Summer School @ U. Helsinki, 2016

The myriad virtues of DAWGs

Shunsuke Inenaga Kyushu University, Japan

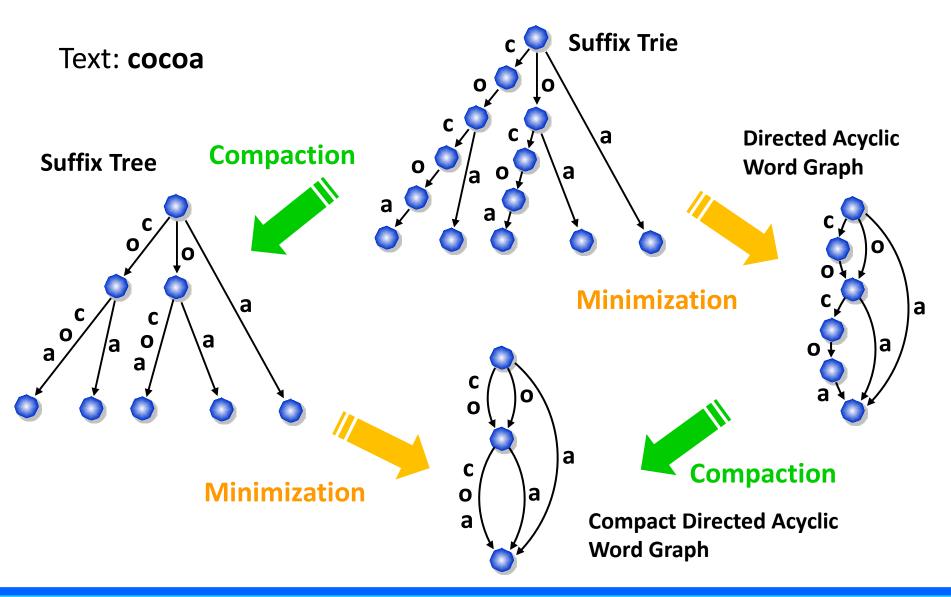
Overview of This Course

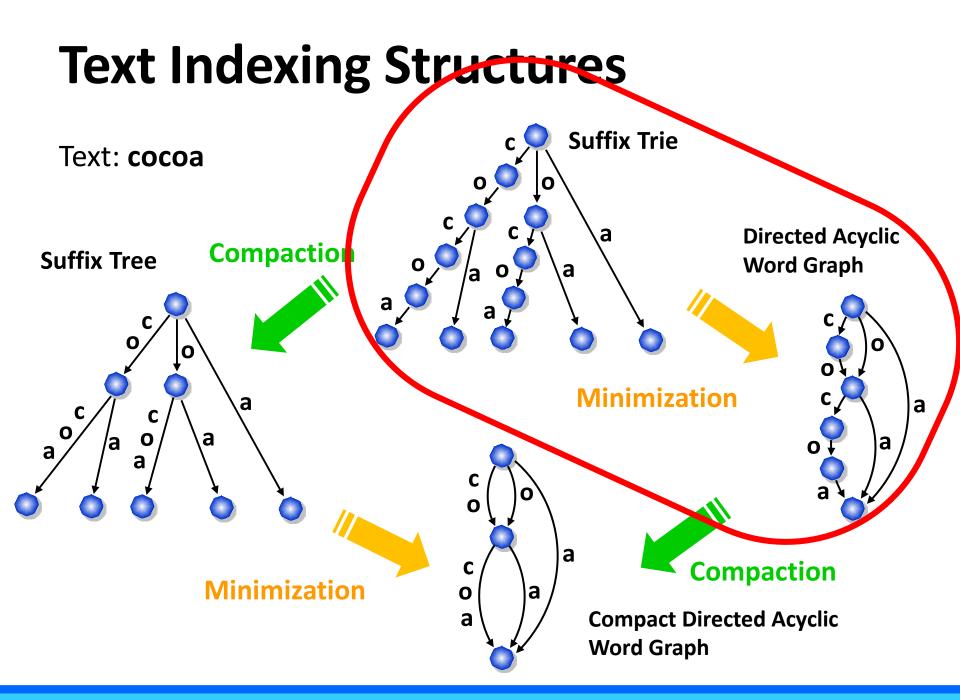
- Suffix tree [Weiner, 1973] is a fundamental data structure for string processing.
- "The myriad virtues of subword trees"
 [Apostolico, 1985]
- Directed acyclic word graph (DAWG)
 [Blumer et al., 1985] is a "dual" data structure for suffix tree.
- In this course, we study some nice properties and usefulness of DAWGs.

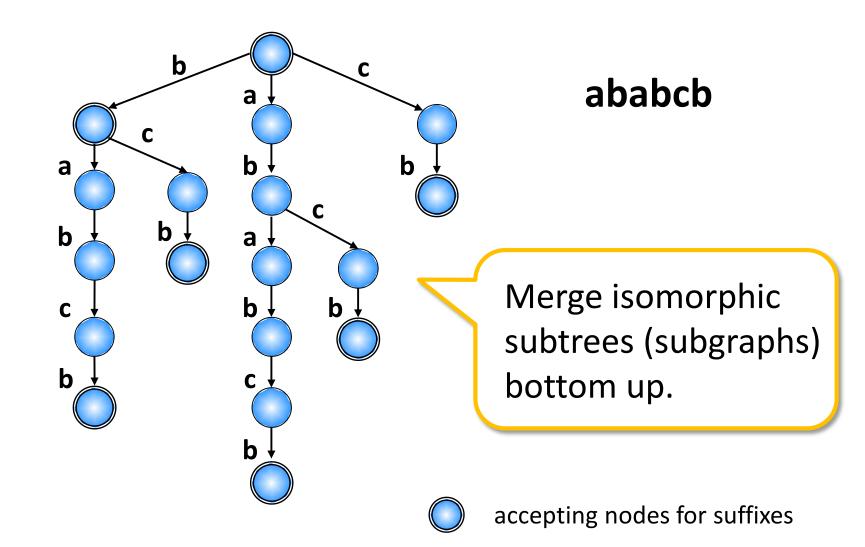
Relation to Previous Course

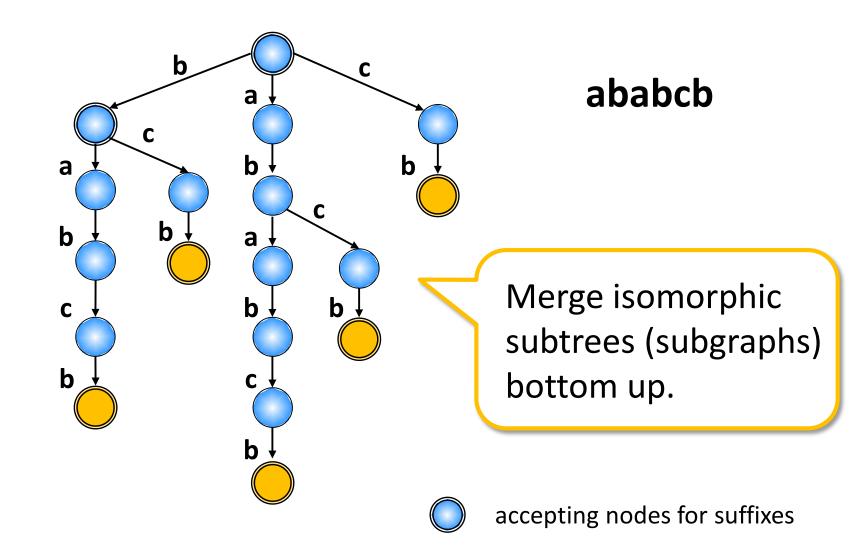
- This course will share some consequences with the previous course by Djamal & Fabio.
- This happens due to the "duality" between DAWGs and suffix trees, i.e., we will see "the same coin from both sides".

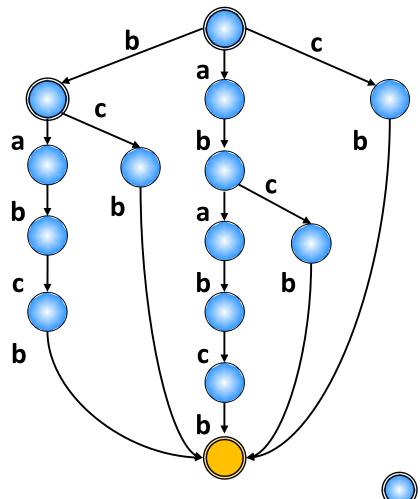
Text Indexing Structures



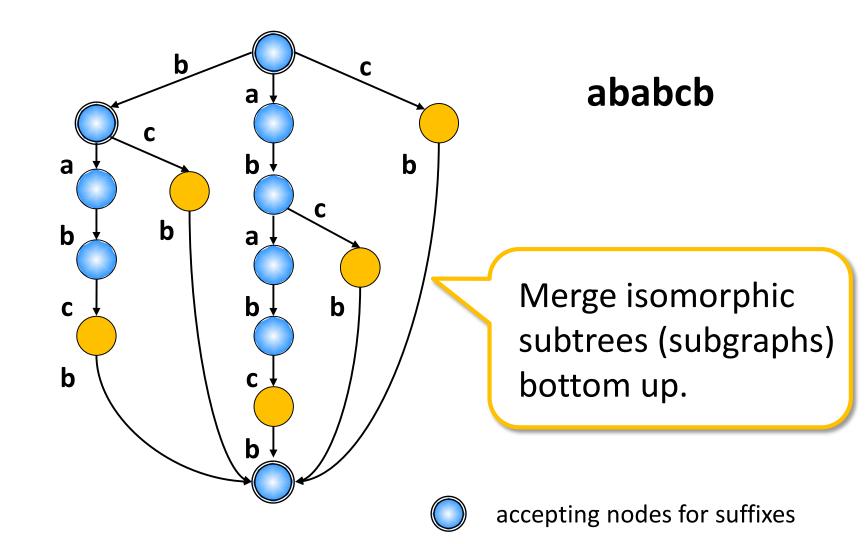


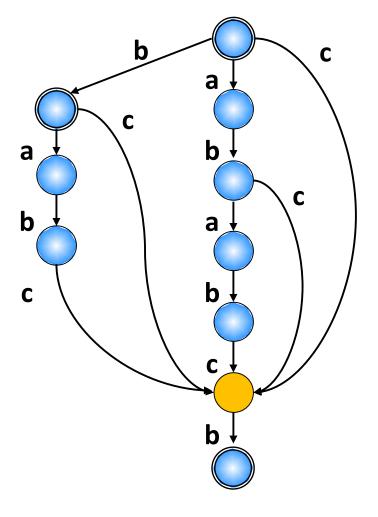




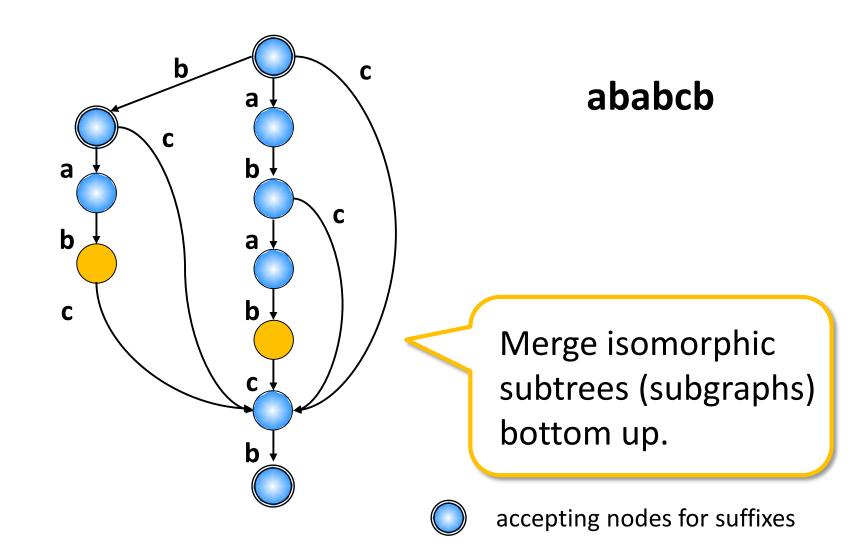


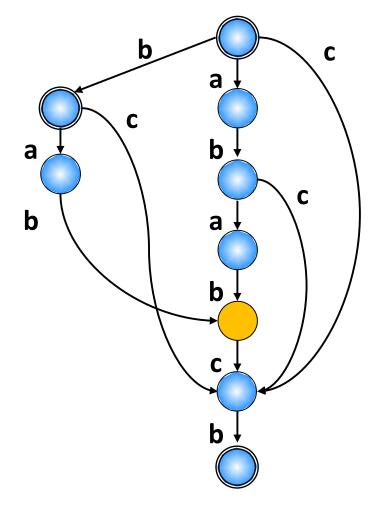
ababcb



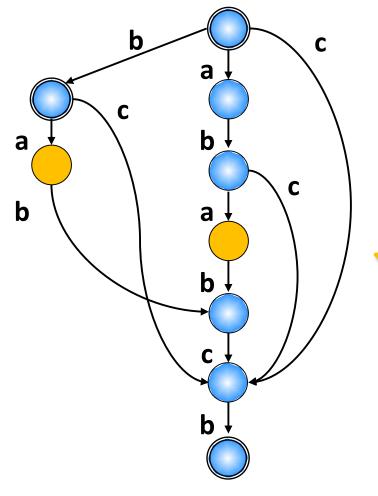


ababcb



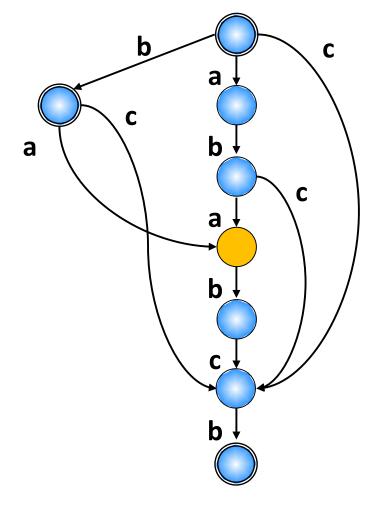


ababcb

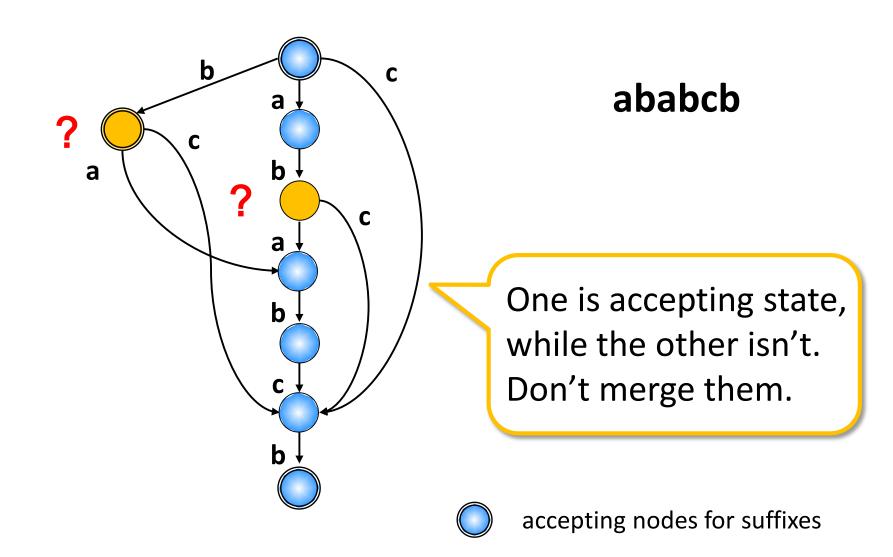


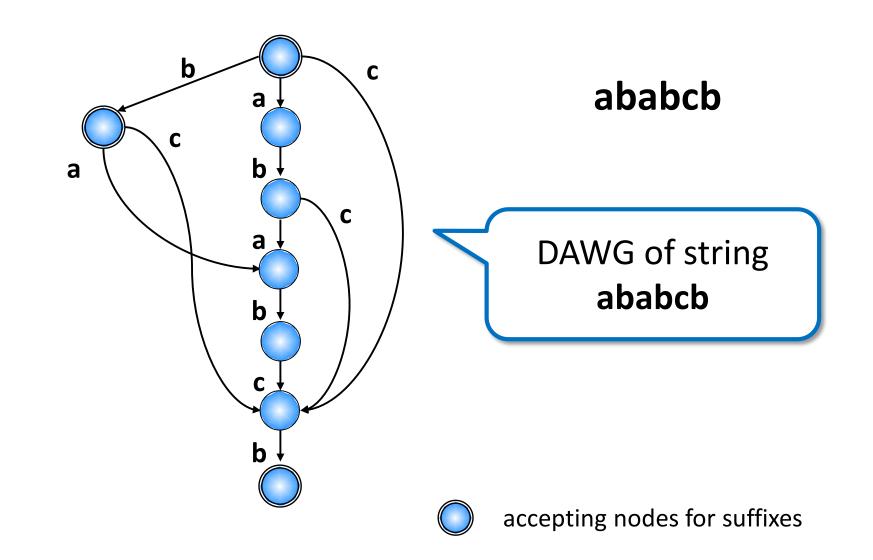
ababcb

Merge isomorphic subtrees (subgraphs) bottom up.



ababcb



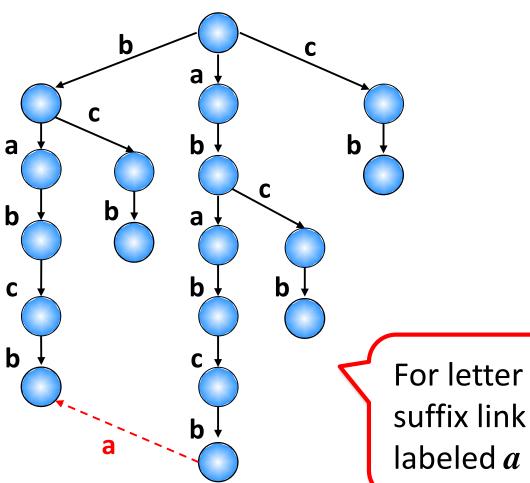


Minimality of DAWG

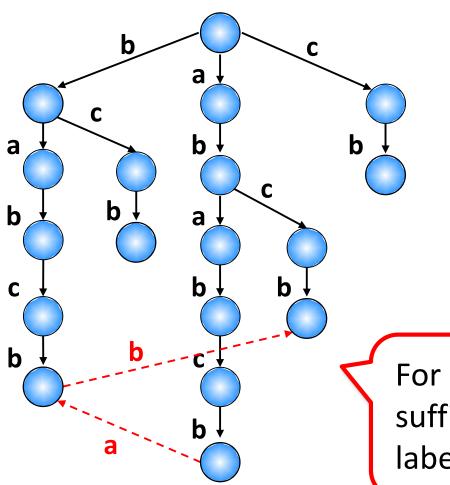
Theorem 1

The DAWG of string w is the **smallest automaton** that recognizes all suffixes of w.

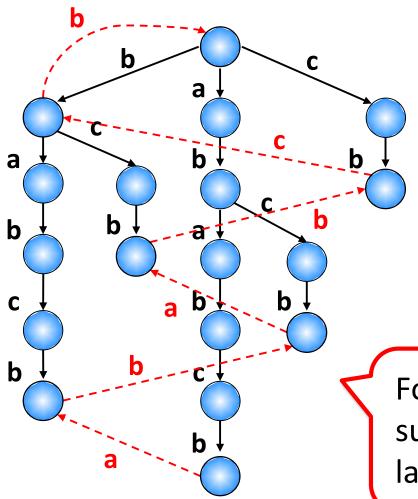
- Clearly, the suffix trie of w recognizes all suffixes of w, so does the DAWG of w.
- By construction, the DAWG is the smallest such automaton.



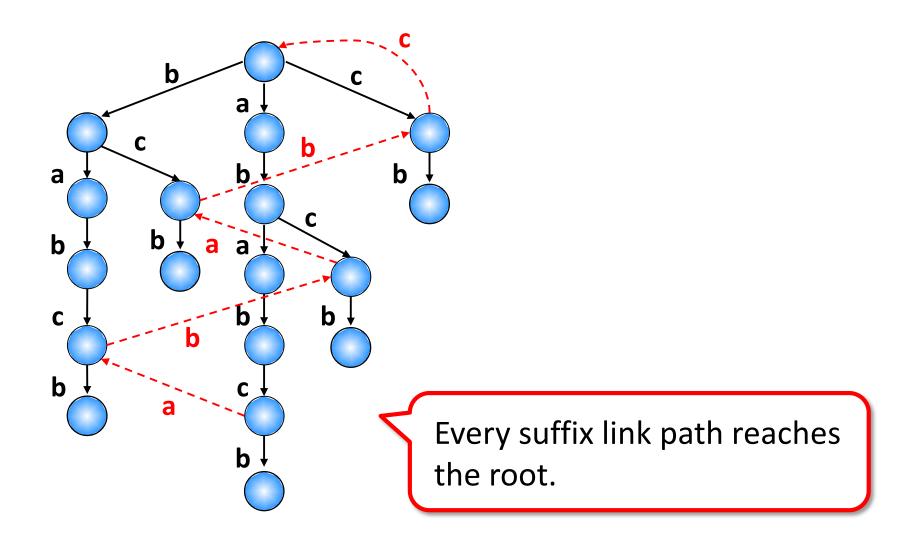
For letter *a* and string *x*, suffix link from node *ax* is labeled *a* and goes to node *x*.



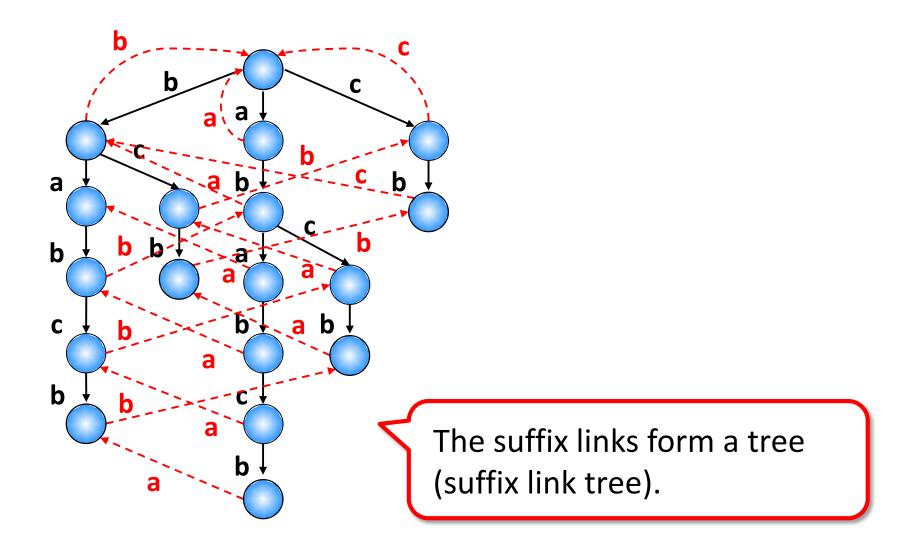
For letter *a* and string *x*, suffix link from node *ax* is labeled *a* and goes to node *x*.



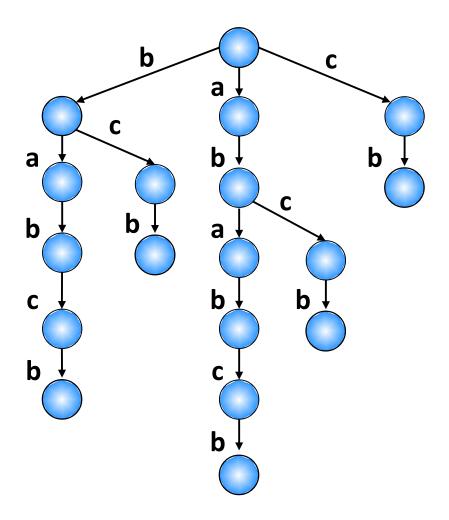
For letter *a* and string *x*, suffix link from node *ax* is labeled *a* and goes to node *x*.

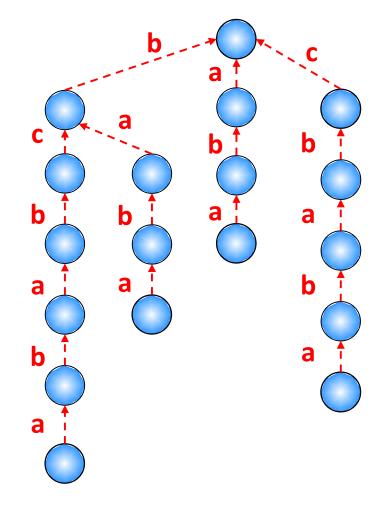


Suffix Link Tree of Suffix Trie



Suffix Link Tree of Suffix Trie

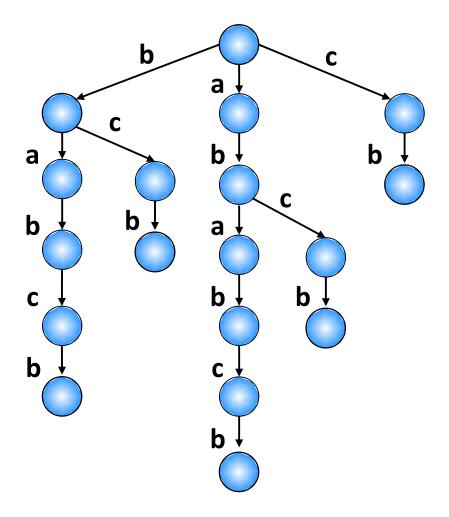


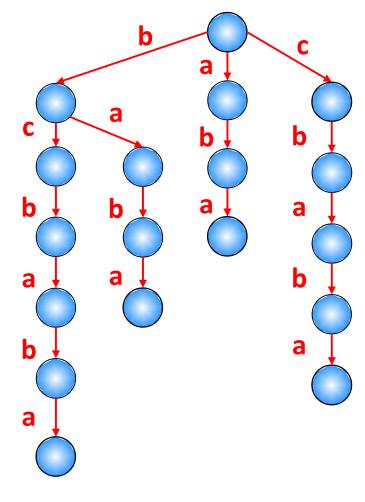


Suffix Trie of ababcb

Suffix Link Tree of ababcb

Suffix Link Tree = Suffix Trie of reverse





Suffix Trie of ababcb

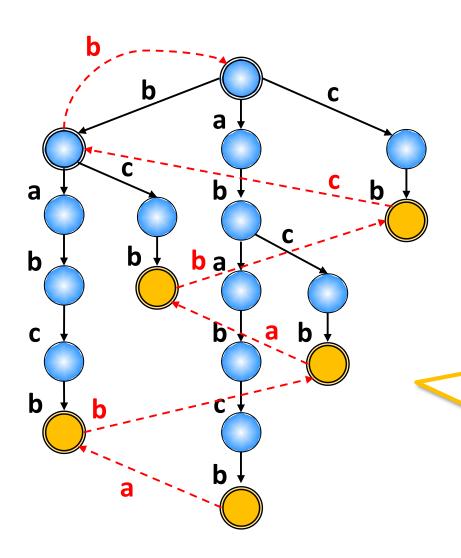
Suffix Trie of bcbaba

Suffix Link Tree = Suffix Trie of reverse

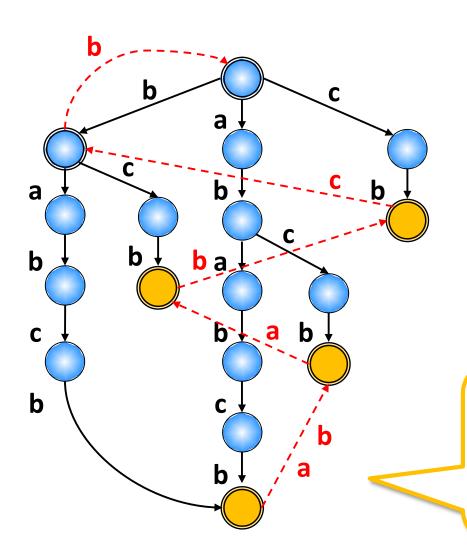
Lemma 1

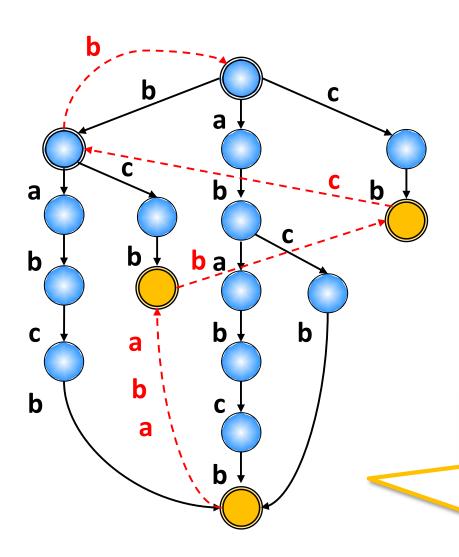
The suffix link tree of the suffix trie of string w forms the suffix trie of reversed string w^R .

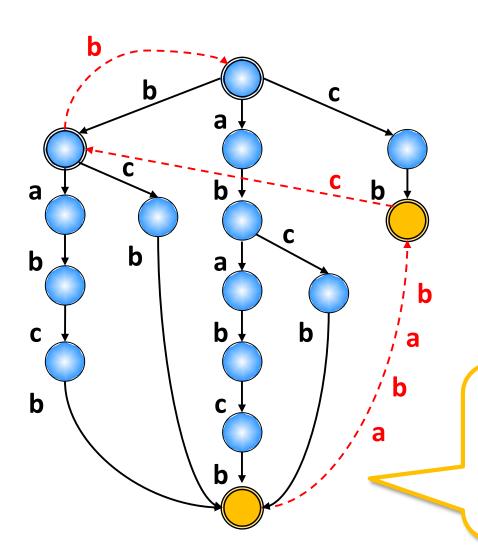
For any node of the suffix trie of w which represents substring x of w, the node represents subtring x^R of w^R in the suffix link tree.

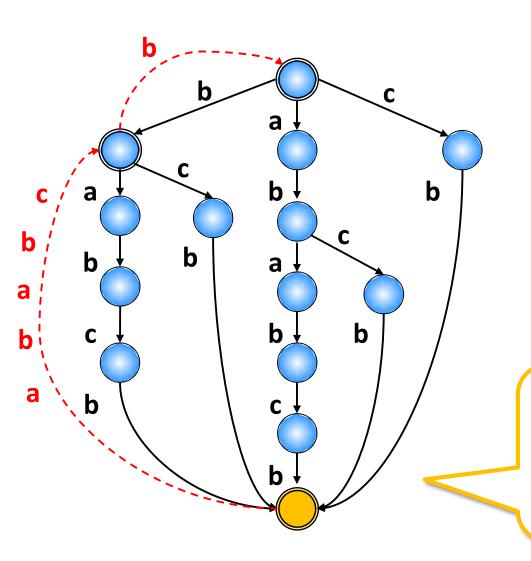


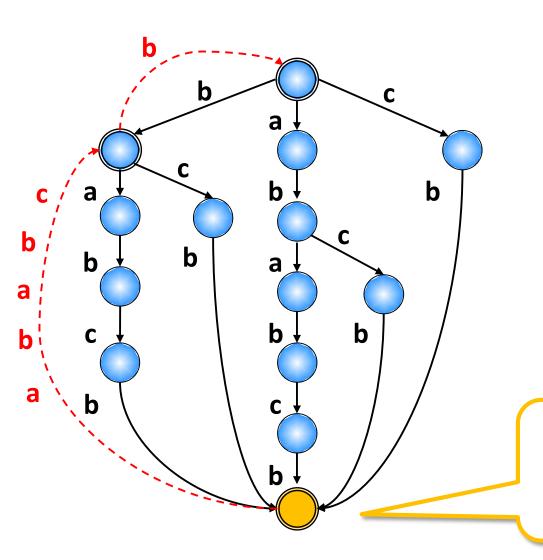
Merged nodes are connected by a chain of suffix links.





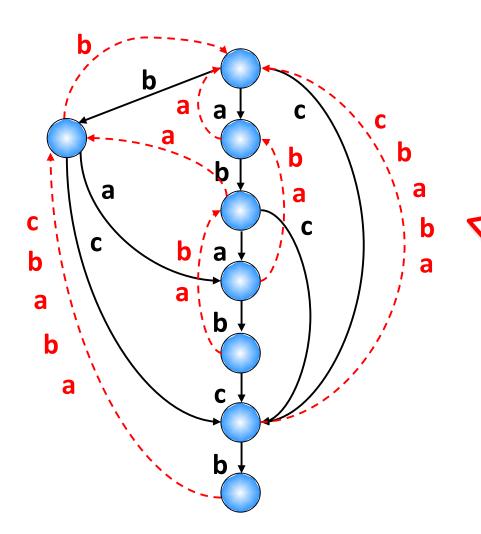






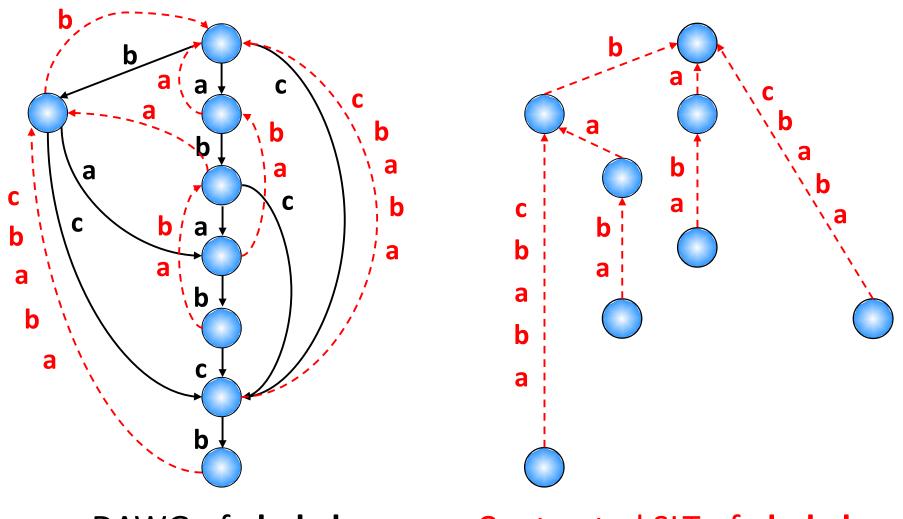
This is the suffix link of this DAWG node.

Suffix Links of DAWG



The suffix links of DAWG also forms a tree.

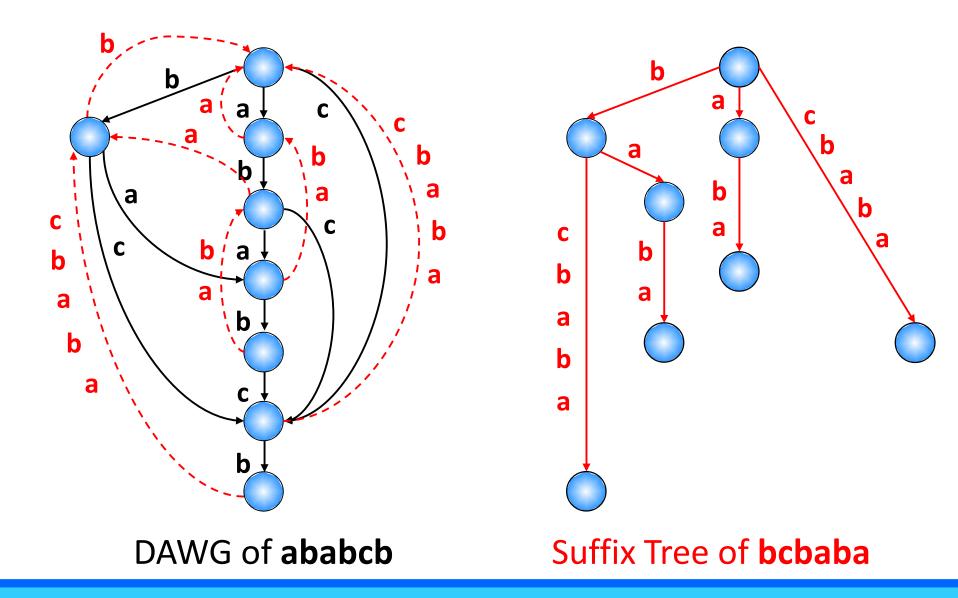
Suffix Links of DAWG



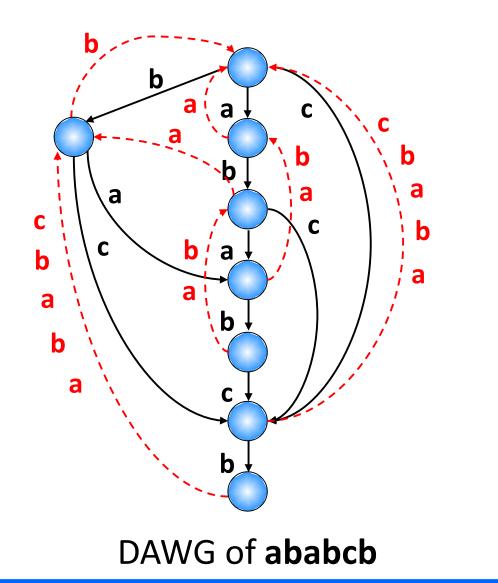
DAWG of **ababcb**

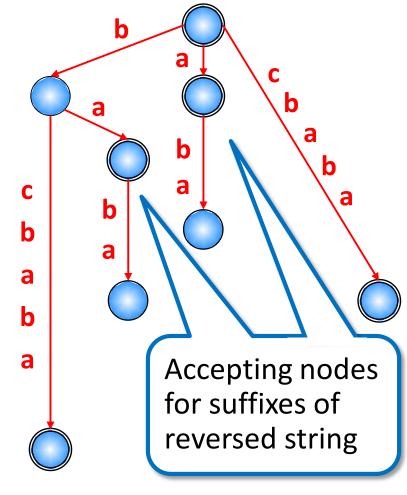
Contracted SLT of ababcb

SLT of DAWG = Suffix Tree of reverse



SLT of DAWG = Suffix Tree of reverse





Suffix Tree of **bcbaba**

SLT of DAWG = Suffix Tree of reverse

Theorem 2

The suffix link tree of the DAWG of string w forms the suffix tree of reversed string w^R .

Contracting suffix links during node merges is equivalent to contracting non-branching paths of the suffix trie of w^R.

Corollary 1

The number of nodes of the DAWG of any string of length n is at most 2n-1.

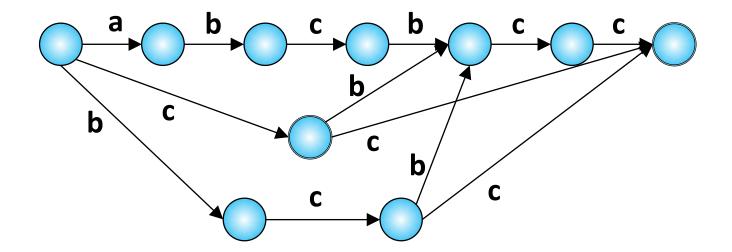
□ Immediate from Theorem 2.

Lemma 2

The number of edges of the DAWG of any string of length n is at most 3n-3.

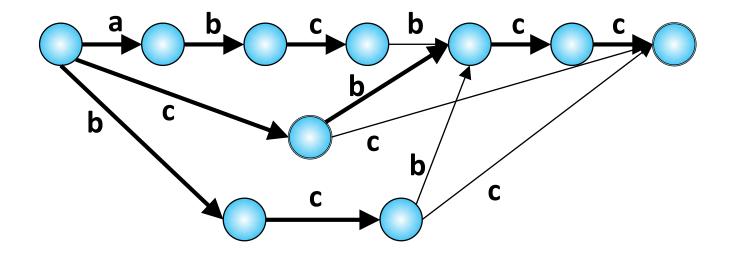
Proof.

□ Consider any spanning tree *T* of the DAWG.



Proof.

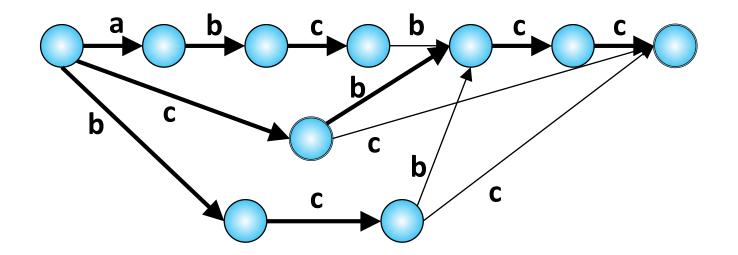
□ Consider any spanning tree *T* of the DAWG.



Proof.

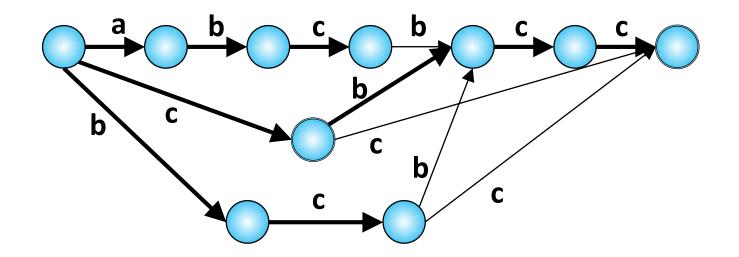
Because the DAWG has at most 2n-1 nodes, the spanning tree T contains at most 2n-2 edges.

Next, we count the number of edges outside *T*.



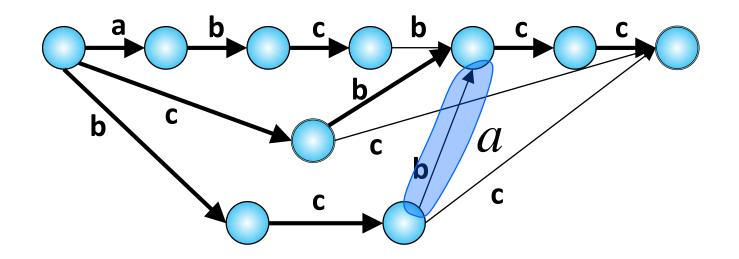
Proof.

For any edge *e* outside *T*, we consider path *xay*, where *x* is the path from the root to *e*, *a* is the label of *e*, and *y* is any path after *e* such that *xay* is a suffix of *w*.



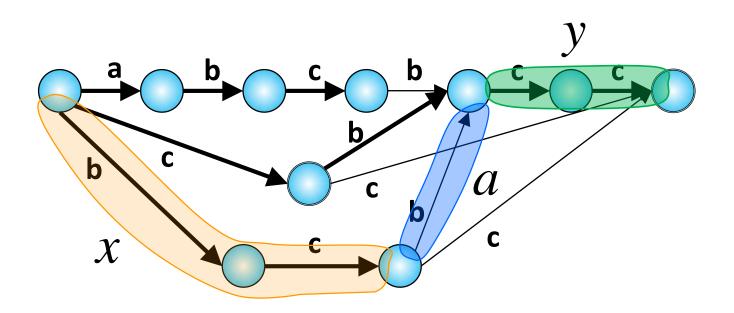
Proof.

For any edge *e* outside *T*, we consider path *xay*, where *x* is the path from the root to *e*, *a* is the label of *e*, and *y* is any path after *e* such that *xay* is a suffix of *w*.



Proof.

For any edge *e* outside *T*, we consider path *xay*, where *x* is the path from the root to *e*, *a* is the label of *e*, and *y* is any path after *e* such that *xay* is a suffix of *w*.



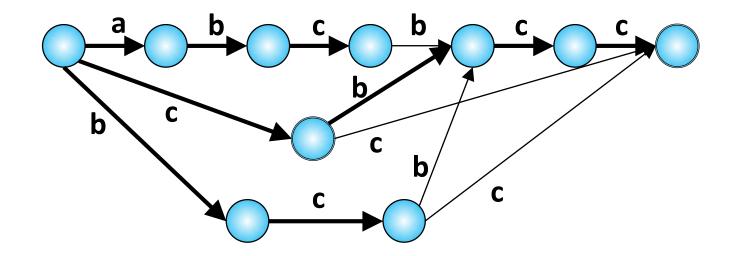
Proof.

This maps the edge e to the suffix xay of w. Moreover, any other edge outside the spanning tree T cannot be mapped to the same suffix xay.



Proof.

Hence the mapping is injective. Since the spanning tree contains at least one suffix of w, there can be at most n-1 suffixes to which the edges outside T can be mapped.



Proof.

Therefore, the number of edges outside T is at most n-1. Overall, DAWG has at most (2n-2)+(n-1) = 3n-3 edges.



The size of DAWG

Theorem 3

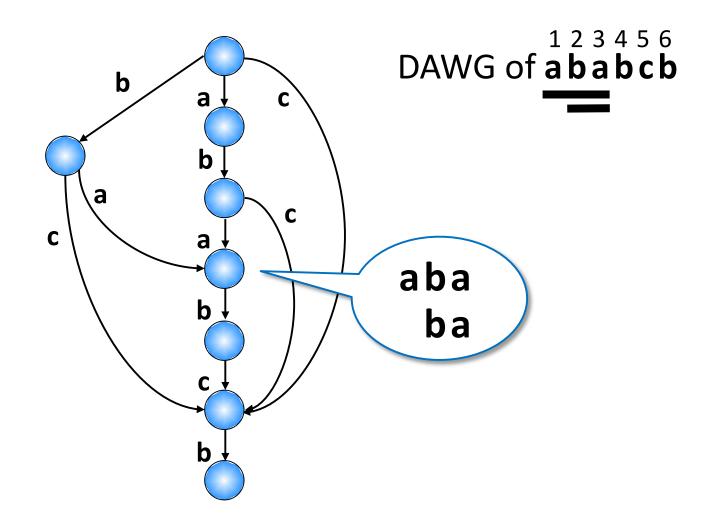
The DAWG of any string of length n has at most 2n-1 nodes and 3n-3 edges.

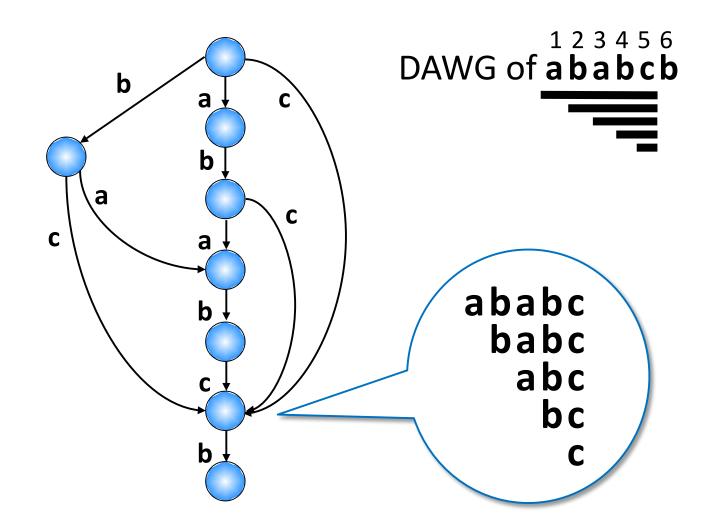
Note: The bound for the number of edges can further be shaved to 3n-4, and it is tight, i.e., the DAWG of string abⁿ⁻²c contains 3n-4 edges.

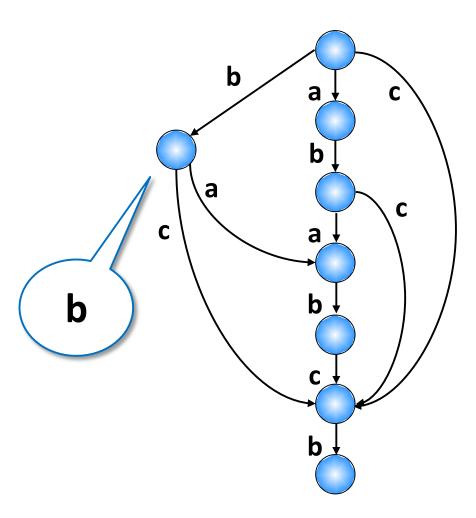
Lemma 3

Two strings x and y are represented by the same node of the DAWG of w iff x and y end at the same positions in w.

This is true because we merged nodes of the suffix trie of w iff they have isomorphic subtrees (hence, the same sets of ending positions).



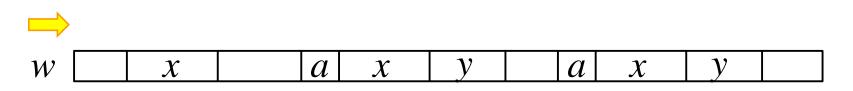


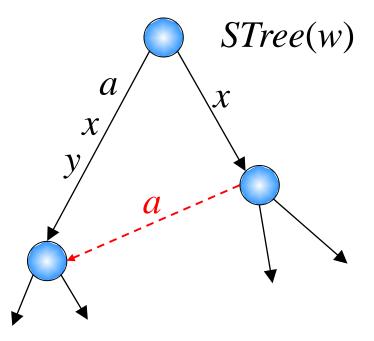


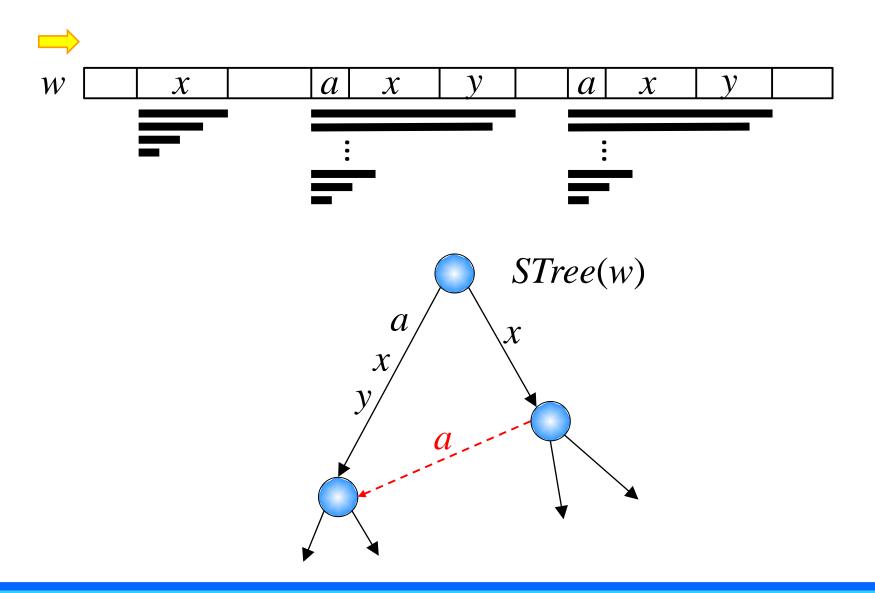
DAWG of ababcb

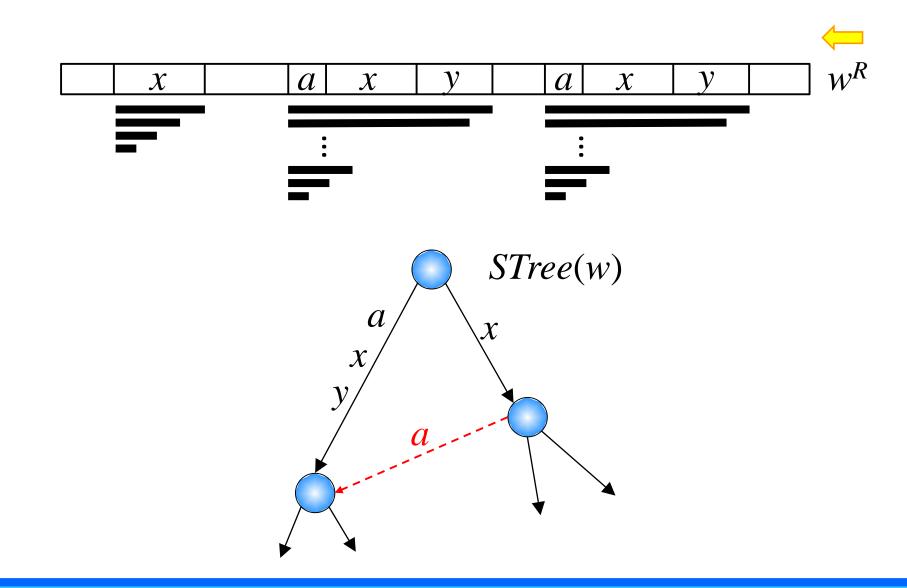
Corollary 2

The DAG consisting of the explicit and implicit Weiner links of the suffix tree of string w is the DAWG of the reversed string w^R .









Applications of DAWGs (Incomprehensive)

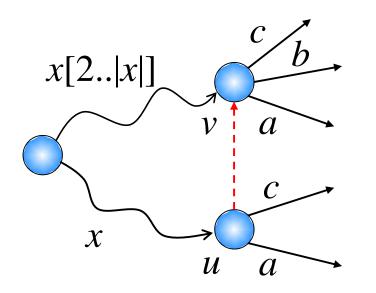
- Bidirectional pattern matching [Folklore]
- Approximate pattern matching [Ukkonen & Wood, 1993]
- Pattern matching with variable-length don't cares [Kucherov & Rusinowitch, 1997]
- Finding minimal absent words
 [Crochemore et al., 1998, 2015, Fujishige et al. 2016]
- Compact online Lempel Ziv 77 factorization [Yamamoto et al., 2014]
- Finding α-gapped repeats [Tanimura et al., 2015]
- Finding maximal-exponent substring in overlap-free string [Badkobeh & Crochemore, 2016]

Applications of DAWGs (Incomprehensive)

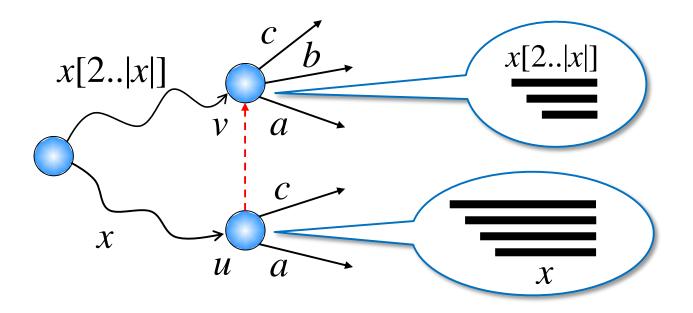
- Bidirectional pattern matching [Folklore]
- Approximate pattern matching [Ukkonen & Wood, 1993]
- Pattern matching with variable-length don't cares [Kucherov & Rusinowitch, 1997]
- Finding minimal absent words
 [Crochemore et al., 1998, 2015, Fujishige et al. 2016]
- Compact online Lempel Ziv 77 factorization [Yamamoto et al., 2014]
- Finding α-gapped repeats [Tanimura et al., 2015]
- Finding maximal-exponent substring in overlap-free string [Badkobeh & Crochemore, 2016]

- A string y is said to be a minimal absent word (MAW) of a string w, if
 - 1. *y* does not occur in *w*, but
 - 2. proper substrings of *y* occur in *w*.
- E.g.) If w = abaab and ∑ = {a, b}, then the MAWs of w are aaa, aaba, bab, bb.
- MAWs can be used to build phylogeny [Chairungsee & Crochemore, 2012].

- For a node u of the DAWG of w, let x be the shortest string represented by u.
- □ Let $v = suf_link(u)$.
- **Then**, xb ($b \in \Sigma$) is a MAW of w iff
 - 1. there is no out-edge from *u* labeled *b*, and
 - 2. there is an out-edge from v labeled b.



■ xb does not occur in w, and ■ both x and x[2..|x|]b occur in w. $\Leftrightarrow xb$ is a MAW of w.



xb does not occur in *w*, and
 both *x* and *x*[2..|*x*|]*b* occur in *w*.
 ⇔ *xb* is a MAW of *w*.

MAW Computation with DAWG

Theorem 4

Using the DAWG of string w, we can compute all MAWs of w in $O(\sigma n)$ time.

$$\sigma = |\Sigma|, \ n = |w|$$

For each node of the DAWG of w, it is sufficient to test at most σ letters.

The DAWG of w has O(n) nodes.

Faster MAW Computation with DAWG

Theorem 5

Using the edge-sorted DAWG of string w, we can compute all MAWs of w in optimal $O(n + /MAW_w/)$ time.

Testing out-edges of u and v can be charged to either existing edges or MAWs to output.

Direct Construction of DAWGs

- □ Since the suffix trie of string of length n can contain $\Omega(n^2)$ nodes, converting the suffix trie into the DAWG takes $O(n^2)$ time.
- Can we construct DAWGs directly?

Online Construction of DAWGs

Theorem 6

The DAWG of a given string w of length n can be constructed online in $O(n \log \sigma)$ time, where σ is the alphabet size.

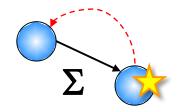
- We incrementally build the DAWG of w[1..i] for increasing i = 1, ..., n (left-to-right online).
- The DAWG is annotated with suffix links.
- The log σ factor is the cost to sort and search branching edges.

Before going to online construction of DAWGs, we consider online construction of suffix tries.

> When a new letter w[i] arrives, we begin with the node which represents w[1..i-1].

ababcb

Before going to online construction of DAWGs, we consider online construction of suffix tries.



If we cannot traverse from the star with new character w[1] = a, create a new edge labeled **a**.

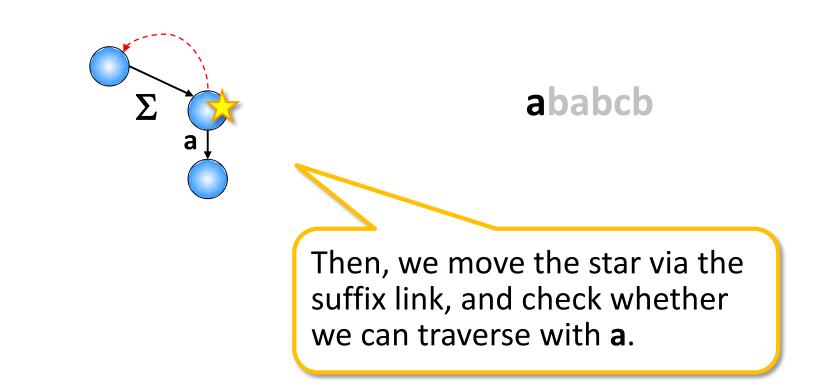
Before going to online construction of DAWGs, we consider online construction of suffix tries.

а

If we cannot traverse from the star with new character w[1] = a, create a new edge labeled **a**.

ababcb

Before going to online construction of DAWGs, we consider online construction of suffix tries.



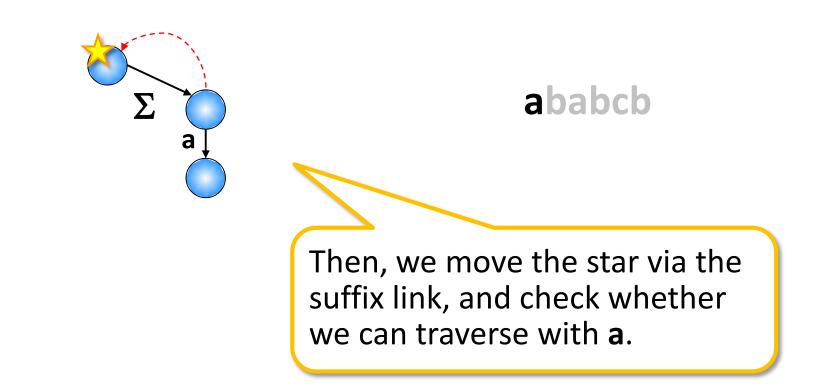
Before going to online construction of DAWGs, we consider online construction of suffix tries.

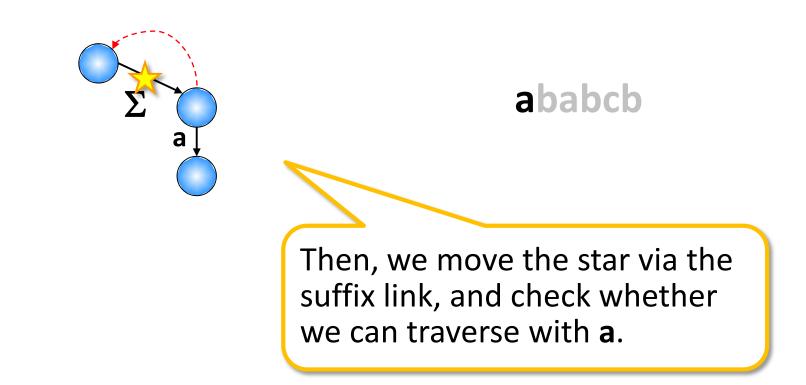
а

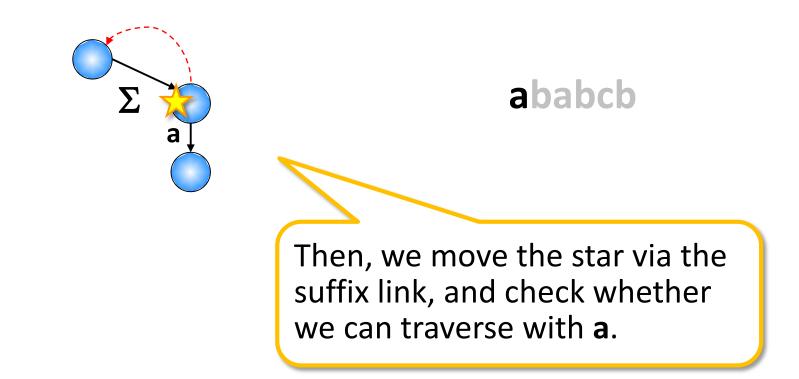
Then, we move the star via the suffix link, and check whether we can traverse with **a**.

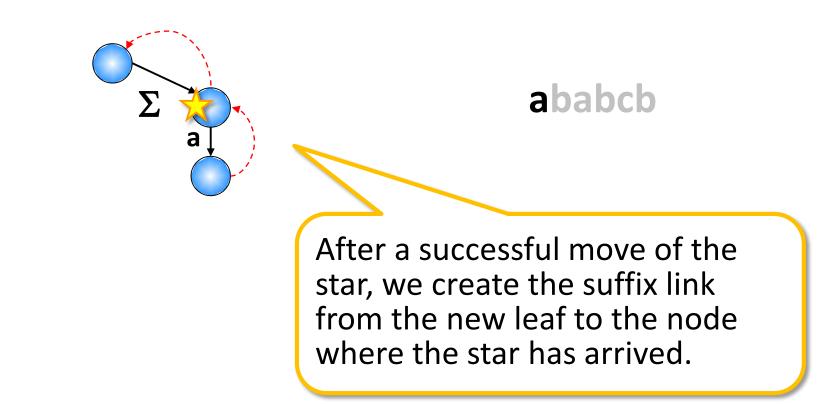
ababcb

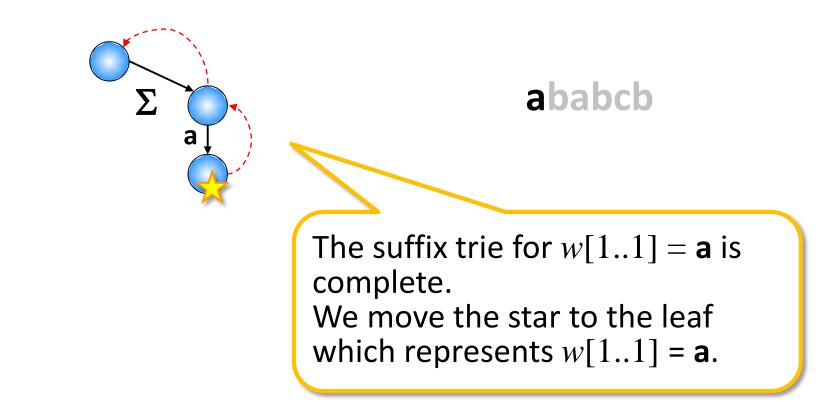
Before going to online construction of DAWGs, we consider online construction of suffix tries.

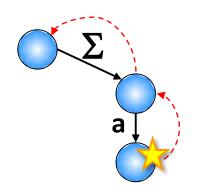


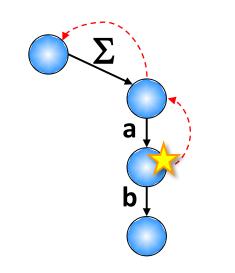


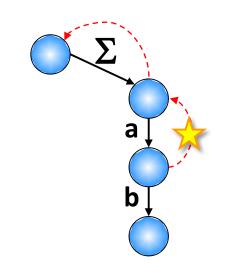


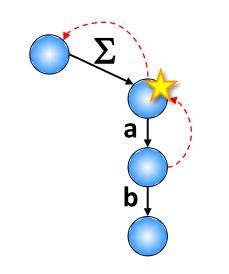


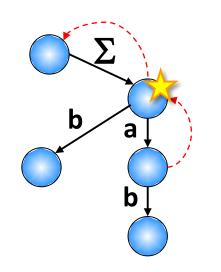


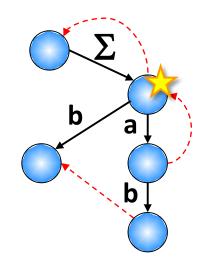






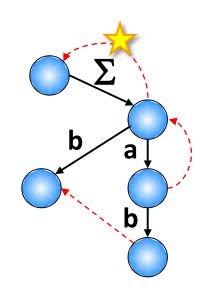


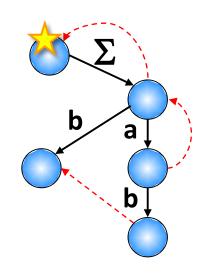


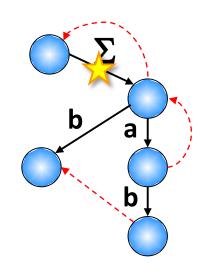


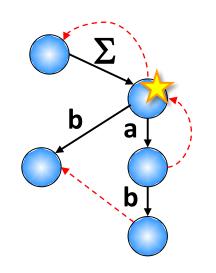
ababcb

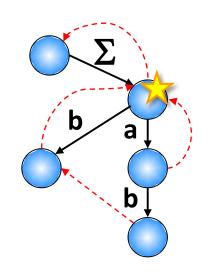
We have two new leaves for **ab** and **b**. We create the suffix link from **ab** to **b**.

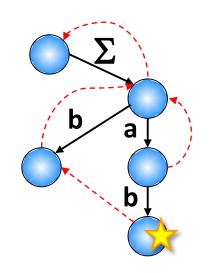


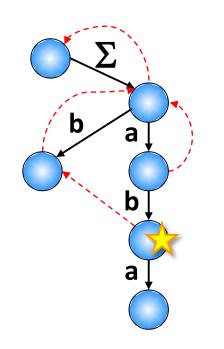


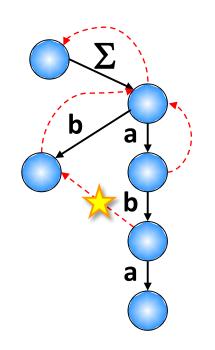


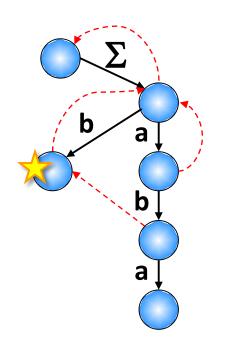


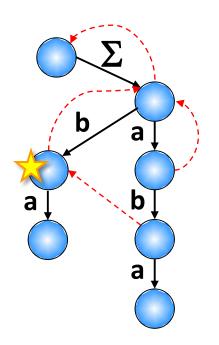


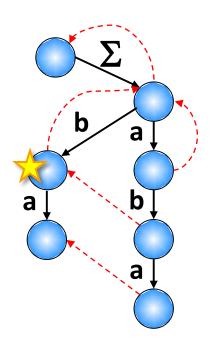


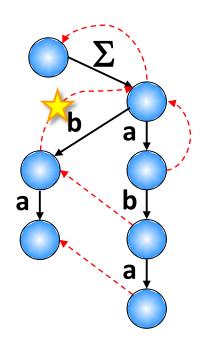


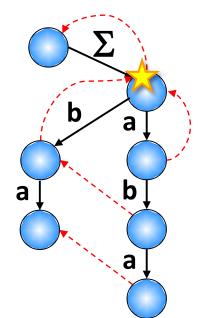






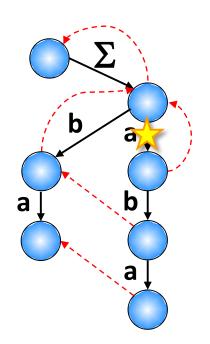


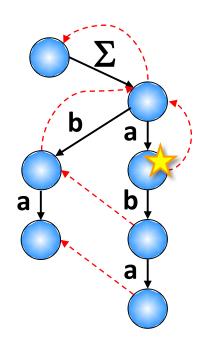


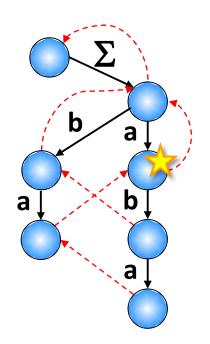


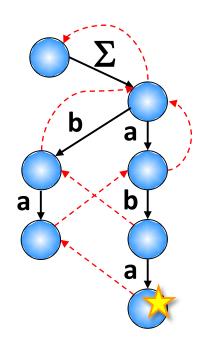
ababcb

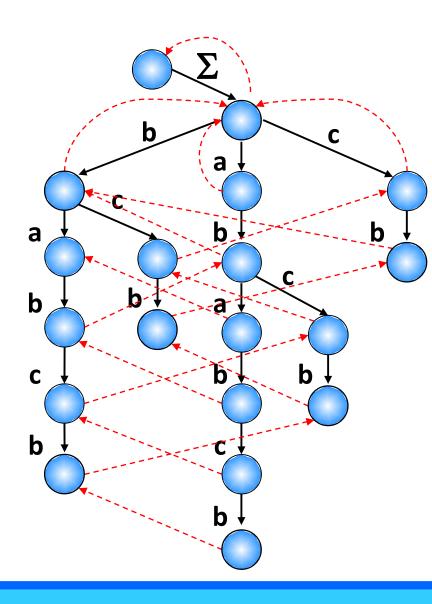
We are looking for an edge labeled $w[3] = \mathbf{a}$. Using a BST for branching edges, we can find it in $O(\log \sigma)$ time.

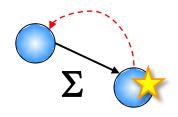


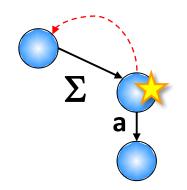


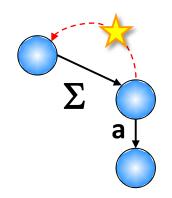


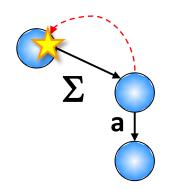


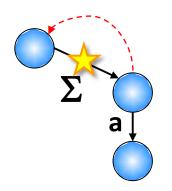


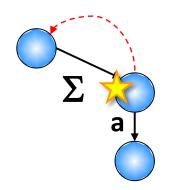


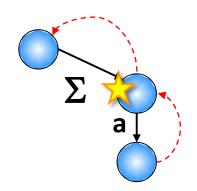


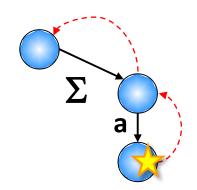


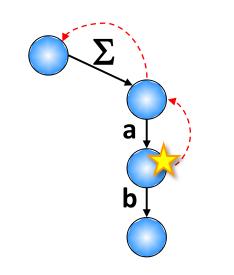


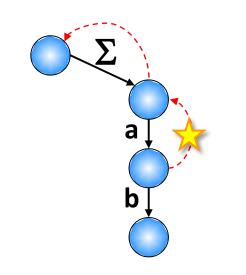


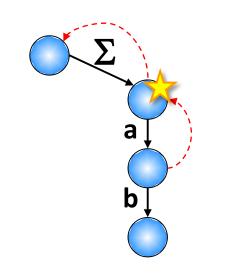


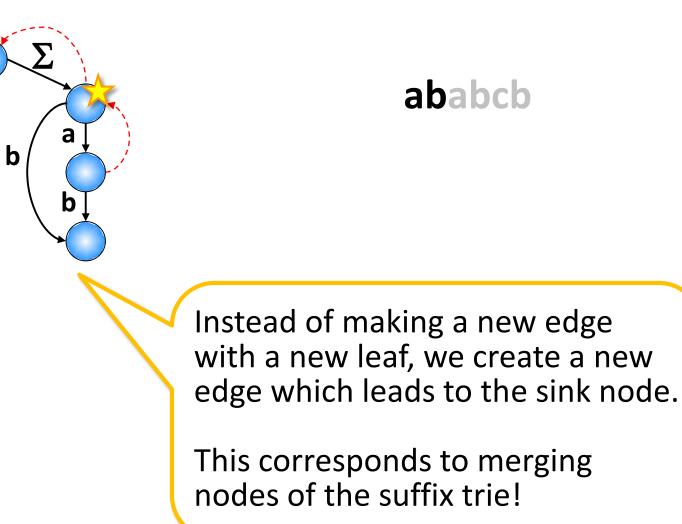


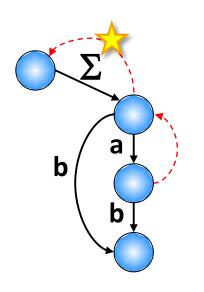


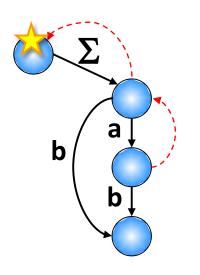


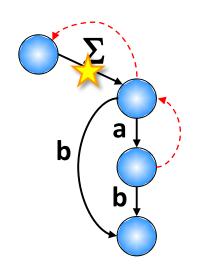


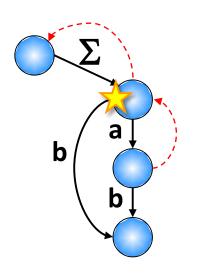


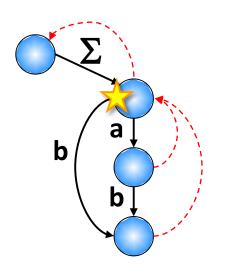


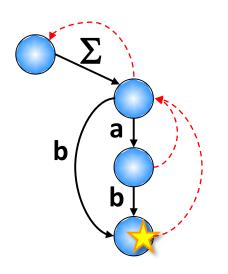


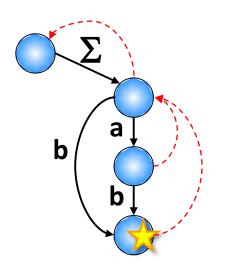


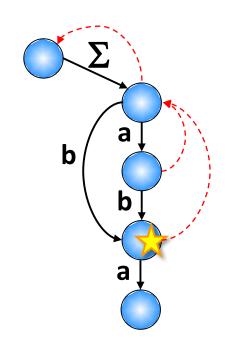


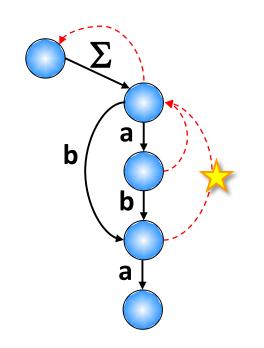


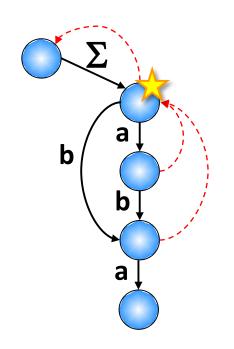


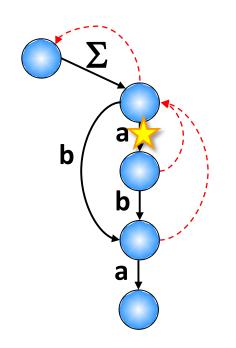


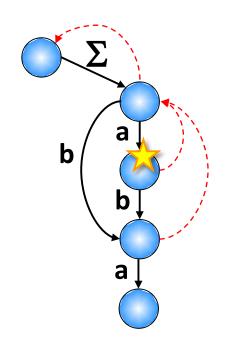


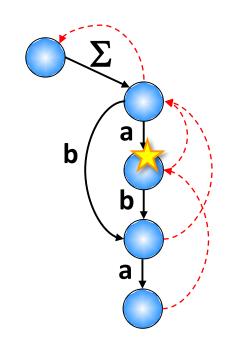


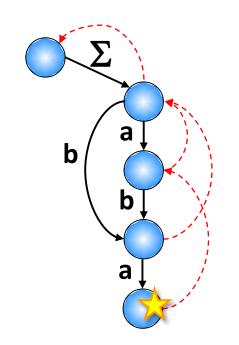


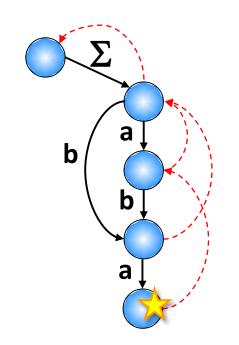


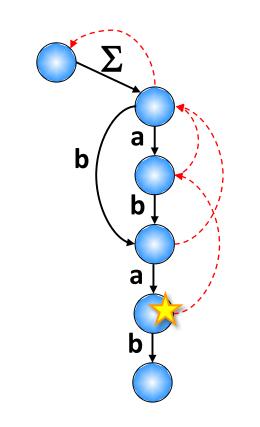


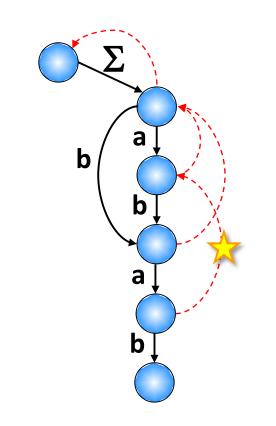


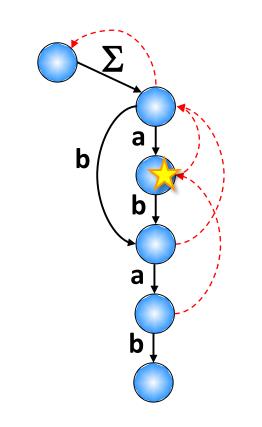


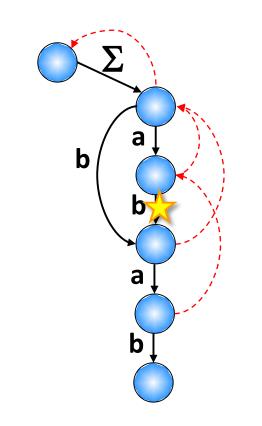


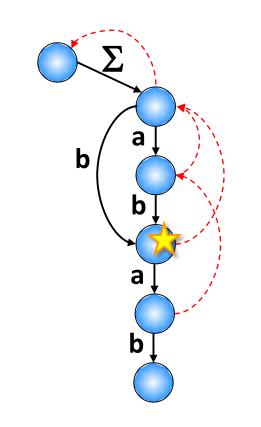


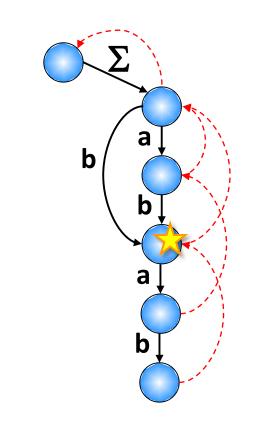


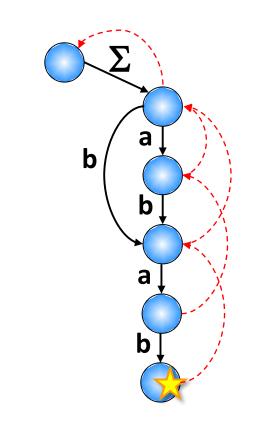


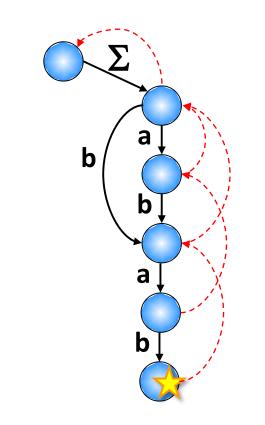


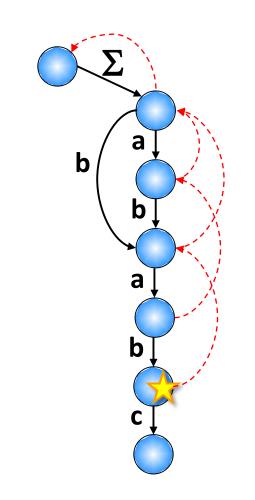


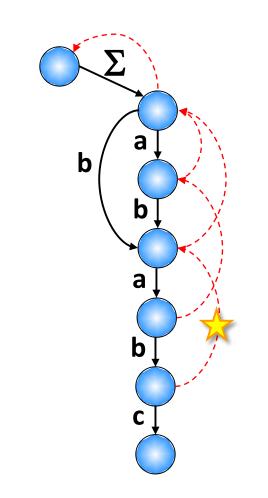


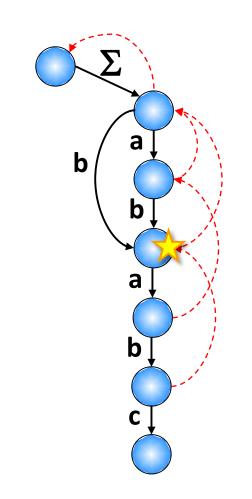


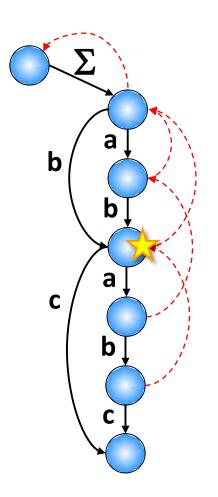


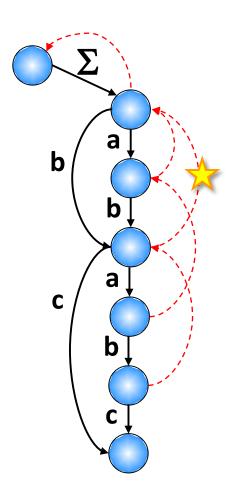


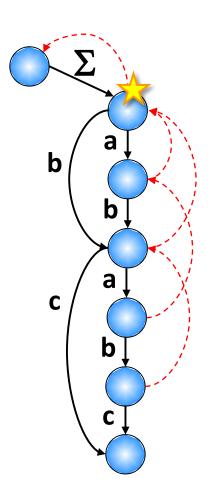


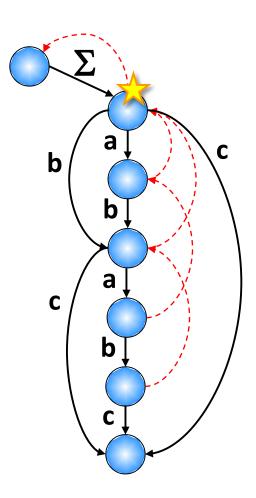


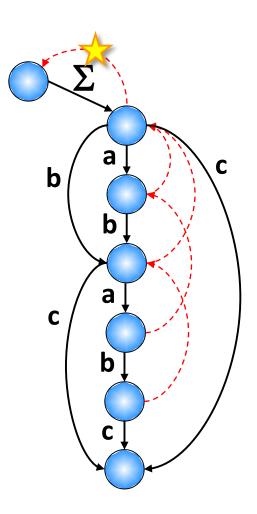


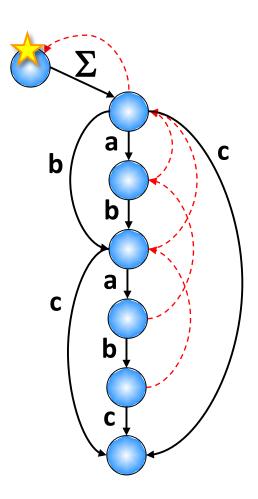


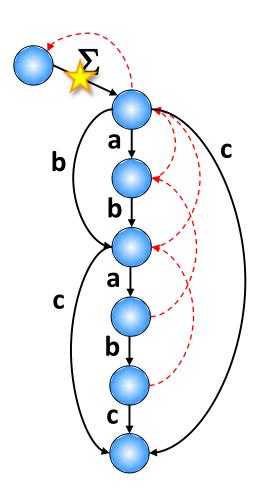




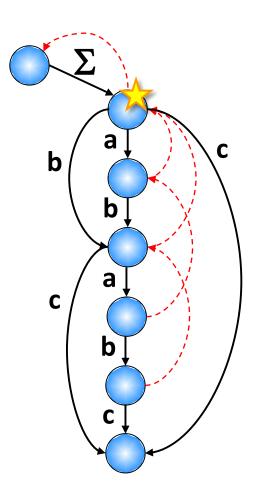




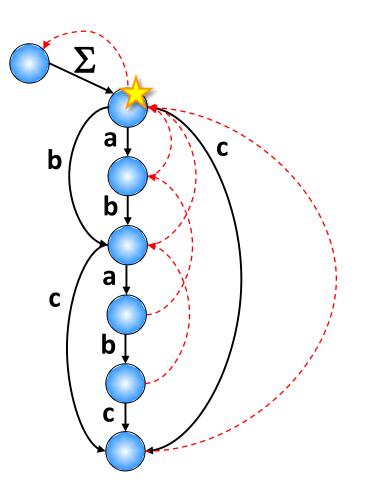


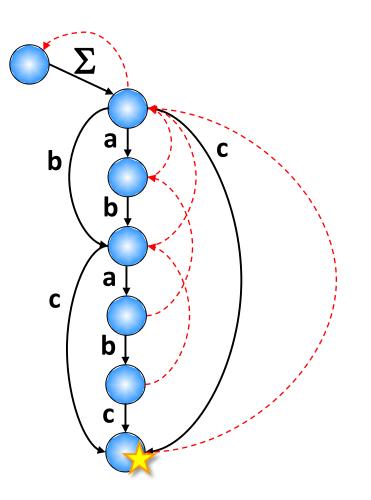


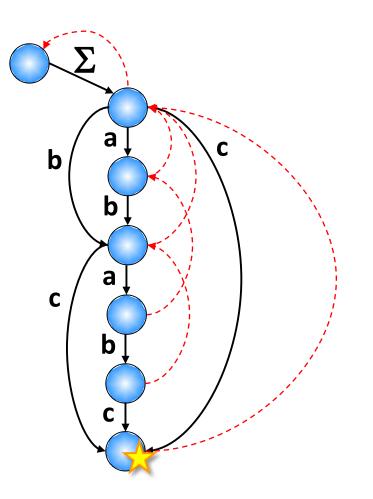
ababcb

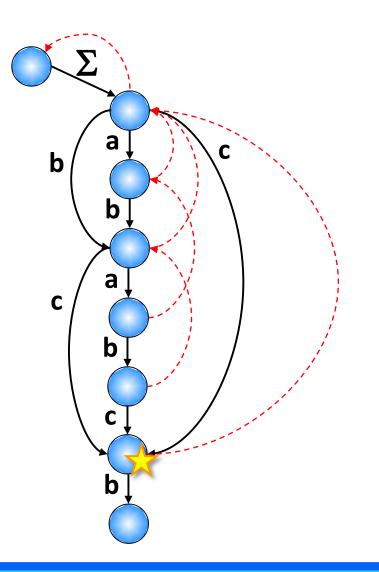


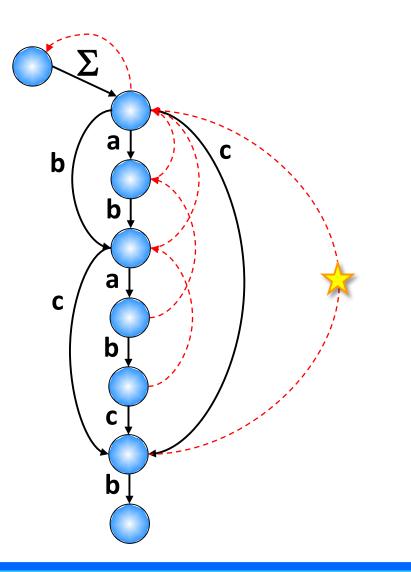
ababcb

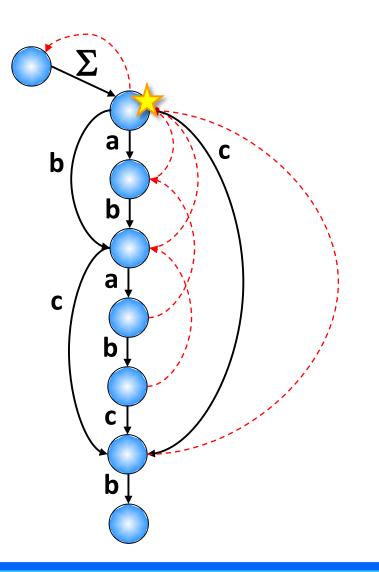


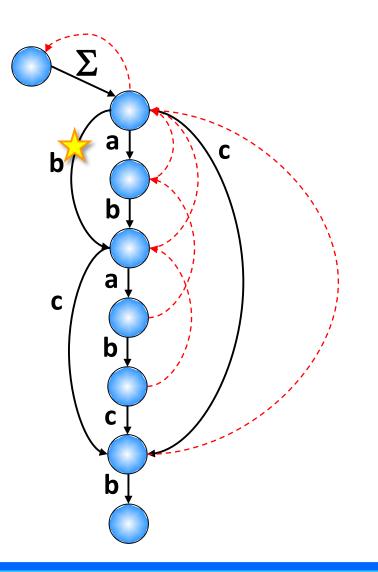


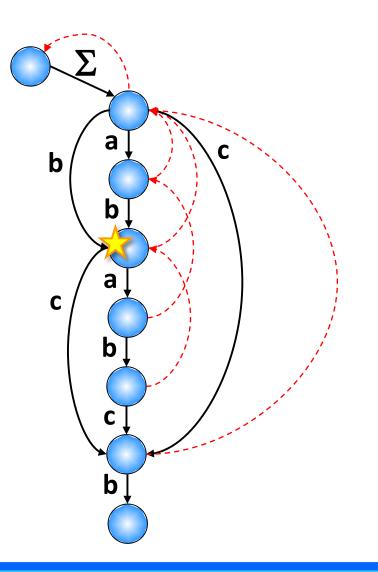


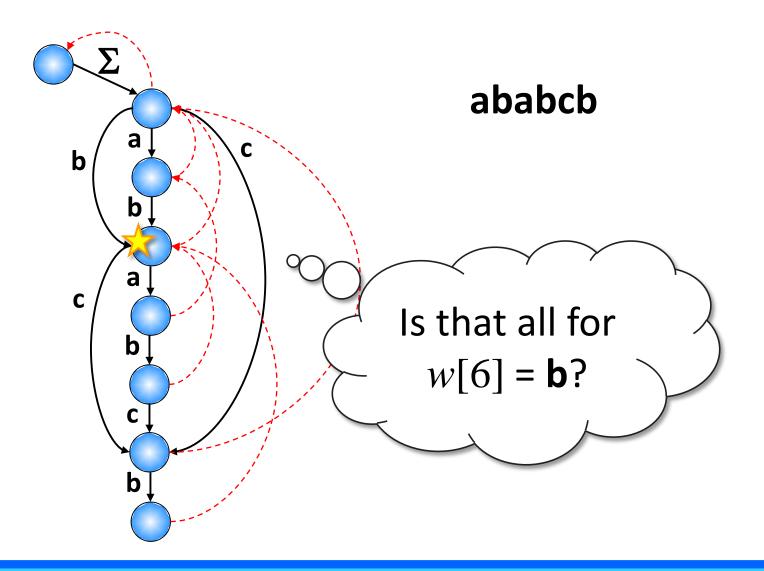


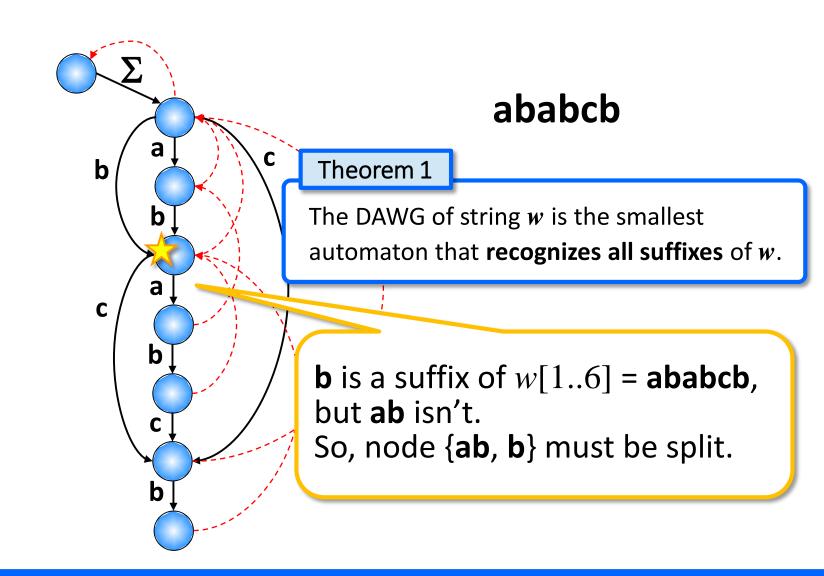


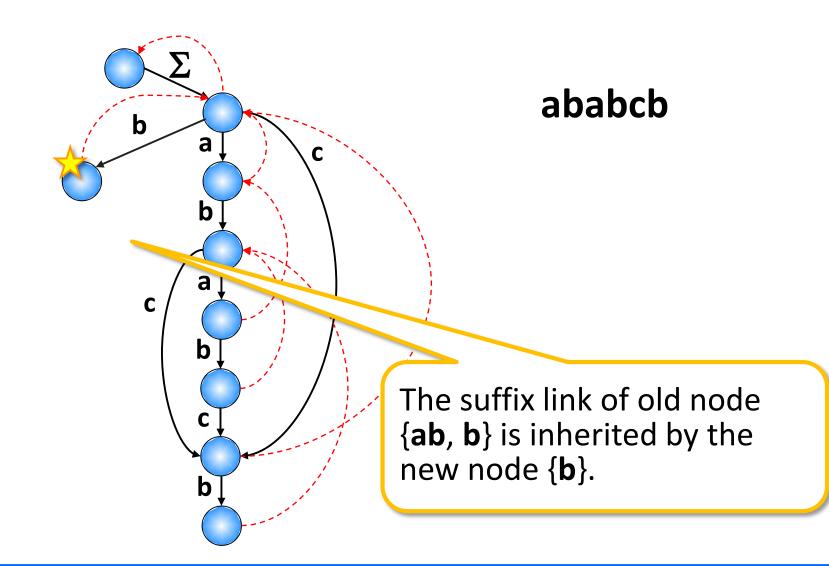


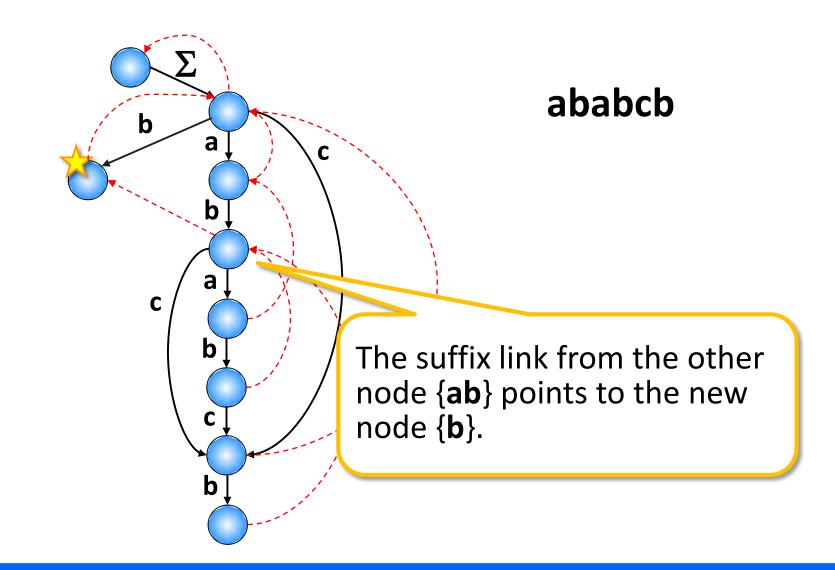


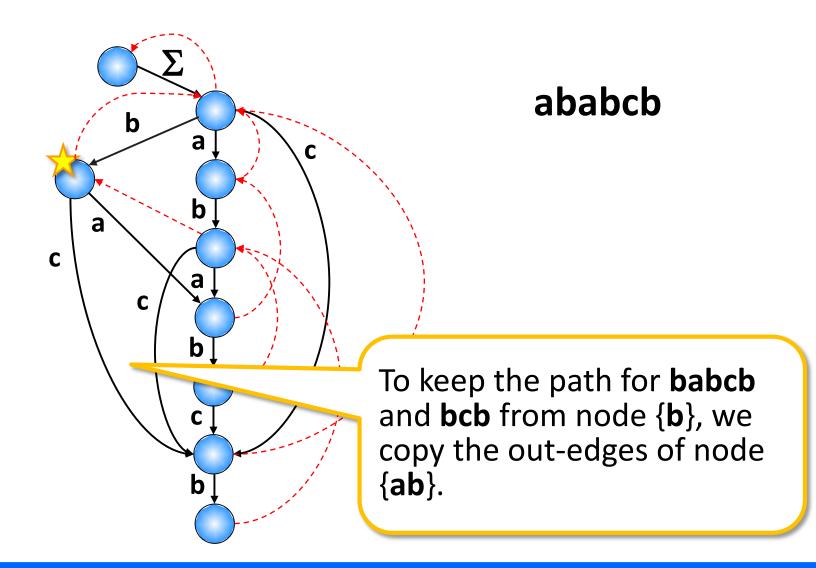


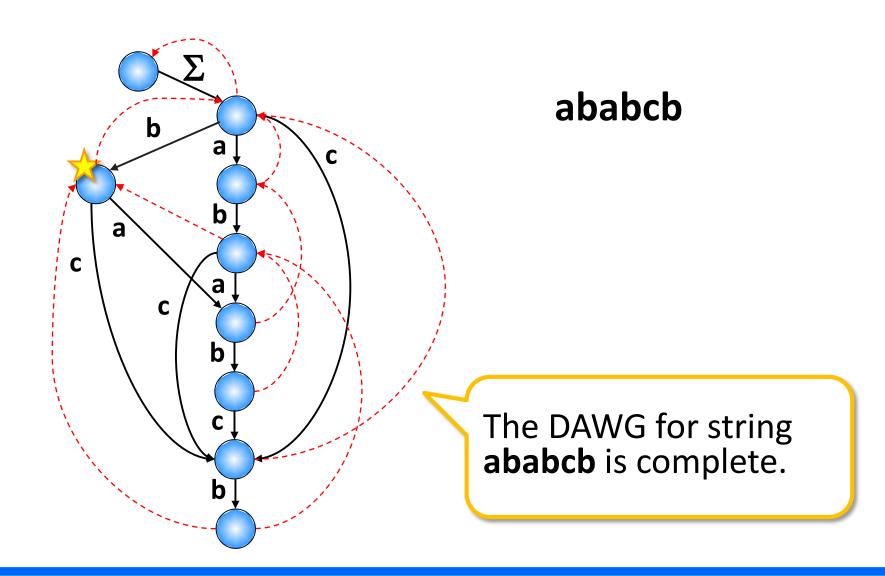


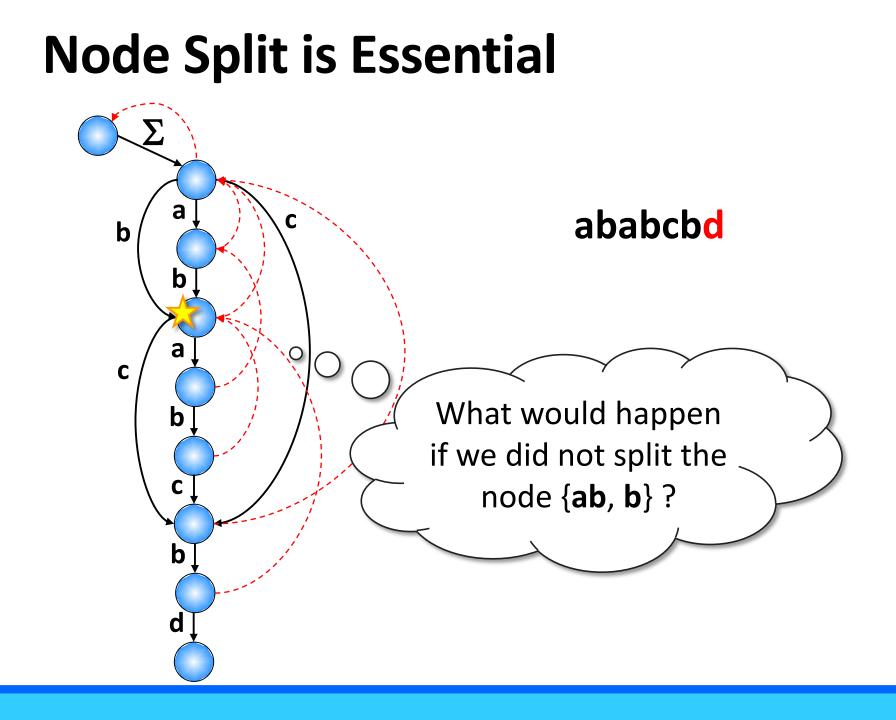




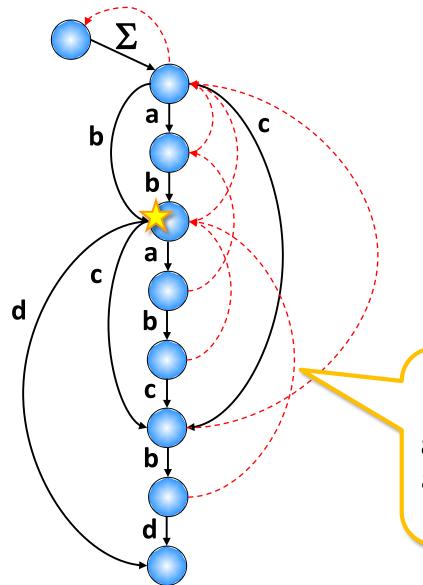








Node Split is Essential



ababcbd

Now the DAG has a path for **abd**, but this does not appear in string **ababcbd**!

Theorem 6

The DAWG of a given string of length n can be constructed online (left-to-right) in $O(n \log \sigma)$ time, where $\sigma = |\Sigma|$.

- Clearly, the amount of work is proportional to the numbers of nodes, edges, and suffix links in the DAWG, each of which is O(n).
- □ The $\log \sigma$ factor is to maintain BSTs for searching branches.

Left-to-right Construction of DAWG ⇒ Right-to-left Construction of Suffix Tree

Corollary 3

The suffix tree of a given string of length n can be constructed online (right-to-left) in $O(n \log \sigma)$ time.

- □ Immediate from Theorem 6.
- This corollary generalizes Weiner's right-to-left suffix tree construction.

DAWG Construction for Integer Alphabets

Theorem 7

The edge-sorted DAWG of a given string w of length n over an integer alphabet $\Sigma = \{1, ..., n^{O(1)}\}$ can be constructed in O(n) time.

- Build the suffix tree of w with suffix links in O(n) time [Farach-Colton et al., 2000].
- Build DAWG with suffix links from suffix tree.
- **Edges** can be sorted in O(n) time by bucket sort.

Recommended Reading (1/3)

- "The Smallest Automaton Recognizing the Subwords of a Text", Blumer et al., TCS, 1985.
 - Introduced DAWGs.
 - Duality with suffix trees.
 - Online $O(n \log \sigma)$ -time DAWG construction algorithm.
- Text Algorithms, Crochemore & Rytter, Oxford University Press, 1994.
 - Text book. Chapter 6 is devoted for DAWGs.
 - Free(!) copy is available online at http://www.mimuw.edu.pl/~rytter/BOOKS/text-algorithms.pdf

Recommended Reading (2/3)

- "Automata and Forbidden Words", Crochemore et al., *IPL*, 1998.
 - DAWG-based $O(\sigma n)$ -time algorithm for finding all MAWs.
- "Linear-Time Sequence Comparison Using Minimal Absent Words & Applications", Crochemore et al., LATIN, 2016.
 - String similarity measure based on MAWs.

Recommended Reading (3/3)

- "Computing DAWGs and Minimal Absent Words in Linear Time for Integer Alphabets", Fujishige et al., *MFCS*, 2016 (to appear).
 - Offline O(n)-time DAWG construction algorithm for integer alphabets of size n^{O(1)}.
 - $O(n + |MAW_w|)$ -time algorithm for finding all MAWs.
- "Fully-online Construction of Suffix Trees for Multiple Texts", Takagi et al., CPM, 2016.
 - Fully-online $O(n \log \sigma)$ -time DAWG construction algorithm for multiple strings.