Compacting a Dynamic Edit Distance Table by RLE Compression

Heikki Hyyrö (University of Tampere, Finland) Shunsuke Inenaga (Kyushu University, Japan)

Kyushu University, Japan

Kyushu University, Japan

Kyushu University, Japan

String Comparison

Problem 1 (Edit Distance)

Input: two strings *A* and *B* Output: the edit distance *ed*(*A*, *B*) between *A* and *B*

 ed(A, B) is the minimum number of edit operations (insertion, deletion, substitution of a single character) which transforms A to B (or vice versa).

- □ Let m = |A| & n = |B|. Let *D* be a table of size (*m*+1) × (*n*+1) s.t. D[i, j] = ed(A[1..i], B[1..j]),
- The fundamental way to compute D[m, n] = ed(A, B) is DP with the following recurrence:
 - D[i, 0] = i for $1 \le i \le m$,
 - D[0, j] = j for $1 \le j \le n$,
 - $D[i, j] = \min\{ D[i, j-1]+1, D[i-1, j]+1, D[i-1, j-1] + \delta(A[i], B[j]) \},\$ where $\delta(A[i], B[j]) = 1$ if $A[i] \neq B[j], \delta(A[i], B[j]) = 0$ if A[i] = B[j].

D					В				
			a	t	C	C	g	a	t
		0	1	2	3	4	5	6	7
	t	1							
	g	2							
A	C	3							
	a	4							
	t	5							
	a	6							
	t	7							

- A = tgcatat
- B = atccgat

$D[i, 0] = i \text{ for } 1 \le i \le m$ $D[0, j] = j \text{ for } 1 \le j \le n$

D					B				
			a	t	C	C	g	a	t
		0	1	2	3	4	5	6	7
	t	1	1	1	2	3	4	5	6
	g	2	2	2	2	3	3	4	5
A	C	3	3	3	2	2	3	4	5
	a	4	3	4	3	3	3	3	4
	t	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	
	t	7	6	5	5	5	6	5	

$$A = \texttt{tgcatat}$$

B = atccgat

$$D[i, j] = \min\{ \begin{array}{l} D[i, j-1]+1, \\ D[i-1, j]+1, \\ D[i-1, j-1]+1 \} \end{array}$$

D					B				
			a	t	C	C	g	a	t
		0	1	2	3	4	5	6	7
	t	1	1	1	2	3	4	5	6
	g	2	2	2	2	3	3	4	5
A	C	3	3	3	2	2	3	4	5
	a	4	3	4	3	3	3	3	4
	t	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	4
	t	7	6	5	5	5	6	5	

- A = tgcatat
- B = atccgat

$$D[i, j] = \min\{ \begin{array}{l} D[i, j-1]+1, \\ D[i-1, j]+1, \\ D[i-1, j-1]+1 \} \end{array}$$

D					B				
			a	t	C	U	g	a	t
		0	1	2	3	4	5	6	7
	t	1	1	1	2	3	4	5	6
	g	2	2	2	2	3	3	4	5
A	C	3	3	3	2	2	3	4	5
	a	4	3	4	3	3	3	3	4
	t	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	4
	t	7	6	5	5	5	6	5	

- A = tgcatat
- B = atccgat

 $D[i, j] = \min\{ D[i, j-1]+1, \}$ D[i-1, j]+1,D[i-1, j-1]

D					B				
			a	t	C	C	g	đ	t
		0	1	2	3	4	5	6	7
	t	1	1	1	2	3	4	5	6
	þ	2	2	2	2	3	3	4	5
A	C	3	3	3	2	2	3	4	5
	a	4	3	4	3	3	3	3	4
	t	5	4	3	4	4	4	4	3
	a	6	5	4	4	5	5	4	4
	t	7	6	5	5	5	6	5	4

$$A = \texttt{tgcatat}$$

B = atccgat

$$D[i, j] = \min\{ \begin{array}{l} D[i, j-1]+1, \\ D[i-1, j]+1, \\ D[i-1, j-1] \end{array} \}$$

O(mn) total time

1

Cyclic Rotation of String

- □ For $1 \le j \le n$, let $B_j = B[j..n]B[1..j-1]$, i.e., B_j is the *j*-th cyclic rotation of *B*.
- **\square** E.g.) If B =**SOFSEM**, then
 - $B_1 = \text{SOFSEM}$
 - $B_2 = \text{OFSEMS}$
 - $B_3 = \mathbf{FSEMSO}$
 - $B_4 = \text{SEMSOF}$
 - $B_5 = \text{Emsofs}$
 - $B_6 = \text{MSOFSE}$

Cyclic String Comparison

Problem 2 (Cyclic Edit Distance)

Input: two strings A and B

Output: the edit distance $ed(A, B_j)$ for A and all rotations $B_1, ..., B_n$ of B.

- Motivation in bioinformatics (some biological sequences are circular).
- Naïve approach takes O(mn) time for each rotation B_{j} . So, overall it takes $O(mn^2)$ time.
- Any better solution?

■ New values are only at the last column. ⇒ Right increment takes O(m) time.

Left Decrement Is NOT as Easy

When the left-most character is deleted, different values can propagate to <u>all columns</u>!

Algorithms for Left Decrements

Algorithms	Left decr. time	Space
Landau et al. (1998)	O(m+n)	O(mn)
Schmidt (1998)	O(m+n)	O(mn)
Kim & Park (2004)	O(m+n)	O(mn)
Hyyrö et al. (2015)	O(m+n)	O(mn)

- There are several known solutions for the left-decrement edit distance problem.
- Each solution uses some "indirect" representation of the DP table which requires O(mn) space. This space consumption is a bottle neck.

Run Length Encoding (RLE)

- The RLE of a string A is a compressed representation of A where each maximal "run" a...a of the same character is encoded by a^p, where p is the length of the run.
 - E.g.) $RLE(aaabbcccccbb) = a^3b^2c^5b^2$
- The size k of RLE(A) is the number of maximal runs in A.
- □ If *m* is the length of the original string *A*, then clearly $k \le m$ holds.

DR Tables (Kim & Park 2004)

- □ Let DR be a differential representation of DP table D for ed(A, B) such that:
 - DR[i, j].U = D[i, j] D[i 1, j] (vertical diff.)
 - DR[i, j].L = D[i, j] D[i, j-1] (horizontal diff.)

D					
		С	а	g	t
	0	1	2	3	4
а	1	1	1	2	3
g	2	2	2	1	2
С	3	2	3	2	2
t	4	3	3	3	2

D	R.	U	

		С	а	ы	t			
а	1	0	-1	-1	-1			
g	1	1	1	-1	-1			
С	1	0	1	1	0			
t	1	1	0	1	0			

DR.L

	С	а	g	t
	1	1	1	1
а	0	0	1	1
g	0	0	-1	1
С	-1	1	-1	0
t	-1	0	0	-1

Property of DR Tables

□ Let DR and DR' denote the DR tables for ed(A, B) and ed(A, B[2..n]), respectively.

Theorem 1 [Hyyrö et al. 2015]

For each row *i* of *DR*', there are only O(1) column indices *j* s.t. *DR*'[*i*, *j*].*L* \neq *DR*[*i*, *j*].*L*.

For each column *j* of *DR*', there are only O(1) row indices *i* s.t. *DR*'[*i*, *j*]. $U \neq DR[i, j].U$.

Edit Distance of RLE strings

The DP and DR tables of *ed*(*RLE*(*A*), *RLE*(*B*)) can be divided into *kl* blocks [Arbel et al. 2002].

Edit Distance of RLE strings

- We explicitly store only the <u>block boundaries</u> of the DR tables, using O(ml + nk) space.
- Then, the values inside the blocks can be computed on the fly.

Lemma 1

Each of the top, bottom, left, and right boundaries of a block of *DR* contains only O(1) cells (i, j) such that $DR'[i, j] \neq DR[i, j]$.

Processing Matching Blocks

- In a matching block, the values in the DP tables D' and D propagate diagonally.
- Thus, the different values of DR propagate only diagonally, from left/top boundaries to bottom/right boundaries.

Processing Matching Blocks

Lemma 2

After the left-most character of *B* is deleted, all matching blocks of the DR table can be updated in a total of O(m + n) time, using O(ml + nk) space.

Proof.

- Moving one step forward in a diagonal path takes O(1) time.
- The total length of diagonal paths in all matching blocks is O(m + n).

Processing Mismatching Blocks

- In a mismatching block, the different values of DR' may diverge.
- □ From each of the O(1) sources in the left/top boundaries, we trace all paths by DFS.

Processing Mismatching Blocks

Lemma 3

After the left-most character of *B* is deleted, all mismatching blocks of the DR table can be updated in a total of O(m + n) time, using O(ml + nk) space.

Proof.

 We can traverse all the paths of DFS in time linear in the total length of the paths. (Details are omitted.)

Processing Mismatching Blocks

Lemma 3

After the left-most character of *B* is deleted, all mismatching blocks of the DR table can be updated in a total of O(m + n) time, using O(ml + nk) space.

Proof. (Cont.)

- □ The total length of the paths is linear in the number of cells where $DR'[i, j] \neq DR[i, j]$.
- □ It follows from Theorem 1 that there are only O(m + n) such cells in total.

Putting All Together

Theorem 2 (Main result)

Given an O(ml + nk)-space representation of the DR table for ed(A, B), we can update it to that for ed(A, B[2..n]) in O(m + n) time.

• m = |A|

•
$$n = |B|$$

- k = |RLE(A)|
- l = |RLE(B)|

Conclusions and Future Work

- We proposed the first space-efficient left-decremental edit distance algorithm, which is based on RLE.
- Our algorithm can also be applied to the left-incremental case.
- Open questions: Can we extend our algorithm to:
 - Weighted edit distance?
 - Insertion and deletion at arbitrary positions?