
The myriad virtues of DAWGs

Shunsuke Inenaga
Kyushu University, Japan

Summer School @ U. Helsinki, 2016

Overview of This Course

 Suffix tree [Weiner, 1973] is a fundamental data
structure for string processing.

 “The myriad virtues of subword trees”
[Apostolico, 1985]

 Directed acyclic word graph (DAWG)
[Blumer et al., 1985] is a “dual” data structure
for suffix tree.

 In this course, we study some nice properties
and usefulness of DAWGs.

Relation to Previous Course

 This course will share some consequences
with the previous course by Djamal & Fabio.

 This happens due to the “duality” between
DAWGs and suffix trees, i.e., we will see
“the same coin from both sides”.

c
o

c
o

a
a

o

a
c

o
a

a

c
o

c
o

a a

o

a
c

o
a

a

c
o o

a
c
o
a

a

c

o
o

a

c

o

a

a

Suffix Trie

Suffix Tree
Directed Acyclic
Word Graph

Compact Directed Acyclic
Word Graph

Compaction

Compaction
Minimization

Minimization

Text: cocoa

Text Indexing Structures

c
o

c
o

a
a

o

a
c

o
a

a

c
o

c
o

a a

o

a
c

o
a

a

c
o o

a
c
o
a

a

c

o
o

a

c

o

a

a

Suffix Trie

Suffix Tree
Directed Acyclic
Word Graph

Compact Directed Acyclic
Word Graph

Compaction

Compaction
Minimization

Minimization

Text: cocoa

Text Indexing Structures

c
a

b

a

b

c

b

b

b

c

b

ababcb

a

b

c

b

c

b

accepting nodes for suffixes

From Suffix Trie to DAWG

Merge isomorphic
subtrees (subgraphs)
bottom up.

c
a

b

a

b

c

b

b

b

c

b

ababcb

a

b

c

b

c

b

accepting nodes for suffixes

From Suffix Trie to DAWG

Merge isomorphic
subtrees (subgraphs)
bottom up.

c
a

b

a

b

c

b

b

b

c

b

ababcb

a

b

c

b

c

b

accepting nodes for suffixes

From Suffix Trie to DAWG

c
a

b

a

b

c

b

b

b

c

b

ababcb

a

b

c

b

c

b

accepting nodes for suffixes

From Suffix Trie to DAWG

Merge isomorphic
subtrees (subgraphs)
bottom up.

c
a

b

a

b

c

b

b

c

ababcb

a

b

c

c

accepting nodes for suffixes

From Suffix Trie to DAWG

c
a

b

a

b

c

b

b

c

ababcb

a

b

c

c

accepting nodes for suffixes

From Suffix Trie to DAWG

Merge isomorphic
subtrees (subgraphs)
bottom up.

c
a

b

a

b

c

b

b

c

ababcb

a

b

c

accepting nodes for suffixes

From Suffix Trie to DAWG

c
a

b

a

b

c

b

b

c

ababcb

a

b

c

accepting nodes for suffixes

From Suffix Trie to DAWG

Merge isomorphic
subtrees (subgraphs)
bottom up.

c
a

b

a

b

c

b

b

c

ababcb

a
c

accepting nodes for suffixes

From Suffix Trie to DAWG

c
a

b

a

b

c

b

b

c

ababcb

a
c

accepting nodes for suffixes

?
?

From Suffix Trie to DAWG

One is accepting state,
while the other isn’t.
Don’t merge them.

c
a

b

a

b

c

b

b

c

ababcb

a
c

accepting nodes for suffixes

DAWG of string
ababcb

From Suffix Trie to DAWG

Minimality of DAWG

 Clearly, the suffix trie of w recognizes all
suffixes of w, so does the DAWG of w.

 By construction, the DAWG is the smallest
such automaton.

The DAWG of string w is the smallest
automaton that recognizes all suffixes of w.

Theorem 1

Suffix Links of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

For letter a and string x,
suffix link from node ax is
labeled a and goes to node x.a

Suffix Links of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

For letter a and string x,
suffix link from node ax is
labeled a and goes to node x.a

b

Suffix Links of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

For letter a and string x,
suffix link from node ax is
labeled a and goes to node x.a

b

a

b

c

b

Suffix Links of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Every suffix link path reaches
the root.

a

b

c

a

b

Suffix Link Tree of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

The suffix links form a tree
(suffix link tree).

a

b

c

a

b

a

b

a

b

c

b

b

a

a

a

a

Suffix Link Tree of Suffix Trie

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Suffix Trie of ababcb Suffix Link Tree of ababcb

a

b

a

b

b

c

c

a

b

a

b

a

b

a

a

a

b

Suffix Link Tree = Suffix Trie of reverse

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Suffix Trie of ababcb

a

b

a

b

b

c

c

a

b

a

b

a

b

a

a

a

b

Suffix Trie of bcbaba

Suffix Link Tree = Suffix Trie of reverse

 For any node of the suffix trie of w which
represents substring x of w, the node represents
subtring xR of wR in the suffix link tree.

The suffix link tree of the suffix trie of string w
forms the suffix trie of reversed string wR.

Lemma 1

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

a

b

a

b

c

b

Merged nodes are
connected by a chain
of suffix links.

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

a
b

a

b

c

b

When merging nodes,
we also contract
the suffix links.

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

a
b

a

b

c

b

When merging nodes,
we also contract
the suffix links.

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

a
b

a
b

c

b

When merging nodes,
we also contract
the suffix links.

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

b

a

b

a

b

c

When merging nodes,
we also contract
the suffix links.

c
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Node Merges and Suffix Links

b

a

b

a

b

c

This is the suffix link
of this DAWG node.

ca

b

a

b

c

b

b

c
a

c

Suffix Links of DAWG
b

a
b

a
b
c

a

a
b

a
b

ca

a
b

a
b

The suffix links of DAWG
also forms a tree.

ca

b

a

b

c

b

b

c

Suffix Links of DAWG
b

a
b

a
b
c

a

a
b
a

b
ca

a
b

a
b

DAWG of ababcb

a
b
a
b

b

c

c

a
b

a
b

a
b

a

a

Contracted SLT of ababcb

a
ba

c

ca

b

a

b

c

b

b

c

SLT of DAWG = Suffix Tree of reverse
b

a
b

a
b
c

a

a
b
a

b
ca

a
b

a
b

DAWG of ababcb

a
b
a
b

b

c

c

a
b

a
b

a
b

a

a

Suffix Tree of bcbaba

a
ba

c

ca

b

a

b

c

b

b

c

SLT of DAWG = Suffix Tree of reverse
b

a
b

a
b
c

a

a
b
a

b
ca

a
b

a
b

DAWG of ababcb

a
b
a
b

b

c

c

a
b

a
b

a
b

a

a

Suffix Tree of bcbaba

a
b

Accepting nodes
for suffixes of
reversed string

a

c

SLT of DAWG = Suffix Tree of reverse

Theorem 2

The suffix link tree of the DAWG of string w
forms the suffix tree of reversed string wR.

 Contracting suffix links during node merges
is equivalent to contracting non-branching
paths of the suffix trie of wR.

Number of Nodes of DAWG

Corollary 1

The number of nodes of the DAWG of
any string of length n is at most 2n-1.

 Immediate from Theorem 2.

Number of Edges of DAWG

Lemma 2

The number of edges of the DAWG of
any string of length n is at most 3n-3.

Number of Edges of DAWG
Proof.
 Consider any spanning tree T of the DAWG.

c

cccba b

b
cb

c c
b

Number of Edges of DAWG
Proof.
 Consider any spanning tree T of the DAWG.

c

cccba b

b
cb

c c
b

Number of Edges of DAWG
Proof.
 Because the DAWG has at most 2n-1 nodes,

the spanning tree T contains at most 2n-2 edges.

Next, we count the number of edges outside T.

c

cccba b

b
cb

c c
b

Number of Edges of DAWG
Proof.
 For any edge e outside T, we consider path xay,

where x is the path from the root to e, a is the
label of e, and y is any path after e such that
xay is a suffix of w.

c

cccba b

b
cb

c c
b

Number of Edges of DAWG
Proof.
 For any edge e outside T, we consider path xay,

where x is the path from the root to e, a is the
label of e, and y is any path after e such that
xay is a suffix of w.

c

cccba b

b
cb

c c
b

a

Number of Edges of DAWG
Proof.
 For any edge e outside T, we consider path xay,

where x is the path from the root to e, a is the
label of e, and y is any path after e such that
xay is a suffix of w.

c

cccba b

b
cb

c c
b

x
a

y

Number of Edges of DAWG
Proof.
 This maps the edge e to the suffix xay of w.

Moreover, any other edge outside the spanning
tree T cannot be mapped to the same suffix xay.

c

cccba b

b
cb

c c
b

x
a

y

Number of Edges of DAWG
Proof.
 Hence the mapping is injective.

Since the spanning tree contains at least one
suffix of w, there can be at most n-1 suffixes
to which the edges outside T can be mapped.

c

cccba b

b
cb

c c
b

Number of Edges of DAWG
Proof.
 Therefore, the number of edges outside T

is at most n-1. Overall, DAWG has at most
(2n-2)+(n-1) = 3n-3 edges.

c

cccba b

b
cb

c c
b

The size of DAWG

Theorem 3

The DAWG of any string of length n
has at most 2n-1 nodes and 3n-3 edges.

 Note: The bound for the number of edges can
further be shaved to 3n-4, and it is tight, i.e.,
the DAWG of string abn-2c contains 3n-4 edges.

Properties of DAWG nodes

 This is true because we merged nodes of the
suffix trie of w iff they have isomorphic subtrees
(hence, the same sets of ending positions).

Lemma 3
Two strings x and y are represented by
the same node of the DAWG of w
iff x and y end at the same positions in w.

Properties of DAWG nodes

ca

b

a

b

c

b

b

c

DAWG of ababcb

a
c

1 2 3 4 5 6

aba
ba

Properties of DAWG nodes

ca

b

a

b

c

b

b

c

DAWG of ababcb

a
c

1 2 3 4 5 6

ababc
babc

abc
bc

c

Properties of DAWG nodes

ca

b

a

b

c

b

b

c

DAWG of ababcb

a
c

1 2 3 4 5 6

b

Connection with Weiner Links

Corollary 2

The DAG consisting of the explicit and implicit
Weiner links of the suffix tree of string w is the
DAWG of the reversed string wR.

Connection with Weiner Links

w x x x yy aa

STree(w)
x

x
y

a

a

Connection with Weiner Links

w x x x yy aa

STree(w)
x

x
y

a

a
… …

Connection with Weiner Links

wRx x x yy aa

STree(w)
x

x
y

a

a
… …

Applications of DAWGs (Incomprehensive)
 Bidirectional pattern matching [Folklore]
 Approximate pattern matching

[Ukkonen & Wood, 1993]
 Pattern matching with variable-length don’t cares

[Kucherov & Rusinowitch, 1997]
 Finding minimal absent words

[Crochemore et al., 1998, 2015, Fujishige et al. 2016]
 Compact online Lempel Ziv 77 factorization

[Yamamoto et al., 2014]
 Finding α-gapped repeats [Tanimura et al., 2015]
 Finding maximal-exponent substring in

overlap-free string [Badkobeh & Crochemore, 2016]

Applications of DAWGs (Incomprehensive)
 Bidirectional pattern matching [Folklore]
 Approximate pattern matching

[Ukkonen & Wood, 1993]
 Pattern matching with variable-length don’t cares

[Kucherov & Rusinowitch, 1997]
 Finding minimal absent words

[Crochemore et al., 1998, 2015, Fujishige et al. 2016]
 Compact online Lempel Ziv 77 factorization

[Yamamoto et al., 2014]
 Finding α-gapped repeats [Tanimura et al., 2015]
 Finding maximal-exponent substring in

overlap-free string [Badkobeh & Crochemore, 2016]

Minimal Absent Words

 A string y is said to be a minimal absent
word (MAW) of a string w, if

1. y does not occur in w, but
2. proper substrings of y occur in w.

 E.g.) If w = abaab and Σ = {a, b}, then
the MAWs of w are aaa, aaba, bab, bb.

 MAWs can be used to build phylogeny
[Chairungsee & Crochemore, 2012].

Minimal Absent Words

 For a node u of the DAWG of w, let x be
the shortest string represented by u.

 Let v = suf_link(u) .

 Then, xb (b ∈ Σ) is a MAW of w iff
1. there is no out-edge from u labeled b, and
2. there is an out-edge from v labeled b.

Minimal Absent Words

x

x[2..|x|]

u

v

a

c

a

bc

 xb does not occur in w, and
 both x and x[2..|x|]b occur in w.
⟺ xb is a MAW of w.

Minimal Absent Words

x

x[2..|x|]

u

v

a

c

a

bc

x

x[2..|x|]

 xb does not occur in w, and
 both x and x[2..|x|]b occur in w.
⟺ xb is a MAW of w.

MAW Computation with DAWG

 For each node of the DAWG of w,
it is sufficient to test at most σ letters.

 The DAWG of w has O(n) nodes.

Theorem 4

Using the DAWG of string w, we can
compute all MAWs of w in O(σn) time.

σ = |Σ | , n = |w |

Faster MAW Computation with DAWG

 Testing out-edges of u and v can be
charged to either existing edges or
MAWs to output.

Theorem 5

Using the edge-sorted DAWG of string w,
we can compute all MAWs of w in
optimal O(n+|MAWw|) time.

Direct Construction of DAWGs

 Since the suffix trie of string of length n
can contain Ω(n2) nodes, converting the
suffix trie into the DAWG takes O(n2) time.

 Can we construct DAWGs directly?

Online Construction of DAWGs

 We incrementally build the DAWG of w[1..i]
for increasing i = 1, …, n (left-to-right online).

 The DAWG is annotated with suffix links.
 The log 𝜎𝜎 factor is the cost to sort and search

branching edges.

Theorem 6

The DAWG of a given string w of length n
can be constructed online in O(n log 𝜎𝜎)
time, where 𝜎𝜎 is the alphabet size.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

When a new letter w[i] arrives,
we begin with the node which
represents w[1..i-1].

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

If we cannot traverse from the
star with new character w[1] = a,
create a new edge labeled a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ
a

If we cannot traverse from the
star with new character w[1] = a,
create a new edge labeled a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

Then, we move the star via the
suffix link, and check whether
we can traverse with a.

a

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ
a

Then, we move the star via the
suffix link, and check whether
we can traverse with a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ
a

Then, we move the star via the
suffix link, and check whether
we can traverse with a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ
a

Then, we move the star via the
suffix link, and check whether
we can traverse with a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ
a

Then, we move the star via the
suffix link, and check whether
we can traverse with a.

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

After a successful move of the
star, we create the suffix link
from the new leaf to the node
where the star has arrived.

a

Online Construction of Suffix Tries

 Before going to online construction of DAWGs,
we consider online construction of suffix tries.

ababcbΣ

The suffix trie for w[1..1] = a is
complete.
We move the star to the leaf
which represents w[1..1] = a.

a

Online Construction of Suffix Tries

ababcb
a

Σ

Online Construction of Suffix Tries

ababcb
a

b

Σ

Online Construction of Suffix Tries

ababcb
a

b

Σ

Online Construction of Suffix Tries

ababcb
a

b

Σ

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

We have two new leaves for ab
and b. We create the suffix link
from ab to b.

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

We are looking for an edge
labeled w[3] = a.
Using a BST for branching edges,
we can find it in O(log σ) time.

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcb
Σ

a

b

b

a

a

Online Construction of Suffix Tries

ababcbc
a

b

a

b

c

b

b

b

c

b

a

b

c

b

c

b

Σ

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

 Online DAWG construction follows
the approach of online suffix trie construction.

ababcbΣ
a

Online Construction of DAWGs

ababcb
a

Σ

b

Online Construction of DAWGs

ababcb
a

Σ

b

Online Construction of DAWGs

ababcb
a

Σ

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Instead of making a new edge
with a new leaf, we create a new
edge which leads to the sink node.

This corresponds to merging
nodes of the suffix trie!

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

c

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

c

Online Construction of DAWGs

ababcb
a

Σ

b
b

a

b

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

Is that all for
w[6] = b?

a

Online Construction of DAWGs

ababcb
a

Σ

b
b

b

c

c

c

b

b is a suffix of w[1..6] = ababcb,
but ab isn’t.
So, node {ab, b} must be split.

The DAWG of string w is the smallest
automaton that recognizes all suffixes of w.

Theorem 1

a

Online Construction of DAWGs

ababcb
a

Σ

b

b

b

c

c

c

b

The suffix link of old node
{ab, b} is inherited by the
new node {b}.

a

Online Construction of DAWGs

ababcb
a

Σ

b

b

b

c

c

c

b

The suffix link from the other
node {ab} points to the new
node {b}.

a

Online Construction of DAWGs

ababcb
a

Σ

b

b

b

c

c

c

b

To keep the path for babcb
and bcb from node {b}, we
copy the out-edges of node
{ab}.

a
c

a

Online Construction of DAWGs

ababcb
a

Σ

b

b

b

c

c

c

b

a
c

The DAWG for string
ababcb is complete.

Node Split is Essential

ababcbd

a

a

Σ

b
b

b

c

c

c

b

d

What would happen
if we did not split the

node {ab, b} ?

Node Split is Essential

ababcbd

a

a

Σ

b
b

b

c

c

c

b

d

d

Now the DAG has a path for
abd, but this does not
appear in string ababcbd!

Online Construction of DAWGs

 Clearly, the amount of work is proportional to
the numbers of nodes, edges, and suffix links
in the DAWG, each of which is O(n).

 The log 𝜎𝜎 factor is to maintain BSTs for searching
branches.

Theorem 6

The DAWG of a given string of length n
can be constructed online (left-to-right)
in O(n log 𝜎𝜎) time, where 𝜎𝜎 = |Σ|.

Left-to-right Construction of DAWG
⇒ Right-to-left Construction of Suffix Tree

Corollary 3

The suffix tree of a given string of length n
can be constructed online (right-to-left)
in O(n log 𝜎𝜎) time.

 Immediate from Theorem 6.
 This corollary generalizes Weiner’s

right-to-left suffix tree construction.

DAWG Construction for Integer Alphabets

 Build the suffix tree of w with suffix links
in O(n) time [Farach-Colton et al., 2000].

 Build DAWG with suffix links from suffix tree.

 Edges can be sorted in O(n) time by bucket sort.

Theorem 7

The edge-sorted DAWG of a given string
w of length n over an integer alphabet
Σ = {1, …, nO(1)} can be constructed
in O(n) time.

Recommended Reading (1/3)

 “The Smallest Automaton Recognizing the
Subwords of a Text”, Blumer et al., TCS, 1985.

 Introduced DAWGs.
 Duality with suffix trees.
 Online O(n log σ)-time DAWG construction algorithm.

 Text Algorithms, Crochemore & Rytter,
Oxford University Press, 1994.

 Text book. Chapter 6 is devoted for DAWGs.
 Free(!) copy is available online at

http://www.mimuw.edu.pl/~rytter/BOOKS/text-algorithms.pdf

Recommended Reading (2/3)

 “Automata and Forbidden Words”,
Crochemore et al., IPL, 1998.

 DAWG-based O(σ n)-time algorithm for finding all MAWs.

 “Linear-Time Sequence Comparison Using Minimal
Absent Words & Applications”,
Crochemore et al., LATIN, 2016.

 String similarity measure based on MAWs.

Recommended Reading (3/3)

 “Computing DAWGs and Minimal Absent Words
in Linear Time for Integer Alphabets”,
Fujishige et al., MFCS, 2016 (to appear).

 Offline O(n)-time DAWG construction algorithm
for integer alphabets of size nO(1).

 O(n + |MAWw|)-time algorithm for finding all MAWs.

 “Fully-online Construction of Suffix Trees for
Multiple Texts”, Takagi et al., CPM, 2016.

 Fully-online O(n log σ) -time DAWG construction
algorithm for multiple strings.

	The myriad virtues of DAWGs
	Overview of This Course
	Relation to Previous Course
	Text Indexing Structures
	Text Indexing Structures
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	From Suffix Trie to DAWG
	Minimality of DAWG
	Suffix Links of Suffix Trie
	Suffix Links of Suffix Trie
	Suffix Links of Suffix Trie
	Suffix Links of Suffix Trie
	Suffix Link Tree of Suffix Trie
	Suffix Link Tree of Suffix Trie
	Suffix Link Tree = Suffix Trie of reverse
	Suffix Link Tree = Suffix Trie of reverse
	Node Merges and Suffix Links
	Node Merges and Suffix Links
	Node Merges and Suffix Links
	Node Merges and Suffix Links
	Node Merges and Suffix Links
	Node Merges and Suffix Links
	Suffix Links of DAWG
	Suffix Links of DAWG
	SLT of DAWG = Suffix Tree of reverse
	SLT of DAWG = Suffix Tree of reverse
	SLT of DAWG = Suffix Tree of reverse
	Number of Nodes of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	Number of Edges of DAWG
	The size of DAWG
	Properties of DAWG nodes
	Properties of DAWG nodes
	Properties of DAWG nodes
	Properties of DAWG nodes
	Connection with Weiner Links
	Connection with Weiner Links
	Connection with Weiner Links
	Connection with Weiner Links
	Applications of DAWGs (Incomprehensive)
	Applications of DAWGs (Incomprehensive)
	Minimal Absent Words
	Minimal Absent Words
	Minimal Absent Words
	Minimal Absent Words
	MAW Computation with DAWG
	Faster MAW Computation with DAWG
	Direct Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of Suffix Tries
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Online Construction of DAWGs
	Node Split is Essential
	Node Split is Essential
	Online Construction of DAWGs
	Left-to-right Construction of DAWG�⇒ Right-to-left Construction of Suffix Tree
	DAWG Construction for Integer Alphabets
	Recommended Reading (1/3)
	Recommended Reading (2/3)
	Recommended Reading (3/3)

