Sparse Directed Acyclic
Word Graphs

Shunsuke Inenaga
(Kyushu University)

Masayuki Takeda
(Kyushu University & Japan Science Technology Agency)

Contents

Q Text Indexing Structures

p
m Basic Pattern Matching Problem J

_

m Natural Language Text Search
a Phrase-level Pattern Matching Problem
QO Sparse Text Indexing Structures

m Sparse Directed Acyclic Word Graphs
o Size
a Construction

m Summary and Future Work

Basic Pattern Matching Problem

Input: text T from X* and pattern P from X*

Output: whether or not P occurs in T

Y . alphabet (set of characters)
X* . set of strings

m Text indexing structures for T enable us to solve this
problem in O(m) time (for fixed alphabet X).

m : the length of pattern P

Text Indexing Structures

T = aacbc a O QO suffix node
2 SR
a c
C éb
c
compaction 4 b (gb éc " minimization
?,/O b é C éc ?‘/

Yl
suffix trie o \c o

o N
minimization ' b\ ¢
;" compaction Q@
suffix tree b DAWG

Q

(directed acyclic
word graph)

(compact DAWG)

Sizes of Indexing Structures

max num of nodes

max num of edges

suffix tries n(n+1)/2 +1 n(n+1)/2

suffix trees 2n-1 2n-2
DAWGS 2n-1 3n-4

CDAWGS n+1 2n-2

n : text length

Contents

m Basic Pattern Matching Problem
Q Text Indexing Structures

m Natural Language Text Search
a Phrase-level Pattern Matching Problem
QO Sparse Text Indexing Structures

m Sparse Directed Acyclic Word Graphs
o Size
a Construction

m Summary and Future Work

Considering Natural Language Texts

m T = “string processing and information retrieval”

m \We seldom want to search from the inside of words,
we only want to search from the head of words.

a Indexing all the suffixes of text T is a waste of space
0 Unwanted matching (see below) should be avoided

e.g. P =ring processing

Introducing Word Separator #

m # . word separator - special symbol not in X
m D =2*#: dictionary of words

m Lettext T be an element of D*
(T Is a sequence T,T,...T, of k words from D)

m eg., [=This#is#atipens#

axX={a,..., z}
a D={., This#, ..., a#, ..., is#, ..., pen#, ...}

Sizes of Sparse Indexing Structures

max num of nodes | max num of edges
word suffix tries kK(n+t2)/2 + 1 k(n+2)/2
word suffix trees 2k-1 2k-2
SDAWGSs ? ?
SCDAWGS k+1 2K-2

n : text length
k : number of words In text
Note that k = n

Phrase-level Pattern Matching Problem

Input: text T from D* and pattern P from D*

Output: whether or not P occurs
atthe head ofaword in T

m To solve the above problem, we want a “sparse”
text indexing structure that represents only the
suffixes of T beginning at the head of aword in T.

Word Suffix Trie

m A trie which represents only the suffixes of T
beginning at the head of aword in T

T = aa#b# ?/O\P
aa#b# 2P Qy
,O o
/
b# b/o
O
#/

| Sparse Text Indexing Structures

T = aa#b# o O suffix node

/" \p
\%

compaction @ i minimization
O, b ? #
word suffix trie
O (Inenaga & Takeda ‘06)
]
minimization compaction
/ﬁ% () W
word suffix tree Sparse DAWG
(Andersson et al. ‘99) :
b (This work)

Sparse CDAWG
(Inenaga & Takeda ‘06) ®)

Contents

m Basic Pattern Matching Problem
Q Text Indexing Structures

m Natural Language Text Search
a Phrase-level Pattern Matching Problem
QO Sparse Text Indexing Structures

4)
m Sparse Directed Acyclic Word Graphs

a Size
O Construction y

m Summary and Future Work

\ Sparse Directed Acyclic Word Graph

T = aa#b#
e &
a/o O\# a
O O C{ b
t [— <
b/O minimization O
o b\
O
1]
O
Word Suffix Trie Sparse DAWG

(SDAWG)

Comparing Normal and Sparse DAWGS

T = aa#b#

suffixes of T
aaf#ib#
a#b#

#b#

b#

#

DAWG

Sparse DAWG
(SDAWG)

Size of SDAWGS — Lower Bound

Theorem:

The SDAWG of any text T of length n
has at least n+1 nodes.

a
T = aa#b# O‘/

Size of SDAWGS — Upper Bound

Theorem:

The SDAWG of any text T of length n has
O(n) nodes and edges.

Shown by similar ideas to Blumer et al.
for the size of DAWGSs (1985)

Sizes of Sparse Indexing Structures

max num of nodes | max num of edges E;%tr?: ;23&’3
word suffix tries | k(n+2)/2 +1 k(n+2)/2 O(kn)
word suffix trees 2K-1 2Kk-2 O(n)

SDAWGSs O(n) O(n) O(n)
SCDAWGSs k+1 2k-2 O(n)

n : text length
k : number of words in text

Word suffix trees and SCDAWGS Note that k < n

need the original text to be kept

SDAWG Construction

m SDAWGS can be constructed by minimizing word
suffix tries in O(kn) time.

a using Revuz’'s DAG minimization algorithm (1992)

m Question : Is direct construction of SDAWGS
possible?

m Answer : YES!
Using minimum DFA accepting dictionary D = X*#
we can directly builld SDAWGSs in O(n) time.

Minimum DFA Accepting Dictionary D

® The minimum DFA accepting D = X*# clearly
requires constant space (for fixed).

2
/OO
o

Modification of DAWG Construction Algorithm

m Bluer et al. proposed an on-line O(n)-time algorithm
to construct normal DAWGs (1985).

m \WWe modify their algorithm by:

Q replacing the source node of the DAWG with the final
state of the DFA,;

a setting the suffix link of the source node of the DAWG
to the initial state of the DFA.

m Then the resulting algorithm constructs SDAWGS in
on-line manner and in O(n) time!

‘ Modification of DAWG Construction Algorithm

Input: w = w(l.n] € D7 and Mp with initial state g, and final state g;.
Output: SDAWGp{w).

{
length(gy) = 0; length(q.) = —1;

Lo i=e) Just change

for (i = 1;i < nyit++) sink = Update(sink, i);

}

node Update(sink,i) {
o= wlil;
create new node newsink; length({newsink) = 1;
create new edge (sink, ¢, newsink);
for (s = link({sink); no c-edge from s; s = link(s))
create new edge (s, ¢, newsink);
s’ = SplitNode(s, c);
link(newsink) = s';
return newsink;

}

node SplitNode(s, c) {
let s’ be the head of the c-edge from s;
if (length(s') == length{s) + 1) return s';
create node r’ as a duplication of s’ with the out-going edges;
link(r") = link(s"); link(s")=r";
length(r') = length(s) + 1;

do {
replace edge (s,c,s’) by edge (s,c,r');
s = link(s);

} while the head of the c-edge from s is 5;
return r’;

herell

| On-line Construction of SDAWG

T = aa#bi#b. .. .
f oM

SNy

g /I
//

\

| On-line Construction of SDAWG

T= aﬁ#b#b. N . /.,i

| On-line Construction of SDAWG

)
T = aa#bi#b. .. .
ﬁ
// a/, I
&

| On-line Construction of SDAWG

T = aa#b#b. ..

f

| On-line Construction of SDAWG

aa#b#b. ..

T =

f

| On-line Construction of SDAWG

T = aa#b#b. ..

| On-line Construction of SDAWG

T = aa#b#b. ..

f

Contents

Basic Pattern Matching Problem
Q Text Indexing Structures

Natural Language Text Search
a Phrase-level Pattern Matching Problem
QO Sparse Text Indexing Structures

Sparse Directed Acyclic Word Graphs
o Size
a Construction

Summary and Future Work]

Summary

m We introduced new sparse text indexing structure,
Sparse Directed Acyclic Word Graphs (SDAWGS),
that are useful for word- and phrase-level search on
natural language texts.

m We showed that SDAWGSs require O(n) space.

m \We developed an on-line SDAWG construction
algorithm running in O(n) time and space (for fixed
2).

Future Work

m Exact max numbers of nodes and edges of SDAWGSs.

max num of nodes | max num of edges

word suffix tries | k(n+2)/2 + 1 k(n+2)/2

word suffix trees 2k-1 2k-2
SDAWGs O(n) O(n)
SCDAWGS k+1 2k-2

m Experiments to evaluate practical space economy of
SDAWGSs in comparison to normal DAWGs and other
sparse indexing structures.

Future Work [cont.]

m Constructing SDAWGS for an arbitrary subset of
suffixes.

0 Given: text T and subset S of the positionsin T

0 Construct: SDAWG representing only the suffixes
starting from the positions in S

