
Sparse Directed Acyclic 

Word Graphs

Shunsuke Inenaga
(Kyushu University)

Masayuki Takeda
(Kyushu University & Japan Science Technology Agency)



Contents

 Basic Pattern Matching Problem

 Text Indexing Structures

 Natural Language Text Search

 Phrase-level Pattern Matching Problem

 Sparse Text Indexing Structures

 Sparse Directed Acyclic Word Graphs

 Size

 Construction

 Summary and Future Work



Basic Pattern Matching Problem

 Text indexing structures for T enable us to solve this 

problem in O(m) time (for fixed alphabet S).

m : the length of pattern P

Input: text T from S* and pattern P from S*

Output: whether or not P occurs in T

S : alphabet (set of characters)

S* : set of strings



Text Indexing Structures

a

a

c

b

c

c

b

c

b

c

c

b

c

a

a

c
b

c

c

b

c

c

b
c

b
c

a

a

c
b
c

c
b
c

c

b

c

b

c

a

a

c

b

c

c

b

bc

T = aacbc suffix node

suffix trie

suffix tree
DAWG 

(directed acyclic 

word graph)
CDAWG

(compact DAWG)

minimization

minimization compaction

compaction



Sizes of Indexing Structures

max num of nodes max num of edges

suffix tries n(n+1)/2 + 1 n(n+1)/2

suffix trees 2n-1 2n-2

DAWGs 2n-1 3n-4

CDAWGs n+1 2n-2

n : text length



Contents

 Basic Pattern Matching Problem

 Text Indexing Structures

 Natural Language Text Search

 Phrase-level Pattern Matching Problem

 Sparse Text Indexing Structures

 Sparse Directed Acyclic Word Graphs

 Size

 Construction

 Summary and Future Work



Considering Natural Language Texts

 T = “string processing and information retrieval”

 We seldom want to search from the inside of words, 

we only want to search from the head of words.

 Indexing all the suffixes of text T is a waste of space

 Unwanted matching (see below) should be avoided

e.g. P = ring processing



Introducing Word Separator #

 # : word separator - special symbol not in S

 D = S* # : dictionary of words

 Let text T be an element of D+

(T is a sequence T1T2…Tk of k words from D)

 e.g., T = This#is#a#pen#

 S = {A, …, z}

 D = {..., This#, ..., a#, ..., is#, ..., pen#, ...}



Sizes of Sparse Indexing Structures

max num of nodes max num of edges

word suffix tries k(n+2)/2 + 1 k(n+2)/2

word suffix trees 2k-1 2k-2

SDAWGs ? ?

SCDAWGs k+1 2k-2

n : text length

k : number of words in text

Note that k ≦ n



Phrase-level Pattern Matching Problem

Input: text T from D+ and pattern P from D+

Output: whether or not P occurs

at the head of a word in T

 To solve the above problem, we want a “sparse”

text indexing structure that represents only the 

suffixes of T beginning at the head of a word in T.



Word Suffix Trie

 A trie which represents only the suffixes of T 
beginning at the head of a word in T

T = aa#b#

aa#b#

a#b#

#b#

b#

#

a

a

#

b

#

b

#



Sparse Text Indexing Structures

a

a

#

b

#

b

#

a
a

#
b

#

b
#

T = aa#b# suffix node

word suffix trie
(Inenaga & Takeda ‘06)

word suffix tree
(Andersson et al. ‘99)

Sparse DAWG

(This work)

Sparse CDAWG
(Inenaga & Takeda ‘06)

b

#

a
a

#
b
#

?
minimization

minimization compaction

compaction



Contents

 Basic Pattern Matching Problem

 Text Indexing Structures

 Natural Language Text Search

 Phrase-level Pattern Matching Problem

 Sparse Text Indexing Structures

 Sparse Directed Acyclic Word Graphs

 Size

 Construction

 Summary and Future Work



Sparse Directed Acyclic Word Graph

a

a

#

b

#

b

#

T = aa#b#

Word Suffix Trie

a

a

#

b

#

b

Sparse DAWG

(SDAWG)

minimization



Comparing Normal and Sparse DAWGs

T = aa#b#

suffixes of T
aa#b#

a#b#

#b#

b#

#

a

a

#

b

#

b

Sparse DAWG

(SDAWG)

a

a

#

b

#

#

b

b#

DAWG



Size of SDAWGs – Lower Bound

a

a

#

b

#

b

T = aa#b#

Theorem:

The SDAWG of any text T of length n

has at least n+1 nodes.



Size of SDAWGs – Upper Bound

Theorem:

The SDAWG of any text T of length n has

O(n) nodes and edges.

Shown by similar ideas to Blumer et al. 

for the size of DAWGs (1985)



Sizes of Sparse Indexing Structures

max num of nodes max num of edges

word suffix tries k(n+2)/2 + 1 k(n+2)/2

word suffix trees 2k-1 2k-2

SDAWGs O(n) O(n)

SCDAWGs k+1 2k-2

n : text length

k : number of words in text

Note that k ≦ n

total space

complexity

O(kn)

O(n)

O(n)

O(n)

Word suffix trees and SCDAWGs

need the original text to be kept



SDAWG Construction

 SDAWGs can be constructed by minimizing word 

suffix tries in O(kn) time. 

 using Revuz’s DAG minimization algorithm (1992)

 Question : Is direct construction of SDAWGs 

possible?

 Answer : YES!

Using minimum DFA accepting dictionary D = S*# , 

we can directly build SDAWGs in O(n) time.



Minimum DFA Accepting Dictionary D

 The minimum DFA accepting D = S* # clearly 

requires constant space (for fixed S).

#

S



Modification of DAWG Construction Algorithm

 Bluer et al. proposed an on-line O(n)-time algorithm 

to construct normal DAWGs (1985).

 We modify their algorithm by:

 replacing the source node of the DAWG with the final 

state of the DFA;

 setting the suffix link of the source node of the DAWG 

to the initial state of the DFA.

 Then the resulting algorithm constructs SDAWGs in 

on-line manner and in O(n) time!



Modification of DAWG Construction Algorithm

Just change here!!



On-line Construction of SDAWG

T = aa#b#b...
S

a

#



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a

#



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a

#

b

b



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a

#

b

b

#



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a

#

b

b

#

b



On-line Construction of SDAWG

T = aa#b#b...
S

a

#

a

#

b

b

#

b

#



Contents

 Basic Pattern Matching Problem

 Text Indexing Structures

 Natural Language Text Search

 Phrase-level Pattern Matching Problem

 Sparse Text Indexing Structures

 Sparse Directed Acyclic Word Graphs

 Size

 Construction

 Summary and Future Work



Summary

 We introduced new sparse text indexing structure, 

Sparse Directed Acyclic Word Graphs (SDAWGs), 

that are useful for word- and phrase-level search on 

natural language texts.

 We showed that SDAWGs require O(n) space.

 We developed an on-line SDAWG construction 

algorithm running in O(n) time and space (for fixed 

S).



Future Work

max num of nodes max num of edges

word suffix tries k(n+2)/2 + 1 k(n+2)/2

word suffix trees 2k-1 2k-2

SDAWGs O(n) O(n)

SCDAWGs k+1 2k-2

 Exact max numbers of nodes and edges of SDAWGs.

 Experiments to evaluate practical space economy of 

SDAWGs in comparison to normal DAWGs and other 

sparse indexing structures.



Future Work [cont.]

 Constructing SDAWGs for an arbitrary subset of 

suffixes.

 Given: text T and subset S of the positions in T

 Construct: SDAWG representing only the suffixes 

starting from the positions in S


