
Combinatorial Methods for String and Graph

Combinatorial algorithms for
grammar-based text compression

Shunsuke Inenaga
Kyushu University, Japan

Agenda

• Highly Repetitive Strings

• Grammar-based String Compression

• Straight-Line Program (SLP)

• Compressed String Processing (CSP) on SLP

• Reviews on CSP Algorithms and Related Results

• Conclusions and Future Work

Highly Repetitive Strings (HRSs)

HRSs are strings that contain a lot of repeats.
Repeats may occur separately (not necessarily tandem).

Examples of HRSs are:
◦ Collection of DNA sequences of same species

(two human genomes are 99.9% same)
◦ Software repositories

(GitHub)
◦ Versioned documents

(Wikipedia)
◦ Transaction logs

ID DNA sequences

1 CATCTCCATCATCACCACCCTCCTCCTCAT...

2 CATCCCCATCATCACCACCCTCCTCCTCAT...

3 CATCTCCATCATCACTACCCTCCTCCTCAT...

4 CATCTCCATAATCACCACCCTCCTCCTCAT...

5 CATCTCCATCATCACCACCCTCCTACTCAT...

6 CATCTCCATCAACACCACCCTCCTCCTTAT...

・・・ ・・・

Statistical Compressors vs. HRS
Hk : k-th order empirical entropy (k < N)

S a y _ i t _ a g a i n _ p l z _ ?

1101001100010000010010110101100

NHk bits

N characters

The k-th order empirical entropy Hk captures
the dependence of symbols upon their k-long
context.

Statistical Compressors vs. HRS

S a y _ i t _ a g a i n _ p l z _ ?

The k-th order entropy model does not capture
repetitiveness very well [Kreft & Navarro 2013].

1101001100010000010010110101100 1101001100010000010010110101100

NHk bits

N characters

NHk bits

Compressed size ≈ 2NHk bits

But obviously, the above repetitive string
can be represented with NHk+O(1) bits!

N characters

S a y _ i t _ a g a i n _ p l z _ ?

Derives
only w

Grammar-based Compression [Keiffer & Yang 2000]

abbbaabbaabbbaabbbbbabbb

Grammar Transform

Encoding

0100010100010110101011101010110

S → ACBBEA
A → Db
B → Cb
C → aD
D → aE
E → bb

String w

CFG G

Encoding for G

Grammar-compression in the
Chomsky normal form is called
an SLP (Straight Line Program)

Derives
only w

abbbaabbaabbbaabbbbbabbb

Grammar Transform

Encoding

0100010100010110101011101010110

S → ACBBEA
A → Db
B → Cb
C → aD
D → aE
E → bb

String w

CFG G

Encoding for G

Grammar-compression in the
Chomsky normal form is called
an SLP (Straight Line Program)

This Talk

Grammar-based Compression [Keiffer & Yang 2000]

Straight Line Program (SLP)

An SLP is a sequence of n productions

X1 expr1, X2 expr2, ···, Xn exprn

• expri = a (a ∈ Σ)
• expri = Xl Xr (l, r < i)

 SLP is a widely accepted model for the outputs of
grammar-based compressors.

 The size of the SLP is the number n of productions.

SLP is grammar-compression
in the Chomsky normal form.

SLP S

X7 → X5 X6
X6 → X5 X4
X5 → X3 X4
X4 → X1 X2
X3 → X1 X1
X2 → b
X1 → a

Example of SLP

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1 1 2

4

Derivation tree T of SLP S

string represented by SLP S

5

DAG for SLP S Derivation tree T of SLP S

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

DAG view of SLP

 This DAG is equivalent to the set of productions.

DAG for SLP S Derivation tree T of SLP S

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

DAG view of SLP

 Grammar-based compression captures
repetitiveness in the string.

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

DAG view of SLP
DAG for SLP S Derivation tree T of SLP S

 Grammar-based compression captures
repetitiveness in the string.

Grammar-based Compressors
Computing the smallest grammar is NP-hard [Storer 1978].

O(log(N/g)) approximation (g is the smallest grammar size)
◦ AVL grammar [Rytter 2003]
◦ α-balanced grammar [Charikar et al. 2005]
◦ Recompression [Jez 2015]

Greedy Algorithms
◦ LZ78 [Ziv & Lempel 1978]
◦ Re-Pair [Larsson & Moffat 2000]
◦ Longest Match [Nakamura et al. 2009]

Locally Consistent Parsing
◦ ESP-grammar [Sakamoto et al. 2009]
◦ Recompression [Jez 2015]

Note: This list is far from
being comprehensive.

Grammar-based Compressors
Computing the smallest grammar is NP-hard [Storer 1978].

O(log(N/g)) approximation (g is the smallest grammar size)
◦ AVL grammar [Rytter 2003]
◦ α-balanced grammar [Charikar et al. 2005]
◦ Recompression [Jez 2015]

Greedy Algorithms
◦ LZ78 [Ziv & Lempel 1978]
◦ Re-Pair [Larsson & Moffat 2000]
◦ Longest Match [Nakamura et al. 2009]

Locally Consistent Parsing
◦ ESP-grammar [Sakamoto et al. 2009]
◦ Recompression [Jez 2015]

Best compression
ratio in practice

Note: This list is far from
being comprehensive.

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair [Larsson & Moffat 2000]

S S X X X5 5 3

X 5 X 5 X 3 X 5 X 4 y

X 4 y X 4 y 4 3X 3 X X x

X 3 x y X 3 x y X 3 X 3 X 2 d

X 2 2 1 X c

X 1

d x y X 2

c d x y X 1

d x y X 2 d X

c d x y X1 c d X1 a b

a b c d x y a b c d x y a b c dw =

Recursively replaces the most frequently occurring bigram
with a new non-terminal (ties are broken arbitrarily).

Re-Pair vs Empirical Entropy Hk

Re-Pair outperforms Hk on real-world repetitive strings.
File Re-Pair H0 H4 H8

DNA sequences
(influenza) 3.31% 24.63% 23.88% 13.25%

Source Codes
(kernel) 1.13% 67.25% 19.25% 7.75%

Wikipedia
(Einstein) 0.10% 62.00% 13.25% 3.50%

Documents
(CIA world leaders) 1.78% 43.38% 7.63% 3.13%

This is a part of results reported in the statistics on Pizza and Chile highly-repetitive corpus.
http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf

Approximation to Smallest Grammar

Compressors Upper bound Lower bound
Re-Pair O((N / log N)2/3) [1] Ω(log N / loglog N) [2]

LongestMatch O((N / log N)2/3) [1] Ω(loglog N) [1]

Greedy O((N / log N)2/3) [1] > 1.37... [1]

LZ78 O((N / log N)2/3) [1] Ω((N / log N)2/3) [2]

AVL-grammar O(log(N / g)) [3] -
α-balanced grammar O(log(N / g)) [2] -
Recompression O(log(N / g)) [4] -
ESP-grammar O(log2N log*N) [5][6] -

Approximation ratios of grammar-based compressors
to the smallest grammar of size g

[1] Charikar et al. 2005, [2] Bannai et al. 2020, [3] Rytter 2003, [4] Jez 2015,
[5] Sakamoto et al. 2009, [6] I & Takabatake (personal communication)

Approximation to Smallest Grammar

Compressors Upper bound Lower bound
Re-Pair O((N / log N)2/3) [1] Ω(log N / loglog N) [2]

LongestMatch O((N / log N)2/3) [1] Ω(loglog N) [1]

Greedy O((N / log N)2/3) [1] > 1.37... [1]

LZ78 O((N / log N)2/3) [1] Ω((N / log N)2/3) [2]

AVL-grammar O(log(N / g)) [3] -
α-balanced grammar O(log(N / g)) [2] -
Recompression O(log(N / g)) [4] -
ESP-grammar O(log2N log*N) [5][6] -

Approximation ratios of grammar-based compressors
to the smallest grammar of size g

[1] Charikar et al. 2005, [2] Bannai et al. 2020, [3] Rytter 2003, [4] Jez 2015,
[5] Sakamoto et al. 2009, [6] I & Takabatake (personal communication)

We still do not know which
one is the best in theory.

Compressed String Processing (CSP)

compressed data

decompress

directly process

process

outputoriginal data

compressed data output

Naive

CSP

Techniques that perform various operations on
compressed data without decompression.

Merits of CSP
 Memory saving
 Faster computation

CSP on SLP

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

N

n h

The values of n and h vary depending on the
grammar compressor that was used for producing SLP.

We wish to design CSP algorithms that can work
on any SLP, independently of the compressor.

X7 → X5 X6
X6 → X5 X4
X5 → X3 X4
X4 → X1 X2
X3 → X1 X1
X2 → b
X1 → a

CSP on SLP

For any SLP, log2 N ≤ h ≤ n always holds. N ∈ O(2n).
Therefore, CSP algorithms that run in time & space
O(poly(n)polylog(N)) are interesting and can be useful.

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

N

n h

X7 → X5 X6
X6 → X5 X4
X5 → X3 X4
X4 → X1 X2
X3 → X1 X1
X2 → b
X1 → a

(Incomplete) List of Known Results on CSP for SLPs

Fully Compressed
Pattern Matching

[Karpinski et al. 1997]; [Miyazaki et al. 1997]
[Lifshits 2007]; [Jez 2015]

Text Indexing [Claude & Navarro 2012];
[Maruyama et al. 2013]; [Tsuruta et al. 2020];

Subsequence /
VLDC Pattern Matching

[Cegielski 2000]; [Tiskin 2009];
[Yamamoto et al. 2011]

Random Access /
Substring Extraction [Belazzougui et al. 2013]; [Bille et al. 2015]

Longest Common Extension [Karpinski et al. 1997]; [Miyazaki et al. 1997];
[Bille et al. 2016]; [Nishimoto et al. 2016]; [I 2017]

Longest Common Subsequence /
Edit Distance

[Tiskin 2007, 2008]; [Hermelin et al. 2009, 2011];
[Gawrychowski 2012]

Longest Common Substring [Matsubara et al. 2009]

String Regularities
(palindromes, repetitions etc.)

[Matsubara et al. 2009]; [Inenaga & Bannai 2012];
[I et al. 2015]

q-gram frequencies [Goto et al. 2012]; [Goto et al. 2013]; [Bille et al. 2014]

String Primitives

algorithm query time preprocess.
time

space

random access
[Bille et al. 2015] O(log N) O(n) O(n)

substring extraction
[Bille et al. 2015] O(m + log N) O(n) O(n)

LCE queries
[I 2017] O(log N) O(n + z log𝑁𝑁

𝑧𝑧
) O(n+z log𝑁𝑁

𝑧𝑧
)

• m is the length of the substring to extract.

• z is # of phrases in the LZ77 factorization.

Space complexities are evaluated
by the number of words (not bits)
unless otherwise stated.

Text Mining / String Comparison

algorithm time space
q-gram frequencies

[Goto et al. 2013] O(qn) O(qn)

most frequent substring
[Goto et al. 2013] O(n) O(n)

longest repeating substring
[Inenaga & Bannai 2012] O(n4 log n) O(n3)

longest common substring
[Matsubara et al. 2009] O(n4 log n) O(n3)

• q-gram is a string of length q.

String Regularities

algorithm time space
repetitions (runs)

[I et al. 2015] O(n3h) O(n2)

palindromes
[Matsubara et al. 2009] O(nh(n+h log N)) O(n2)

gapped palindromes
[I et al. 2015] O(nh(n2 + g log N)) O(n(n+g))

periods [I et al. 2015] O(n2h) O(n2)
covers [I et al. 2015] O(nh (n + log2 N)) O(n2)

• g is the fixed gap length (usually a constant).

X4

Important Remark

 Derivation trees are used only for illustrative purposes,
and are not explicitly constructed in CPS algorithms.

 CSP on SLPs can be seen as algorithmic technique
that performs various kinds of operations
on the DAG for SLP, not on the derivation tree.

21

6

1
4

1
3

a a a b a b

5

1 2

4

X6

X5

Problem (q-gram frequencies on SLP)

q-gram Frequency on SLP

Given an SLP S which represents a string w
and a positive integer q, compute the number
of occurrences of all substrings of length q in w.

Compute # occurrences of
each length-q substring in string w.

w = ababbbbbabab

Lots of applications
for q-gram frequencies:
NLP, Bioinformatics,
Text Mining, etc.

Eg） 3-gram frequencies (q = 3)

aba 2
abb 1
bab 3
bba 1
bbb 3

input

output

Uncompressed q-gram Frequencies

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP
q = 3

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP
q = 3

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3
≥3

q = 3

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3

≥3
≥3

q = 3

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP Output (SApos, #occ)

<3

<3
≥3
≥3

(3, 3)

q = 3

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3

<3
≥3
≥3

(3, 3)

q = 3
Output (SApos, #occ)

Solution for Uncompressed String

 Given an uncompressed string w , we can solve the
q-gram frequencies problem in O(N) time,
by e.g. using the suffix array and LCP array of w.

abababa$
ababa$
aba$
a$
$

bababa$
baba$
ba$

8
7
5
3
1
6
4
2

-
0
1
3
5
0
2
4

SA LCP

<3
≥3

(3, 3)

(7, 2)

q = 3
Output (SApos, #occ)

3-gram frequencies
input output

CFG
deriving only w

S → BCCB
C → bb
B →AA
A → ab

q = 3

Directly
compute

aba 2
abb 1
bab 3
bba 1
bbb 3

Compressed q-gram Frequencies

Compute # occurrences of each length-q
substring in grammar-compressed string w.

Stabbing

21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

1 2 3 4 5 6 7 8 9 10

An integer interval [b, e] (1 ≤ b ≤ e ≤ N) is said to be
stabbed by a variable Xi , if the LCA of the bth and eth
leaves of the derivation tree T is labeled by Xi.

Observation

Xi

j

 Assume that the occurrence of a q-gram p starting
at position j is stabbed by an occurrence of Xi in T.

 Then clearly, in any other occurrence of Xi in T,
there is another stabbed occurrence of p.

j+q -1

T

p

Xi

p

Xi

pw

Sub-Problem 1

Sub-problems
 Hence, the q -gram frequencies problem on

SLP reduces to the following sub-problems:

For each variable Xi , count the number of
occurrences of Xi in the derivation tree T.

For each variable Xi , count the number of
occurrences of every q-gram stabbed by Xi.

Sub-Problem 2

Solving Sub-Problem 1

6

5
3 4

1 2

a b

Lemma

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

7

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

 The root occurs exactly once.

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.
1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

1

1

 For each node in a topological
order, propagate its number of
occurrences to its children.

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.
1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

2

1

1

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

 For each node in a topological
order, propagate its number of
occurrences to its children.

1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

2

1

32

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

 For each node in a topological
order, propagate its number of
occurrences to its children.

1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

2

1

32

4

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

 For each node in a topological
order, propagate its number of
occurrences to its children.

1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

2

1

32

7 3

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

 For each node in a topological
order, propagate its number of
occurrences to its children.

1

Lemma

Solving Sub-Problem 1

7
6

5
3 4

1 2

a b

1

2

1

32

7 3 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

We can count # of occurrences of every
variable Xi in the derivation tree T in O(n) time.

Lemma

Solving Sub-Problem 2

Xi

q

Xl Xr

For each variable Xi , count the number of
occurrences of every q-gram stabbed by Xi.

Sub-Problem 2

Solving Sub-Problem 2
Key Observation: Each variable Xi can stab
at most q-1 occurrences of q-grams.

Xi

q-1

Xl Xr

q

Solving Sub-Problem 2
 We “partially” decompress the substring

ti = Xl[|Xl|-q+2..|Xl|] Xr[1..q-1] of length 2q-2.

Xi

q-1 q-1

Xl Xr

ti

Solving Sub-Problem 2
 We “partially” decompress the substring

ti = Xl[|Xl|-q+2..|Xl|] Xr[1..q-1] of length 2q-2.

Xi

q-1 q-1

Xl Xr

ti

All q-grams stabbed
by Xi occur inside ti.

Solving Sub-Problem 2

For all variables Xi , we can count the number
of occurrences of every q-gram stabbed by Xi
in O(qn) time and space.

 For every variable Xi , the substring ti can be
computed in a total of O(qn) time, by a simple DP
(to be explained in the next slide).

Lemma

Solving Sub-Problem 2

 To compute ti, it is enough to compute
the prefix and suffix of length q-1 of each variable.

Xi

q-1 q-1

Xl Xr

ti

q-1q-1

Solving Sub-Problem 2

For all variables Xi , we can count the number
of occurrences of every q-gram stabbed by Xi
in O(qn) time and space.

 Then, we construct the suffix array and LCP array
for strings t1, ..., tn in O(|t1… tn|) ⊆ O(qn) time.

Lemma

Theorem [Goto et al. 2013]

q-gram Frequency on SLP

The problem of computing q-gram frequencies
on SLP can be solved in O(qn) time and space.

 Usually q is a small constant (from 2 to 4)
 In most practical situations,

this algorithm works in O(n) time & space.

 Decompression-then-compute method takes
O(N) ⊆ O(2n) time in the worst case.

Experimental Results

q
(1) Naive

O(qN) time
(2) SA

O(N) time
(3) Goto et al.

O(qn) time

2 22.9 41.7 6.5
3 55.7 41.7 11.0
4 93.3 41.7 16.3
5 129.3 41.7 21.3
6 158.7 41.7 25.8
7 181.1 41.7 30.1
8 198.3 41.9 34.2

Running time (sec.) on XML data (200MB)

Note: CSP algorithm by Goto et al. is the fastest
even if we subtract decompression times (3.6 sec.)
from (1) and (2), for all values of q tested here.

Goto et al.’s
method is by
far the fastest
for important
values of
q = 2..4.

Problem (finding repetitions from SLP)

Finding Repetitions from SLP

Given an SLP S which represents a string w,
compute all squares and runs that occur in w.

abbabbabbbabbbabbbac

squares
(of form xx)

runs
(maximal repetition xk x’)

Note: There are more squares

Stabbed Runs

 For each run in the string w, there is a unique
variable Xi that stabs the run.

T

w

Xi

Stabbed Runs [Cont.]

 In any other occurrences of Xi in the derivation
tree, the same run is stabbed by Xi.

T

w

Xi Xi

Stabbed Runs [Cont.]

 Computing runs in string w reduces to computing
the stabbed runs for each variable Xi.

T

w

Xi Xi

Stabbed Runs [Cont.]

 For each variable Xi , we first compute
(the beginning and ending positions of)
the stabbed squares.

Xi

Stabbed Runs [Cont.]

 We then determine how long the periodicity
continues to the right and to the left, using LCE.
 We can efficiently perform LCE without expanding Xi.

Xi

Stabbed Runs [Cont.]

 We then determine how long the periodicity
continues to the right and to the left, using LCE.
 We can efficiently perform LCE without expanding Xi.

Xi

Theorem [I et al. 2015]

Finding Repetitions on SLP

O(n log N)-size representation of all runs and
squares can be computed in O(n3h) time with
O(n2) working space.

 There are at most N-1 runs [Bannai et al. 2017].
 Naive representation of runs requires

O(N) ⊆ O(2n) space in the worst case.

 We can compactly represent all runs within
O(n log N) space using periodicities.

Finding Palindromes from SLP

Problem 5 (finding palindromes on SLP)

Given an SLP S which represents a string w,
compute all maximal palindromes of w.

abbbaabbbbabbbaab
maximal
palindromes

Finding Palindromes from SLP

abbbaabbbbabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP S which represents a string w,
compute all maximal palindromes of w.

maximal
palindromes

Finding Palindromes from SLP

abbbaabbbbabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP S which represents a string w,
compute all maximal palindromes of w.

maximal
palindromes

Finding Palindromes from SLP

abbbaabbbbabbbaab

Problem 5 (finding palindromes on SLP)

Given an SLP S which represents a string w,
compute all maximal palindromes of w.

maximal
palindromes

There are N integer positions and N-1 half-integer positions.
 There are 2N-1 maximal palindromes in a string of length N.

Stabbed Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 For each variable Xi, there can be 3 different types
of stabbed maximal palindromes.

Computing Type 1 Palindromes

Xi

Xl
Xr

a b

 Type 1 maximal palindromes of Xi can be
computed by extending the arms of the
suffix palindromes of Xl.

But there can be
too many (O(N))
suffix palindromes...

Lemma [Apostolico et al. 1995]

Suffix Palindromes

For any string of length N, the lengths of its
suffix palindromes can be represented by
O(log N) arithmetic progressions.

 We can extend the suffix palindromes belonging
to the same arithmetic progression in a batch.

 This batched LCE can be performed efficiently
using the periodicity of suffix palindromes.

a a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a

a b a b a b a

a b a b a

a b a

a

Batched LCE for Suffix Palindromes

For any string of length N, the lengths of
its suffix palindromes can be represented
by O(log N) arithmetic progressions.

Lemma [Apostolico et al. 1995]

a a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a

a b a b a b a

a b a b a

a b a

a

Batched LCE for Suffix Palindromes

For any string of length N, the lengths of
its suffix palindromes can be represented
by O(log N) arithmetic progressions.

Lemma [Apostolico et al. 1995]

G1

p1

a a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a

a b a b a b a

a b a b a

a b a

a

Batched LCE for Suffix Palindromes

For any string of length N, the lengths of
its suffix palindromes can be represented
by O(log N) arithmetic progressions.

Lemma [Apostolico et al. 1995]
G2

G1

p1

p2

a a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a a b a b a b a

a b a b a b a a b a b a b a

a b a b a b a

a b a b a

a b a

a

Batched LCE for Suffix Palindromes

For any string of length N, the lengths of
its suffix palindromes can be represented
by O(log N) arithmetic progressions.

Lemma [Apostolico et al. 1995]

G3

G2

G1

p1

p2

p3

Batched LCE for Suffix Palindromes

p

XiXl Xr

G (arithmetic progression)

Batched LCE for Suffix Palindromes

p

XiXl Xr

G (arithmetic progression)

Batched LCE for Suffix Palindromes

p

XiXl Xr

For each single arithmetic progression G,
three LCE queries are sufficient.

G (arithmetic progression)

Theorem [Matsubara et al. 2009]

Finding Palindromes on SLP

O(n log N)-size representation of all maximal
palindromes can be computed in
O(nh (n + h log N)) time using O(n2) space.

Finding Gapped Palindromes on SLP

Gi

Problem (finding gapped palindromes on SLP)

Given an SLP S which represents a string w
and a positive integer g, compute all
g-gapped palindromes that occur in w.

abababcbabaabbabca

3-gapped
palindromes
(g = 3)

Stabbed g-gapped Palindromes

XiXi

Type 1

Xi

Type 2 Type 3

 There are 3 types of g-gapped palindromes
which are stabbed by each variable Xi.

Theorem [I et al. 2015]

Finding Gapped Palindromes on SLP

O(n (log N+g))-size representation of
all g-gapped palindromes can be computed
in O(nh (n2 + g log N)) time using O(n2) space.

 Unfortunately, Apostolico et al.’s lemma does not
hold for gapped palindromes.

 Instead, we can use a similar technique to the
solution for computing stabbed squares.

More on LCE, height h, and Stabbing

We have seen that many of the CSP algorithms
on SLPs use

 LCE (Longest Common Extension) queries,

their efficiency depends on

 the height h of the derivation tree,

and their key concepts are

 stabbed occurrences at variable boundaries.

In the next slides, we will briefly review
the recent developments on these three concepts.

LCE (longest common extension) queries

 Recall that extension of periodicities (for runs)
and extension of arms (for palindromes) can be
efficiently computed by an LCE query on SLP.

 LCE(i, j) for string w returns the length of the
longest common prefix of w[i..N] and w[j..N].

w = abbabcbabaabbabca
3 13

LCE(3, 13) = 4

LCE on grammar-compressed string

Theorem [I 2017]

A data structure of size O(n + z log (N / z))
which answers LCE queries on SLP in O(log N) time
can be constructed in O(n log (N / n)) time.

I’s algorithm above uses a kind of locally consistent
parsing called Recompression [Jez 2015] that transforms
a given SLP into another small SLP of size O(z log (N / z)).

z = size of LZ77 factorization

LCE with Recompression

… a a b c d b b b a b a b c d …

… b c d e a b a b c …

… g e f f …
… g e …

In the grammar produced by Recompression, the
occurrences of the same substring are compressed
“almost” in the same way.

In each occurrence of a substring y, there is a unique
sequence of symbols called “common sequences”.

y

Common sequences for y

LCE with Recompression

LCE(i, j) can be computed by matching the
common sequences of the LCE sub-strings that
begin at positions i and j.
of traversed nodes is bounded by O(log N).

i j
w =

Balancing SLPs
 An SLP is said to be balanced if its height

h = O(log N).
 Given an SLP of size n, all existing approximation

algorithms to the smallest grammar
- AVL grammar [Rytter 2003];
- α-balanced grammar [Charikar et al. 2005];
- Recompression [Jez 2015];

are able to produce a balanced SLP.
But their grammar sizes blow up to O(g log(N/g)),
which can be larger than n when n is quite small.

Balancing SLPs [cont.]

 Recently, Ganardi et al. (FOCS 2019) showed how
to transform a given SLP of size n into a balanced
SLP of size O(n).

 New O(log N)-time random access and
O(m + log N)-time substring extraction
algorithms with O(n) space, which alternate
Bille et al.’s previous algorithms.

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

1 1

1 2 3 4 5 6 7 8 9 10

We precompute the decompression length
of every variable in a bottom-up manner.

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

1 1

22

1 2 3 4 5 6 7 8 9 10

We precompute the decompression length
of every variable in a bottom-up manner.

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

1 1

22
4

1 2 3 4 5 6 7 8 9 10

We precompute the decompression length
of every variable in a bottom-up manner.

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

1 1

22
4

6

1 2 3 4 5 6 7 8 9 10

We precompute the decompression length
of every variable in a bottom-up manner.

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

We precompute the decompression length
of every variable in a bottom-up manner.

1 1

22
4

6

10

1 2 3 4 5 6 7 8 9 10

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

1 2 3 4 5 6 7 8 9 10

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

7 < (4)+4

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

7 < (4)+4

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

7 < (4)+4
(4)+2 < 7

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

(4)+2 < 7
7 < (4)+4

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

7 < (6)+2(4)+2 < 7
7 < (4)+4

Balanced SLP Derivation Tree

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

O(log N)-time Random Access

For a given position i in w, we can random
access to the i-th char. in a top-down manner.

1 1

22
4

6

10

4

4 < 7

1 2 3 4 5 6 7 8 9 10

7 < (6)+2(4)+2 < 7
7 < (4)+4

Balancing SLPs [cont.]

 Recently, Ganardi et al. (FOCS 2019) showed how
to transform a given SLP of size n into a balanced
SLP of size O(n).

 New O(log N)-time random access and
O(m + log N)-time substring extraction
algorithms with O(n) space, which alternate
Bille et al.’s previous algorithms.

 In addition, every h term in the time complexity
for other operations on SLPs can be replaced
with log N.

String Attractors

A set Γ ⊆ {1, ..., N} of positions in a string w
of length N is called a string attractor of w,
if any substring y of w has an occurrence y = w[i..j]
that contains an element k of Γ (i.e. k ∈ [i..j]).

String Attractors [Kempa & Prezza 2017]

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

{1, 4, 7, 11, 12}

1 2 3 4 5 6 7 8 9 10 11 12
C D A B C C D A B C C A𝑤𝑤 =

C, D, A, B, CD, DA, AB, BC, CC, CA, CDA, DAB, ABC, BCC, CCD, CDA, CCA, CDAB,
DABC, ABCC, BCCD, CCDA, BCCA, CDABC, DABCC, ABCCD, BCCDA, CCDAB, ABCCA,
CDABCC, DABCCD, ABCCDA, BCCDAB, CCDABC, DABCCA, CDABCCD, DABCCDA,
ABCCDAB, BCCDABC, CCDABCC, CDABCCA, CDABCCDA, DABCCDAB, ABCCDABC,
BCCDABCC, CCDABCCA, CDABCCDAB, DABCCDABC, ABCCDABCC, BCCDABCCA,
CDABCCDABC, DABCCDABCC, ABCCDACCA, CDABCCDABCC, DABCCDABCCA,
CDABCCDABCCA

String Attractors

A set Γ ⊆ {1, ..., N} of positions in a string w
of length N is called a string attractor of w,
if any substring y of w has an occurrence y = w[i..j]
that contains an element k of Γ (i.e. k ∈ [i..j]).

String Attractors [Kempa & Prezza 2017]

 Every string w has a string attractor since
{1, ..., |w|} is clearly a string attractor of w.

 String Attractors generalize to the notion of
“stabbing” by SLP boundaries.

DAG for SLP S Derivation tree T of SLP S

7
6

5
3 4

1 2 21

6
7

a a a b

1
4

1
3

a a a b a b

5

1 2
4

1
3

1

5

1 2

4

a b

SLP as String Attractor

String Attractor as Lower Bound for SLP size

Theorem

Let γ = the smallest string attractor size,
z = # phrases in the LZ77 factorization,
g = the smallest SLP size, for the same string w.
Then, γ ≤ z ≤ g holds.

 γ ≤ g because any substring of w must be stabbed
by at least one variable of the SLP.

 γ ≤ z follows from similar arguments.
 z ≤ g was proved in the literature [Rytter 2003].

Indexing with String Attractor Space

Theorem [Ettienne et al. 2020 (arXiv)]
There exist compressed indexing structures
that perform pattern matching queries
in O(m+(occ+1)logεN) time with O(γ log(N/γ)) space, or
in O(m+occ) time with O(γ log(N/γ) logεN) space.

γ = smallest attractor size; m = pattern length; occ = # pattern occurrences; ε > 0

 Computing the smallest string attractor is NP-hard
[Kempa & Prezza 2017].

 However, these indexing structures can be built
without knowing the smallest attractor size γ.

Conclusions and Future Work

 Grammar-based compression is a powerful
compression scheme for highly repetitive strings.

 A variety of string processing can be performed
directly on grammar-compressed strings.

 How can we close the gap for the upper and lower
bounds of Re-Pair’s approximation ratio to the
smallest grammar?

 Can we perform various processing within space
proportional to the smallest string attractor size γ?

	Combinatorial Methods for String and Graph
	Agenda
	Highly Repetitive Strings (HRSs)
	Statistical Compressors vs. HRS
	Statistical Compressors vs. HRS
	Grammar-based Compression [Keiffer & Yang 2000]
	Grammar-based Compression [Keiffer & Yang 2000]
	Straight Line Program (SLP)
	Example of SLP
	DAG view of SLP
	DAG view of SLP
	DAG view of SLP
	Grammar-based Compressors
	Grammar-based Compressors
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair [Larsson & Moffat 2000]
	Re-Pair vs Empirical Entropy Hk
	Approximation to Smallest Grammar
	Approximation to Smallest Grammar
	Compressed String Processing (CSP)
	CSP on SLP
	CSP on SLP
	(Incomplete) List of Known Results on CSP for SLPs
	String Primitives
	Text Mining / String Comparison
	String Regularities
	Important Remark
	q-gram Frequency on SLP
	Uncompressed q-gram Frequencies
	Solution for Uncompressed String
	Solution for Uncompressed String
	Solution for Uncompressed String
	Solution for Uncompressed String
	Solution for Uncompressed String
	Solution for Uncompressed String
	Solution for Uncompressed String
	Compressed q-gram Frequencies
	Stabbing
	Observation
	Sub-problems
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 1
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	Solving Sub-Problem 2
	q-gram Frequency on SLP
	Experimental Results
	Finding Repetitions from SLP
	Stabbed Runs
	Stabbed Runs [Cont.]
	Stabbed Runs [Cont.]
	Stabbed Runs [Cont.]
	Stabbed Runs [Cont.]
	Stabbed Runs [Cont.]
	Finding Repetitions on SLP
	Finding Palindromes from SLP
	Finding Palindromes from SLP
	Finding Palindromes from SLP
	Finding Palindromes from SLP
	Stabbed Palindromes
	Computing Type 1 Palindromes
	Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Batched LCE for Suffix Palindromes
	Finding Palindromes on SLP
	Finding Gapped Palindromes on SLP
	Stabbed g-gapped Palindromes
	Finding Gapped Palindromes on SLP
	More on LCE, height h, and Stabbing
	LCE (longest common extension) queries
	LCE on grammar-compressed string
	LCE with Recompression
	LCE with Recompression
	Balancing SLPs
	Balancing SLPs [cont.]
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	O(log N)-time Random Access
	Balancing SLPs [cont.]
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	String Attractors
	SLP as String Attractor
	String Attractor as Lower Bound for SLP size
	Indexing with String Attractor Space
	Conclusions and Future Work

