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String Comparison

Input: two strings A and B
Output: the edit distance ed(A, B)       

between A and B

 ed(A, B) is the minimum number of 
edit operations (insertion, deletion, 
substitution of a single character)
which transforms A to B (or vice versa).

Problem 1 (Edit Distance)



Dynamic Programming (DP)

 Let m = |A| & n = |B|. Let D be a table of size 
(m+1) × (n+1) s.t. D[i, j] = ed(A[1..i], B[1..j]), 

 The fundamental way to compute D[m, n] = 
ed(A, B) is DP with the following recurrence:

 D[i, 0] = i for 1 ≤ i ≤ m,
 D[0, j] = j for 1 ≤ j ≤ n,
 D[i, j] = min{ D[i, j-1]+1, D[i-1, j]+1,

D[i-1, j-1] + δ(A[i], B[j]) },
where δ(A[i], B[j]) = 1 if A[i] ≠ B[j],

δ(A[i], B[j]) = 0 if A[i] = B[j].



Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1
g 2
c 3
a 4
t 5
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A

BD

D[i, 0] = i for 1 ≤ i ≤ m
D[0, j] = j for 1 ≤ j ≤ n

A = tgcatat
B = atccgat



Dynamic Programming (DP)
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D[i-1, j]+1,
D[i-1, j-1] +1}

A = tgcatat
B = atccgat
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Dynamic Programming (DP)

a t c c g a t

0 1 2 3 4 5 6 7
t 1 1 1 2 3 4 5 6
g 2 2 2 2 3 3 4 5
c 3 3 3 2 2 3 4 5
a 4 3 4 3 3 3 3 4
t 5 4 3 4 4 4 4 3
a 6 5 4 4 5 5 4 4
t 7 6 5 5 5 6 5 4

A

BD

D[i, j] = min{ D[i, j-1]+1, 
D[i-1, j]+1,
D[i-1, j-1] }

O(mn) total time

A = tgcatat
B = atccgat



Cyclic Rotation of String

 For 1 ≤ j ≤ n, let Bj = B[j..n]B[1..j-1], 
i.e., Bj is the j-th cyclic rotation of B.

 E.g.) If B = SOFSEM, then
• B1 = SOFSEM
• B2 = OFSEMS
• B3 = FSEMSO
• B4 = SEMSOF
• B5 = EMSOFS
• B6 = MSOFSE



Cyclic String Comparison

Input: two strings A and B
Output: the edit distance ed(A, Bj)       
for A and all rotations B1, …, Bn of B.

 Motivation in bioinformatics (some biological 
sequences are circular).

 Naïve approach takes O(mn) time for each 
rotation Bj. So, overall it takes O(mn2) time.

 Any better solution?

Problem 2 (Cyclic Edit Distance)



Right Increment Is Easy

c a g t a
0 1 2 3 4 5

a 1 1 1 2 3 4
g 2 2 2 1 2 3
c 3 2 3 2 2 3
t 4 3 3 3 2 3
a 5 4 3 4 3 2

A

B[1..5]
c a g t a c

0 1 2 3 4 5 6
a 1 1 1 2 3 4 5
g 2 2 2 1 2 3 4
c 3 2 3 2 2 3 3
t 4 3 3 3 2 3 4
a 5 4 3 4 3 2 3

A

B[1..5]B[1]

 New values are only at the last column.
⇒ Right increment takes O(m) time.



Left Decrement Is NOT as Easy

c a g t a c
0 1 2 3 4 5 6

a 1 1 1 2 3 4 5
g 2 2 2 1 2 3 4
c 3 2 3 2 2 3 3
t 4 3 3 3 2 3 4
a 5 4 3 4 3 2 3

A

B[1..5]B[1]

 When the left-most character is deleted, 
different values can propagate to all columns!

a g t a c
0 1 2 3 4 5

a 1 0 1 2 3 4
g 2 1 0 1 2 3
c 3 2 1 1 2 2
t 4 3 2 1 2 3
a 5 4 3 2 1 2

A

B[2..5]B[1]



Algorithms for Left Decrements

Algorithms Left decr. time Space

Landau et al. (1998) O(m + n) O(mn)
Schmidt (1998) O(m + n) O(mn)
Kim & Park (2004) O(m + n) O(mn)
Hyyrö et al. (2015) O(m + n) O(mn)

 There are several known solutions for the 
left-decrement edit distance problem.

 Each solution uses some “indirect” representation 
of the DP table which requires O(mn) space.
This space consumption is a bottle neck.



Run Length Encoding (RLE)

 The RLE of a string A is a compressed 
representation of A where each maximal 
“run” a…a of the same character is encoded 
by a p, where p is the length of the run.

 E.g.) RLE(aaabbcccccbb) = a3b2c5b2

 The size k of RLE(A) is the number of maximal 
runs in A. 

 If m is the length of the original string A, 
then clearly k ≤ m holds.



DR Tables (Kim & Park 2004)
 Let DR be a differential representation of 

DP table D for ed(A, B) such that:
• DR[i, j].U = D[i, j] – D[i – 1, j]   (vertical diff.)
• DR[i, j].L = D[i, j] – D[i, j – 1] (horizontal diff.)

c a g t
0 1 2 3 4

a 1 1 1 2 3
g 2 2 2 1 2
c 3 2 3 2 2
t 4 3 3 3 2

c a g t

a 1 0 -1 -1 -1
g 1 1 1 -1 -1
c 1 0 1 1 0
t 1 1 0 1 0

c a g t
1 1 1 1

a 0 0 1 1
g 0 0 -1 1
c -1 1 -1 0
t -1 0 0 -1

DR.UD DR.L



Property of DR Tables

Theorem 1 [Hyyrö et al. 2015]

For each row i of DR’, there are only O(1) 
column indices j s.t. DR’[i, j].L ≠ DR[i, j].L .
For each column j of DR’, there are only 
O(1) row indices i s.t. DR’[i, j].U ≠ DR[i, j].U .

 Let DR and DR’ denote the DR tables for 
ed(A, B) and ed(A, B[2..n]), respectively.



Edit Distance of RLE strings
 The DP and DR tables of ed(RLE(A), RLE(B)) 

can be divided into kl blocks [Arbel et al. 2002].

a a a a b b b b c c c

b

b

b

c

c

c

c

Mismatching 
Blocks

Matching 
Blocks



Edit Distance of RLE strings
 We explicitly store only the block boundaries of 

the DR tables, using O(ml + nk) space. 

 Then, the values inside the blocks can be  
computed on the fly.

a a a a b b b b c c c

b

b

b

c

c

c

c

Total number 
of cells in block 
boundaries are 
O(ml + nk).



Key Lemma

Lemma 1

Each of the top, bottom, left, and right 
boundaries of a block of DR contains only 
O(1) cells (i, j) such that DR’[i, j] ≠ DR[i, j].

Proof. 
 By Theorem 1.

Black cells are 
those where 
DR’[i, j] ≠DR[i, j].



Processing Matching Blocks
 In a matching block, the values in the DP tables 

D’ and D propagate diagonally.

 Thus, the different values of DR propagate 
only diagonally, from left/top boundaries to 
bottom/right boundaries.



Processing Matching Blocks

Proof. 

 Moving one step forward in a diagonal path 
takes O(1) time.

 The total length of diagonal paths in all 
matching blocks is O(m + n). 

Lemma 2

After the left-most character of B is deleted, 
all matching blocks of the DR table can be 
updated in a total of O(m + n) time, using 
O(ml + nk) space.



Processing Mismatching Blocks
 In a mismatching block, the different values of 

DR’ may diverge.

 From each of the O(1) sources in the left/top 
boundaries, we trace all paths by DFS.

Some path may not 
reach the right or 
bottom boundary.



Processing Mismatching Blocks

Proof. 

 We can traverse all the paths of DFS 
in time linear in the total length of the paths. 
(Details are omitted.)

Lemma 3

After the left-most character of B is deleted, 
all mismatching blocks of the DR table can 
be updated in a total of O(m + n) time, 
using O(ml + nk) space.



Processing Mismatching Blocks

Proof. (Cont.) 

 The total length of the paths is linear in the 
number of cells where DR’[i, j] ≠ DR[i, j].

 It follows from Theorem 1 that there are 
only O(m + n) such cells in total.

Lemma 3

After the left-most character of B is deleted, 
all mismatching blocks of the DR table can 
be updated in a total of O(m + n) time, 
using O(ml + nk) space.



Putting All Together

Theorem 2 (Main result)

Given an O(ml + nk)-space representation 
of the DR table for ed(A, B), we can update 
it to that for ed(A, B[2..n]) in O(m + n) time.

• m = |A|
• n = |B|
• k = |RLE(A)|
• l = |RLE(B)|



Conclusions and Future Work

 We proposed the first space-efficient 
left-decremental edit distance algorithm, 
which is based on RLE.

 Our algorithm can also be applied to the 
left-incremental case.

 Open questions: Can we extend our 
algorithm to:
 Weighted edit distance?
 Insertion and deletion at arbitrary 

positions?
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