
SOFSEM 2016

Compacting a Dynamic Edit Distance
Table by RLE Compression

Heikki Hyyrö (University of Tampere, Finland)
Shunsuke Inenaga (Kyushu University, Japan)

Kyushu University, Japan

Kyushu University, Japan

Kyushu U.

Kyushu U.

Kyushu University, Japan

Kyushu U.

Itoshima Peninsula

糸島

String Island

String Comparison

Input: two strings A and B
Output: the edit distance ed(A, B)

between A and B

 ed(A, B) is the minimum number of
edit operations (insertion, deletion,
substitution of a single character)
which transforms A to B (or vice versa).

Problem 1 (Edit Distance)

Dynamic Programming (DP)

 Let m = |A| & n = |B|. Let D be a table of size
(m+1) × (n+1) s.t. D[i, j] = ed(A[1..i], B[1..j]),

 The fundamental way to compute D[m, n] =
ed(A, B) is DP with the following recurrence:

 D[i, 0] = i for 1 ≤ i ≤ m,
 D[0, j] = j for 1 ≤ j ≤ n,
 D[i, j] = min{ D[i, j-1]+1, D[i-1, j]+1,

D[i-1, j-1] + δ(A[i], B[j]) },
where δ(A[i], B[j]) = 1 if A[i] ≠ B[j],

δ(A[i], B[j]) = 0 if A[i] = B[j].

Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1
g 2
c 3
a 4
t 5
a 6
t 7

A

BD

D[i, 0] = i for 1 ≤ i ≤ m
D[0, j] = j for 1 ≤ j ≤ n

A = tgcatat
B = atccgat

Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1 1 1 2 3 4 5 6
g 2 2 2 2 3 3 4 5
c 3 3 3 2 2 3 4 5
a 4 3 4 3 3 3 3 4
t 5 4 3 4 4 4 4 3
a 6 5 4 4 5 5 4
t 7 6 5 5 5 6 5

A

BD

D[i, j] = min{ D[i, j-1]+1,
D[i-1, j]+1,
D[i-1, j-1] +1}

A = tgcatat
B = atccgat

Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1 1 1 2 3 4 5 6
g 2 2 2 2 3 3 4 5
c 3 3 3 2 2 3 4 5
a 4 3 4 3 3 3 3 4
t 5 4 3 4 4 4 4 3
a 6 5 4 4 5 5 4 4
t 7 6 5 5 5 6 5

A

BD

D[i, j] = min{ D[i, j-1]+1,
D[i-1, j]+1,
D[i-1, j-1] +1}

A = tgcatat
B = atccgat

Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1 1 1 2 3 4 5 6
g 2 2 2 2 3 3 4 5
c 3 3 3 2 2 3 4 5
a 4 3 4 3 3 3 3 4
t 5 4 3 4 4 4 4 3
a 6 5 4 4 5 5 4 4
t 7 6 5 5 5 6 5

A

BD

D[i, j] = min{ D[i, j-1]+1,
D[i-1, j]+1,
D[i-1, j-1] }

A = tgcatat
B = atccgat

Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1 1 1 2 3 4 5 6
g 2 2 2 2 3 3 4 5
c 3 3 3 2 2 3 4 5
a 4 3 4 3 3 3 3 4
t 5 4 3 4 4 4 4 3
a 6 5 4 4 5 5 4 4
t 7 6 5 5 5 6 5 4

A

BD

D[i, j] = min{ D[i, j-1]+1,
D[i-1, j]+1,
D[i-1, j-1] }

O(mn) total time

A = tgcatat
B = atccgat

Cyclic Rotation of String

 For 1 ≤ j ≤ n, let Bj = B[j..n]B[1..j-1],
i.e., Bj is the j-th cyclic rotation of B.

 E.g.) If B = SOFSEM, then
• B1 = SOFSEM
• B2 = OFSEMS
• B3 = FSEMSO
• B4 = SEMSOF
• B5 = EMSOFS
• B6 = MSOFSE

Cyclic String Comparison

Input: two strings A and B
Output: the edit distance ed(A, Bj)
for A and all rotations B1, …, Bn of B.

 Motivation in bioinformatics (some biological
sequences are circular).

 Naïve approach takes O(mn) time for each
rotation Bj. So, overall it takes O(mn2) time.

 Any better solution?

Problem 2 (Cyclic Edit Distance)

Right Increment Is Easy

c a g t a
0 1 2 3 4 5

a 1 1 1 2 3 4
g 2 2 2 1 2 3
c 3 2 3 2 2 3
t 4 3 3 3 2 3
a 5 4 3 4 3 2

A

B[1..5]
c a g t a c

0 1 2 3 4 5 6
a 1 1 1 2 3 4 5
g 2 2 2 1 2 3 4
c 3 2 3 2 2 3 3
t 4 3 3 3 2 3 4
a 5 4 3 4 3 2 3

A

B[1..5]B[1]

 New values are only at the last column.
⇒ Right increment takes O(m) time.

Left Decrement Is NOT as Easy

c a g t a c
0 1 2 3 4 5 6

a 1 1 1 2 3 4 5
g 2 2 2 1 2 3 4
c 3 2 3 2 2 3 3
t 4 3 3 3 2 3 4
a 5 4 3 4 3 2 3

A

B[1..5]B[1]

 When the left-most character is deleted,
different values can propagate to all columns!

a g t a c
0 1 2 3 4 5

a 1 0 1 2 3 4
g 2 1 0 1 2 3
c 3 2 1 1 2 2
t 4 3 2 1 2 3
a 5 4 3 2 1 2

A

B[2..5]B[1]

Algorithms for Left Decrements

Algorithms Left decr. time Space

Landau et al. (1998) O(m + n) O(mn)
Schmidt (1998) O(m + n) O(mn)
Kim & Park (2004) O(m + n) O(mn)
Hyyrö et al. (2015) O(m + n) O(mn)

 There are several known solutions for the
left-decrement edit distance problem.

 Each solution uses some “indirect” representation
of the DP table which requires O(mn) space.
This space consumption is a bottle neck.

Run Length Encoding (RLE)

 The RLE of a string A is a compressed
representation of A where each maximal
“run” a…a of the same character is encoded
by a p, where p is the length of the run.

 E.g.) RLE(aaabbcccccbb) = a3b2c5b2

 The size k of RLE(A) is the number of maximal
runs in A.

 If m is the length of the original string A,
then clearly k ≤ m holds.

DR Tables (Kim & Park 2004)
 Let DR be a differential representation of

DP table D for ed(A, B) such that:
• DR[i, j].U = D[i, j] – D[i – 1, j] (vertical diff.)
• DR[i, j].L = D[i, j] – D[i, j – 1] (horizontal diff.)

c a g t
0 1 2 3 4

a 1 1 1 2 3
g 2 2 2 1 2
c 3 2 3 2 2
t 4 3 3 3 2

c a g t

a 1 0 -1 -1 -1
g 1 1 1 -1 -1
c 1 0 1 1 0
t 1 1 0 1 0

c a g t
1 1 1 1

a 0 0 1 1
g 0 0 -1 1
c -1 1 -1 0
t -1 0 0 -1

DR.UD DR.L

Property of DR Tables

Theorem 1 [Hyyrö et al. 2015]

For each row i of DR’, there are only O(1)
column indices j s.t. DR’[i, j].L ≠ DR[i, j].L .
For each column j of DR’, there are only
O(1) row indices i s.t. DR’[i, j].U ≠ DR[i, j].U .

 Let DR and DR’ denote the DR tables for
ed(A, B) and ed(A, B[2..n]), respectively.

Edit Distance of RLE strings
 The DP and DR tables of ed(RLE(A), RLE(B))

can be divided into kl blocks [Arbel et al. 2002].

a a a a b b b b c c c

b

b

b

c

c

c

c

Mismatching
Blocks

Matching
Blocks

Edit Distance of RLE strings
 We explicitly store only the block boundaries of

the DR tables, using O(ml + nk) space.

 Then, the values inside the blocks can be
computed on the fly.

a a a a b b b b c c c

b

b

b

c

c

c

c

Total number
of cells in block
boundaries are
O(ml + nk).

Key Lemma

Lemma 1

Each of the top, bottom, left, and right
boundaries of a block of DR contains only
O(1) cells (i, j) such that DR’[i, j] ≠ DR[i, j].

Proof.
 By Theorem 1.

Black cells are
those where
DR’[i, j] ≠DR[i, j].

Processing Matching Blocks
 In a matching block, the values in the DP tables

D’ and D propagate diagonally.

 Thus, the different values of DR propagate
only diagonally, from left/top boundaries to
bottom/right boundaries.

Processing Matching Blocks

Proof.

 Moving one step forward in a diagonal path
takes O(1) time.

 The total length of diagonal paths in all
matching blocks is O(m + n).

Lemma 2

After the left-most character of B is deleted,
all matching blocks of the DR table can be
updated in a total of O(m + n) time, using
O(ml + nk) space.

Processing Mismatching Blocks
 In a mismatching block, the different values of

DR’ may diverge.

 From each of the O(1) sources in the left/top
boundaries, we trace all paths by DFS.

Some path may not
reach the right or
bottom boundary.

Processing Mismatching Blocks

Proof.

 We can traverse all the paths of DFS
in time linear in the total length of the paths.
(Details are omitted.)

Lemma 3

After the left-most character of B is deleted,
all mismatching blocks of the DR table can
be updated in a total of O(m + n) time,
using O(ml + nk) space.

Processing Mismatching Blocks

Proof. (Cont.)

 The total length of the paths is linear in the
number of cells where DR’[i, j] ≠ DR[i, j].

 It follows from Theorem 1 that there are
only O(m + n) such cells in total.

Lemma 3

After the left-most character of B is deleted,
all mismatching blocks of the DR table can
be updated in a total of O(m + n) time,
using O(ml + nk) space.

Putting All Together

Theorem 2 (Main result)

Given an O(ml + nk)-space representation
of the DR table for ed(A, B), we can update
it to that for ed(A, B[2..n]) in O(m + n) time.

• m = |A|
• n = |B|
• k = |RLE(A)|
• l = |RLE(B)|

Conclusions and Future Work

 We proposed the first space-efficient
left-decremental edit distance algorithm,
which is based on RLE.

 Our algorithm can also be applied to the
left-incremental case.

 Open questions: Can we extend our
algorithm to:
 Weighted edit distance?
 Insertion and deletion at arbitrary

positions?

	SOFSEM 2016
	Kyushu University, Japan
	Kyushu University, Japan
	Kyushu University, Japan
	String Comparison
	Dynamic Programming (DP)
	Dynamic Programming (DP)
	Dynamic Programming (DP)
	Dynamic Programming (DP)
	Dynamic Programming (DP)
	Dynamic Programming (DP)
	Cyclic Rotation of String
	Cyclic String Comparison
	Right Increment Is Easy
	Left Decrement Is NOT as Easy
	Algorithms for Left Decrements
	Run Length Encoding (RLE)
	DR Tables (Kim & Park 2004)
	Property of DR Tables
	Edit Distance of RLE strings
	Edit Distance of RLE strings
	Key Lemma
	Processing Matching Blocks
	Processing Matching Blocks
	Processing Mismatching Blocks
	Processing Mismatching Blocks
	Processing Mismatching Blocks
	Putting All Together
	Conclusions and Future Work

