserts a new single element to a given set;
- **Find**, which answers the name of the set that a given element belongs to.

Maintain the set of string depths of origin nodes of Weiner links

BEFORE AFTER

av is the parent of new leaf *aT*

av is the parent of new leaf *aT*

av is the parent of new leaf *aT*

Ordered Split-Insert-Find by AVL-trees

For each suffix tree node *u*, we maintain an **AVL tree** such that each AVL tree node stores the string depth of the origin node of an in-coming Weiner link.

Ordered Split-Insert-Find by AVL-trees

Now, each Weiner link to a suffix tree node *u* points to the corresponding node in the AVL tree for node *u*. The root of this AVL tree is connected to suffix tree node *u*.

Ordered Split-Insert-Find by AVL-trees

An AVL tree of d elements supports operations Make-set, Split, Inert, and Find in $O(\log d)$ time each.

 \rightarrow $O(\log d)$ -time maintenance of Weiner links.

Splitting an AVL-tree

- Let X be an AVL tree for the set $\{s_1, ..., s_d\}$ of integers.
- \blacktriangleright Given an element s_j in the set, we split the AVL tree X into two AVL trees, X_1 for $\{s_1, ..., s_j\}$ and X_2 for $\{s_{j+1}, ..., s_d\}.$
- This split operation can be done in *O*(log *d*) time (next slide).

Splitting an AVL-tree

- Consider the search path for s_j in the AVL tree X.
- By splitting *X* with this path, we obtain
	- green nodes and subtrees containing elements at most s_i
	- orange nodes and subtrees containing elements larger than s_i
- Using monotonicity, we can merge each of them in *O*(log *d*) time.

Main Results

Theorem 1

There is a pointer-machine algorithm which builds the **suffix tree** of **right-to-left** fully-online multiple strings in $O(n (\log \sigma + \log d))$ time and $O(n)$ space. Each suffix-tree edge traversal takes *O*(log σ) time.

Theorem 2

There is a pointer-machine algorithm which builds the **DAWG** of **left-to-right** fully-online multiple strings in $O(n (\log \sigma + \log d))$ time and $O(n)$ space. Each DAWG-edge traversal takes *O*(log σ + log *d*) time.

n : total string length , σ : alphabet size, *d* : max. # in-coming Weiner links

Conclusions and Open Question

We proposed pointer-machine algorithms for fully-online construction of suffix trees and DAWGs on multiple strings running in $O(n (\log \sigma + \log d))$ time and $O(n)$ space.

We have not found an instance where the *n* log *d* term in our time complexity becomes Θ(*n* log *n*) or ω(*n*).

We have only found a bad instance which requires sub-linear $\Omega(\sqrt{n}\log n)$ work to maintain the AVL trees.

Would it be possible to construct suffix trees / DAWGs for fully-online multiple strings in *O*(*n* log σ) time on the pointer machine?