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Overview of This Course

 Suffix tree [Weiner, 1973] is a fundamental data 
structure for string processing.

 “The myriad virtues of subword trees”
[Apostolico, 1985]

 Directed acyclic word graph (DAWG) 
[Blumer et al., 1985] is a “dual” data structure 
for suffix tree.

 In this course, we study some nice properties 
and usefulness of DAWGs.



Relation to Previous Course

 This course will share some consequences 
with the previous course by Djamal & Fabio.

 This happens due to the “duality” between 
DAWGs and suffix trees, i.e., we will see 
“the same coin from both sides”.
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Minimality of DAWG

 Clearly, the suffix trie of w recognizes all 
suffixes of w, so does the DAWG of w.

 By construction, the DAWG is the smallest
such automaton.

The DAWG of string w is the smallest
automaton that recognizes all suffixes of w.

Theorem 1
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Suffix Link Tree of Suffix Trie
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Suffix Link Tree = Suffix Trie of reverse
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Suffix Link Tree = Suffix Trie of reverse

 For any node of the suffix trie of w which 
represents substring x of w, the node represents 
subtring xR of wR in the suffix link tree.

The suffix link tree of the suffix trie of string w
forms the suffix trie of reversed string wR.

Lemma 1
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SLT of DAWG = Suffix Tree of reverse

Theorem 2

The suffix link tree of the DAWG of string w
forms the suffix tree of reversed string wR.

 Contracting suffix links during node merges
is equivalent to contracting non-branching 
paths of the suffix trie of wR.



Number of Nodes of DAWG

Corollary 1

The number of nodes of the DAWG of 
any string of length n is at most 2n-1.

 Immediate from Theorem 2.



Number of Edges of DAWG

Lemma 2

The number of edges of the DAWG of 
any string of length n is at most 3n-3.
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Number of Edges of DAWG
Proof.
 Because the DAWG has at most 2n-1 nodes, 

the spanning tree T contains at most 2n-2 edges.

Next, we count the number of edges outside T.
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Number of Edges of DAWG
Proof.
 For any edge e outside T, we consider path xay, 

where x is the path from the root to e, a is the 
label of e, and y is any path after e such that 
xay is a suffix of w.
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Number of Edges of DAWG
Proof.
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Number of Edges of DAWG
Proof.
 This maps the edge e to the suffix xay of w.

Moreover, any other edge outside the spanning 
tree T cannot be mapped to the same suffix xay.
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Number of Edges of DAWG
Proof.
 Hence the mapping is injective.

Since the spanning tree contains at least one 
suffix of w, there can be at most n-1 suffixes
to which the edges outside T can be mapped.
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Number of Edges of DAWG
Proof.
 Therefore, the number of edges outside T

is at most n-1. Overall, DAWG has at most 
(2n-2)+(n-1) = 3n-3 edges.
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The size of DAWG

Theorem 3

The DAWG of any string of length n
has at most 2n-1 nodes and 3n-3 edges.

 Note: The bound for the number of edges can 
further be shaved to 3n-4, and it is tight, i.e., 
the DAWG of string abn-2c contains 3n-4 edges.



Properties of DAWG nodes

 This is true because we merged nodes of the 
suffix trie of w iff they have isomorphic subtrees 
(hence, the same sets of ending positions).

Lemma 3
Two strings x and y are represented by 
the same node of the DAWG of w
iff x and y end at the same positions in w.
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Connection with Weiner Links

Corollary 2

The DAG consisting of the explicit and implicit 
Weiner links of the suffix tree of string w is the 
DAWG of the reversed string wR.
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Connection with Weiner Links
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Applications of DAWGs (Incomprehensive)
 Bidirectional pattern matching [Folklore]
 Approximate pattern matching 

[Ukkonen & Wood, 1993]
 Pattern matching with variable-length don’t cares 

[Kucherov & Rusinowitch, 1997]
 Finding minimal absent words 

[Crochemore et al., 1998, 2015, Fujishige et al. 2016]
 Compact online Lempel Ziv 77 factorization

[Yamamoto et al., 2014]
 Finding α-gapped repeats [Tanimura et al., 2015]
 Finding maximal-exponent substring in 

overlap-free string [Badkobeh & Crochemore, 2016]
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Minimal Absent Words

 A string y is said to be a minimal absent 
word (MAW) of a string w, if 

1. y does not occur in w, but 
2. proper substrings of y occur in w.

 E.g.) If w = abaab and Σ = {a, b}, then
the MAWs of w are aaa, aaba, bab, bb.

 MAWs can be used to build phylogeny
[Chairungsee & Crochemore, 2012].



Minimal Absent Words

 For a node u of the DAWG of w, let x be 
the shortest string represented by u.

 Let v = suf_link(u) .

 Then, xb (b ∈ Σ) is a MAW of w iff
1. there is no out-edge from u labeled b, and
2. there is an out-edge from v labeled b.
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 both x and x[2..|x|]b occur in w.
⟺ xb is a MAW of w.
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MAW Computation with DAWG

 For each node of the DAWG of w, 
it is sufficient to test at most σ letters.

 The DAWG of w has O(n) nodes.

Theorem 4

Using the DAWG of string w, we can 
compute all MAWs of w in O(σn) time.

σ = |Σ | ,  n = |w |



Faster MAW Computation with DAWG

 Testing out-edges of u and v can be 
charged to either existing edges or 
MAWs to output.

Theorem 5

Using the edge-sorted DAWG of string w, 
we can compute all MAWs of w in 
optimal O(n+|MAWw|) time.



Direct Construction of DAWGs

 Since the suffix trie of string of length n
can contain Ω(n2) nodes, converting the 
suffix trie into the DAWG takes O(n2) time.

 Can we construct DAWGs directly?



Online Construction of DAWGs

 We incrementally build the DAWG of w[1..i] 
for increasing i = 1, …, n (left-to-right online).

 The DAWG is annotated with suffix links.
 The log 𝜎𝜎 factor is the cost to sort and search 

branching edges.

Theorem 6

The DAWG of a given string w of length n
can be constructed online in O(n log 𝜎𝜎) 
time, where 𝜎𝜎 is the alphabet size.



Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

When a new letter w[i] arrives, 
we begin with the node which 
represents w[1..i-1].
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Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

After a successful move of the 
star, we create the suffix link 
from the new leaf to the node 
where the star has arrived.

a



Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

The suffix trie for w[1..1] = a is 
complete. 
We move the star to the leaf 
which represents w[1..1] = a.

a
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Online Construction of Suffix Tries
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We are looking for an edge 
labeled w[3] = a. 
Using a BST for branching edges, 
we can find it in O(log σ) time.
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Online Construction of DAWGs
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Instead of making a new edge 
with a new leaf, we create a new 
edge which leads to the sink node.

This corresponds to merging 
nodes of the suffix trie!
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w[6] = b?
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a

Σ

b
b

b

c

c

c

b

b is a suffix of w[1..6] = ababcb,
but ab isn’t.
So, node {ab, b} must be split.

The DAWG of string w is the smallest
automaton that recognizes all suffixes of w.

Theorem 1
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b

The suffix link of old node 
{ab, b} is inherited by the 
new node {b}.
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The suffix link from the other 
node {ab} points to the new 
node {b}.
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b

To keep the path for babcb
and bcb from node {b}, we 
copy the out-edges of node
{ab}. 

a
c
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a
c

The DAWG for string
ababcb is complete. 



Node Split is Essential

ababcbd

a

a

Σ

b
b

b

c

c

c

b

d

What would happen 
if we did not split the 

node {ab, b} ?



Node Split is Essential

ababcbd

a

a

Σ

b
b

b

c

c

c

b

d

d

Now the DAG has a path for 
abd, but this does not 
appear in string ababcbd!



Online Construction of DAWGs

 Clearly, the amount of work is proportional to
the numbers of nodes, edges, and suffix links
in the DAWG, each of which is O(n).

 The log 𝜎𝜎 factor is to maintain BSTs for searching 
branches.

Theorem 6

The DAWG of a given string of length n
can be constructed online (left-to-right) 
in O(n log 𝜎𝜎) time, where 𝜎𝜎 = |Σ|.



Left-to-right Construction of DAWG
⇒ Right-to-left Construction of Suffix Tree

Corollary 3

The suffix tree of a given string of length n
can be constructed online (right-to-left) 
in O(n log 𝜎𝜎) time.

 Immediate from Theorem 6.
 This corollary generalizes Weiner’s 

right-to-left suffix tree construction.



DAWG Construction for Integer Alphabets

 Build the suffix tree of w with suffix links
in O(n) time [Farach-Colton et al., 2000].

 Build DAWG with suffix links from suffix tree.

 Edges can be sorted in O(n) time by bucket sort.

Theorem 7

The edge-sorted DAWG of a given string 
w of length n over an integer alphabet 
Σ = {1, …, nO(1)} can be constructed 
in O(n) time.



Recommended Reading (1/3)

 “The Smallest Automaton Recognizing the 
Subwords of a Text”, Blumer et al., TCS, 1985.

 Introduced DAWGs.
 Duality with suffix trees.
 Online O(n log σ)-time DAWG construction algorithm.

 Text Algorithms, Crochemore & Rytter, 
Oxford University Press, 1994.

 Text book. Chapter 6 is devoted for DAWGs.
 Free(!) copy is available online at

http://www.mimuw.edu.pl/~rytter/BOOKS/text-algorithms.pdf



Recommended Reading (2/3)

 “Automata and Forbidden Words”, 
Crochemore et al., IPL, 1998.

 DAWG-based O(σ n)-time algorithm for finding all MAWs.

 “Linear-Time Sequence Comparison Using Minimal 
Absent Words & Applications”, 
Crochemore et al., LATIN, 2016.

 String similarity measure based on MAWs.



Recommended Reading (3/3)

 “Computing DAWGs and Minimal Absent Words 
in Linear Time for Integer Alphabets”, 
Fujishige et al., MFCS, 2016 (to appear).

 Offline O(n)-time DAWG construction algorithm 
for integer alphabets of size nO(1).

 O(n + |MAWw|)-time algorithm for finding all MAWs.

 “Fully-online Construction of Suffix Trees for 
Multiple Texts”, Takagi et al., CPM, 2016.

 Fully-online O(n log σ) -time DAWG construction 
algorithm for multiple strings.
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